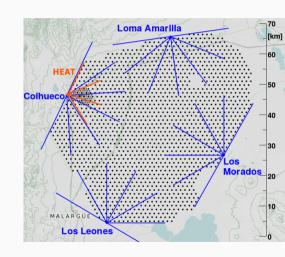
Adding interferometric lightning detection to the Pierre Auger Observatory

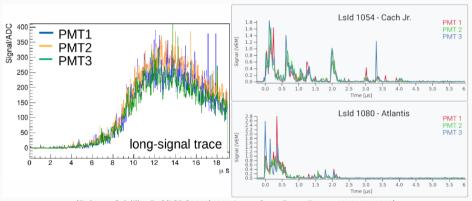
AtmoHEAD 2024

Melanie Joan Weitz for the Pierre Auger Collaboration July 16, 2024

University of Wuppertal

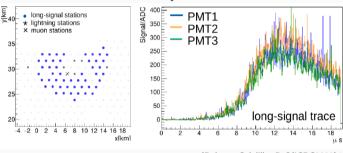


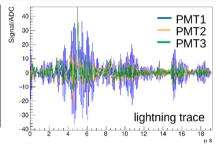
Pierre Auger Observatory


- World's largest observatory for studying ultra-high energy cosmic rays (>10¹⁷ eV)
- Located in Pampa Amarilla, Argentina
- 3000 km² hybrid array:
 - Air fluorescence telescope (FD)
 - Water Cherenkov detector (WCD)
 - Radio detector (RD)
 - Underground Muon detector
 - Scintillator Surface detector
- Offers large opportunities for observation of high-energetic atmospheric phenomena

Peculiar events at Pierre Auger Observatory

Detection of peculiar events with WCDs of Pierre Auger Observatory


(Roberta Colalillo, PoS(ICRC2023)439; Auger Open Data, Event: 182318542300)


Terrestrial Gamma-ray Flashes at Pierre Auger Observatory

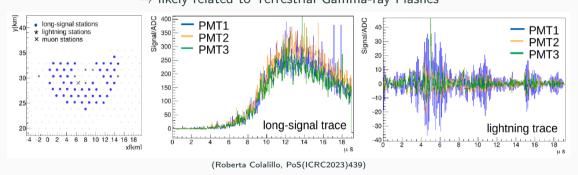
Detection of peculiar events during thunderstorms with WCDs of Pierre Auger Observatory (Auger)

→ likely related to Terrestrial Gamma-ray Flashes

(Roberta Colalillo, PoS(ICRC2023)439)

- Observations:
 - Larger multiplicity of triggered WCDs

 \sim Footprint covers $\sim 200 \, \mathrm{km}^2$


 \circ Signal times $> 10 \,\mu s$

Terrestrial Gamma-ray Flashes at Pierre Auger Observatory

Detection of peculiar events during thunderstorms with WCDs of Pierre Auger Observatory (Auger)

→ likely related to Terrestrial Gamma-ray Flashes

Motivation:

What are the properties of thunderstorms triggering Terrestrial Gamma-ray Flashes and at which lightning stage are they produced?

Terrestrial Gamma-ray Flashes (TGFs)

- Gamma-ray bursts originating from Earth's atmosphere during thunderstorms
 - Upward
 - Downward
- Lasting from tens of μs up to ms
- Not clear:
 - Characteristics of boundary conditions
 - Lightning stage involved

Artist interpretation (©NASA/Goddard Space Flight Center)

Lightning Strike Detection at Pierre Auger Observatory

Thunderstorms influence measurements of Auger hybrid array

- ⇒ Large disruption source:
 - ullet Optical emission o FD
 - Electric field → RD
 - ullet Radio signal of lightning o RD, WCD

Lightning Strike Detection at Pierre Auger Observatory

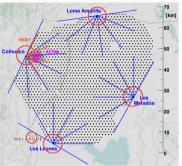
Thunderstorms influence measurements of Auger hybrid array \Rightarrow Large disruption source:

- ullet Optical emission o FD
- Electric field → RD
- ullet Radio signal of lightning o RD, WCD

