A TGF WITH AZIMUTHAL ASYMMETRY AT THE PIERRE AUGER OBSERVATORY

John Ortberg, Roberta Colalillo, David Smith, Joseph Dwyer

DEFINITION AND MOTIVATION

- ~10¹⁷ gamma rays above 1 MeV
- 10-1000 µs duration
- Estimates of frequency
 ~0.01% to 1% of flashes
- Predicted in 1929, eluded detection until 1994

DEFINITION AND MOTIVATION

- The charge structure and potentials inside thunderclouds has proven to be increasingly complex
- There are several competing theories for the mechanism of TGFs

DEFINITION AND MOTIVATION

- The charge structure and potentials inside thunderclouds has proven to be increasingly complex
- There are several competing theories for the mechanism of TGFs

Moss et al 2016

Time Resolution

10⁶ cm³ Cherenkov tanks at Auger

- 10² 10³ cm³
 scintillators on
 satellites/ground
- High dynamic range
 = smooth time
 profile

4000 CM³ SCINTILLATOR

AUGER SD

Triangulation

- Auger allows direct triangulation of gamma ray source!
 - Previously only
 lightning channel
 - Similar method at TA, Utah (Remington 2023)

SATURATED

TGF Source

- ▶ x-y: +/- 100m
- > z: +/- 300m
- Finding the center allows analysis of:
 - Tilt/Asymmetry
 - Angular distribution

History of Detections Since 1994

Marisaldi 2022

Greatest Spatial Resolution Prior to Auger

Greatest Spatial Resolution at Auger

Models from Dwyer 2012, simulated with Geant4

- Brightness similar to TGFs seen from space
- Downward TGFs
 predict more decay
 with distance,
 regardless of beam
 width.

Searching for Asymmetry: Is one side brighter than the other?

Clearest asymmetry when you assume a tilt toward the SE

But there's more...

- Compare flux vs.
 azimuthal angle for
 constant distance
- Bin stations by 1km increments from center

Now plot peak vs. azimuthal angle

Now plot peak vs. azimuthal angle

Apply a scaling factor to each distance

Apply a scaling factor to each distance

Never before
 seen asymmetric
 structure.

 Possible theoretical roots in Dwyer 2008, Stadnichuk 2021

Publication
 forthcoming
 2024

STADNICHUK 2021

SUMMARY

First direct evidence of TGF asymmetry	Observatory	Events
 Surprise first evidence of azimuthal structure Unique ability to locate 	HAWC	None
gamma ray source Adding radio data would 	TA (Utah)	Short, dimmer TGFs
allow unprecedented comparison of lightning channel vs. gamma-ray	Auger	~20 bright, med/ long TGFs
source location		