Lightning Strike Detection at Pierre Auger Observatory

Thunderstorms influence measurements of Auger hybrid array

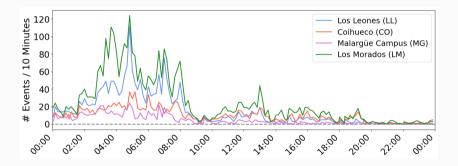
- ⇒ Large disruption source:
 - Optical emission → FD
 - Electric field → RD
 - Radio signal of lightning \rightarrow RD, WCD
 - Lightning strikes emit radio signal in low frequency band (LF: kHz) and very high frequency band (VHF: MHz)
 - \rightarrow Cloud-to-ground lightning detection via Lightning Detection System at Auger for investigation of cosmic ray \leftrightarrow lightning connection


Lightning Detection System at Pierre Auger Observatory

Lightning Detection System consists of 5 Lightning Detection Stations (LDS) installed at FD sites and Malargüe campus

LDS consist of:

- Commercial lightning detector:
 - Boltek StormTracker
 - PCI card with external antenna
 - o 2 polarizations: North-South and East-West
 - \circ Sensitivity: $\sim 10-90\,\mathrm{kHz}$
- GPS extension:
 - Own-build extension card with ublox LEA-6T chip
 - Delivers GPS time stamp



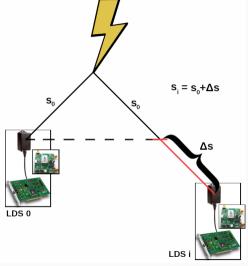
left: Boltek StormTracker, right: ublox LEA-6T (Lukas Niemietz, PhD thesis)

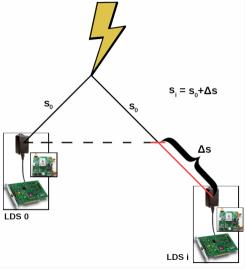
Single LDS Information

- Individual StormTracker data
- Direction and distance based on ratio of polarizations and amplitude
 - \rightarrow measurements of October 16, 2014

• Background, e.g. laser firing for atmospheric monitoring

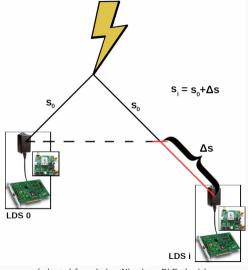
• StormTracker data combined with GPS time




- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
 - o Position of stations to each other
 - \circ Time offsets Δt_i from LDS signals to each other

- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
 - o Position of stations to each other
 - \circ Time offsets Δt_i from LDS signals to each other
 - \rightarrow Distance difference:

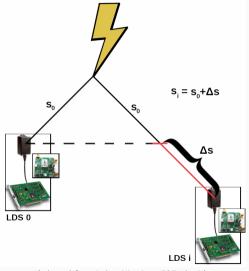
$$\Delta s = \underbrace{\left(t_i - t_0\right)}_{\Delta t_i} \cdot c$$



- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
 - o Position of stations to each other
 - \circ Time offsets Δt_i from LDS signals to each other
 - \rightarrow Distance difference:

$$\Delta s = \underbrace{\left(t_i - t_0\right)}_{\Delta t_i} \cdot c$$

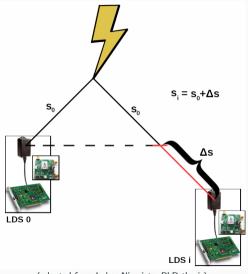
ightarrow Application of cross-correlation method for optimal Δt_i



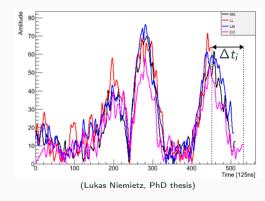
- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
 - o Position of stations to each other
 - \circ Time offsets Δt_i from LDS signals to each other
 - → Distance difference:

$$\Delta s = \underbrace{\left(t_i - t_0\right)}_{\Delta t_i} \cdot c$$

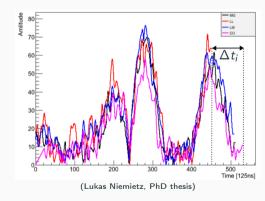
- ightarrow Application of cross-correlation method for optimal Δt_i
- ⇒ Triangulation for distance to lightning
- More information:
 - J. Rautenberg, PoS(ICRC2015)678



- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
 - Position of LDS to each other
 - \circ Time offsets Δt_i from LDS signals to each other
 - → Distance difference:

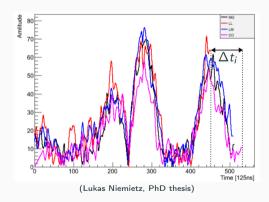

$$\Delta s = \underbrace{\left(t_i - t_0\right)}_{\Delta t_i} c$$

- \rightarrow Application of cross-correlation method for optimal Δt_i
- ⇒ Triangulation for distance to lightning
- More information:
 - J. Rautenberg, PoS(ICRC2015)678



• Optimal Δt_i for lightning position estimation

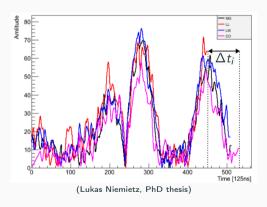
- Optimal Δt_i for lightning position estimation
- Cross-correlation method:



- Optimal Δt_i for lightning position estimation
- Cross-correlation method:
 - Highest signal-product of full traces:

$$\mathsf{CC}(\mathsf{offset}_i) = \mathsf{max}\left[\sum_j (S_{0,j} \ S_{i,j+\mathsf{offset}_i})\right]$$

with
$$S_{i,j} = \sqrt{S_{i,NS,j}^2 + S_{i,EW,j}^2}$$


- Optimal Δt_i for lightning position estimation
- Cross-correlation method:
 - o Highest signal-product of full traces:

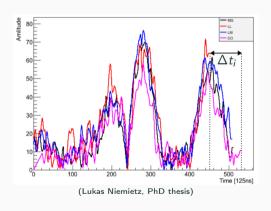
$$\mathsf{CC}(\mathsf{offset}_i) = \mathsf{max}\left[\sum_j (S_{0,j} \ S_{i,j+\mathsf{offset}_i})\right]$$

with
$$S_{i,j} = \sqrt{S_{i,\,\mathsf{NS},j}^2 + S_{i,\,\mathsf{EW},j}^2}$$

Including time binning:

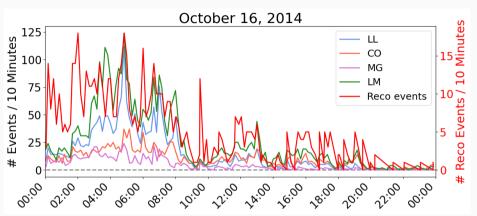
$$\Delta t_i = \mathsf{offset}_i \cdot 125 \, \mathsf{ns}$$

- Optimal Δt_i for lightning position estimation
- Cross-correlation method:
 - Highest signal-product of full traces:


$$\mathsf{CC}(\mathsf{offset}_i) = \mathsf{max}\left[\sum_j (S_{0,j} \ S_{i,j+\mathsf{offset}_i})
ight]$$

with
$$S_{i,j} = \sqrt{S_{i,NS,j}^2 + S_{i,EW,j}^2}$$

Including time binning:


$$\Delta t_i = \mathsf{offset}_i \cdot 125 \, \mathsf{ns}$$

Resolution of reconstruction: \sim km

Single Information and Multiple LDS

- Multiple station reconstruction suppresses background noise
 - \rightarrow important for trigger

Why Interferometric Lightning Detection at Auger?

- ullet Key for connection lightning \leftrightarrow TGFs
 - ightarrow Enhance understanding of thunderstorms and lightning
- One possible enhancement
 - → Construction of Cloud-to-ground lightning conducting path
- Can lead to
 - \rightarrow Properties of thunderstorms triggering TGFs

Why Interferometric Lightning Detection at Auger?

- ullet Key for connection lightning \leftrightarrow TGFs
 - ightarrow Enhance understanding of thunderstorms and lightning
- One possible enhancement
 - \rightarrow Construction of Cloud-to-ground lightning conducting path
- Can lead to
 - \rightarrow Properties of thunderstorms triggering TGFs

BUT: Lightning Detection System resolution is too small

Why Interferometric Lightning Detection at Auger?

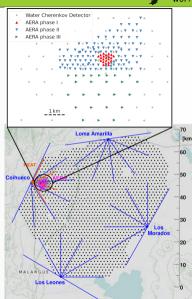
- Key for connection lightning ↔ TGFs
 - ightarrow Enhance understanding of thunderstorms and lightning
- One possible enhancement
 - → Construction of Cloud-to-ground lightning conducting path
- Can lead to
 - \rightarrow Properties of thunderstorms triggering TGFs

BUT: Lightning Detection System resolution is too small

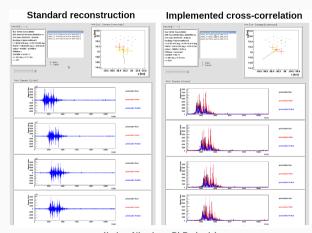
⇒ Possible solution:

Reuse stations of Auger Engineering Radio Array (AERA) for interferometric lightning detection

Auger Engineering Radio Array (AERA)

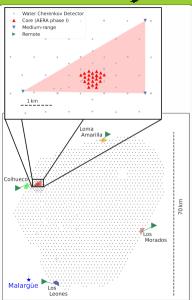

Measurement of short radio pulses emitted by cosmic ray air showers

- Covers $\sim 17 \, \mathrm{km}^2 \ (\approx 5 \, \% \text{ of Auger area})$
- Radio signal detection: 30 to 80 MHz ⇒ possibility of VHF lightning measurement with resolution in meter
- 154 radio detector stations with 2 different antenna types


left: Logarithmic Periodic Dipole Antenna, right: Butterfly Antenna

Lightning Measurement with AERA

- AERA event at January 19, 2012
 - Early stage of AERA phase I
 - AERA ran with different configurations
- Reconstruction of standard Auger analysis framework
 - \circ Time trace length: $\sim 11\,\mu s$
- Cross-correlation had been implemented
- Self-triggered traces of AERA stations
 - ightarrow Visible lightning signal
 - ightarrow Proof of principle


(Lukas Niemietz, PhD thesis)

Interferometric Lightning Detection at Auger: Basic Design

Planned configuration: 3 cluster

- Core
 - 4 stations
 - Baselines: 58 127 m
 - \rightarrow pulse identification density: 137 300 ns for sources at zenith angles of 45 $^{\circ}$
- Medium-range
 - o 3 stations
 - Baseline: 1.0 2.5 km
- Remote
 - 4 stations
 - Baseline: 3.5 66 km

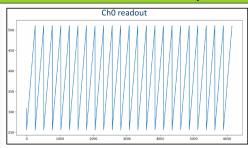
Interferometric Lightning Detection at Auger: Steps to take

- Modification of AERA stations
 - Change trace length from μs up to s
 - Data handling
 - Development of a new filter
- Adjustment of signal dynamical range
 - Investigation of a characteristic lightning signal based on self-triggered AERA measurements
- ⇒ Next Milestone:

First AERA station with long trace read-out in November 2024

Interferometric Lightning Detection at Auger: Steps to take

- Modification of AERA stations
 - Change trace length from μs up to s
 - o Data handling
 - o Development of a new filter
- Adjustment of signal dynamical range
 - Investigation of a characteristic lightning signal based on self-triggered AERA measurements
- ⇒ Next Milestone:


First AERA station with long trace read-out in November 2024

AERA Read-out Status

University of Siegen (Q. Dorosti)

- Local test setup including AERA boards
 - Read-out seems to be flawless
- Implementation of long trace read-out
 - Completed
 - 10 ms
 - 100 ms
- Challenges:
 - Slow read-out
 - o Long dead time
 - $\circ\,$ Sampling faster than read-out
 - \rightarrow possibly overtakes read-out

AERA Read-out Status: Challenges

- Data Handling
 - 2 channels with each 2 B per sample
 - Sampling rate: 180 MHz
 - \rightarrow 720 MBs⁻¹ for both channels
 - \Rightarrow 8s trace length: 5.76 GB
- Low communication band-width
 - WiFi Bandwidth: 22 MBs⁻¹
 - \circ Read-out time of 8s trace length \sim 4.4 min
 - Some stations have optical fibers
 - o Long dead time

Interferometric Lightning Detection at Auger: Steps to take

- Modification of AERA stations
 - o Change trace length from µs up to s
 - o Data handling
 - Development of a new filter
- Adjustment of signal dynamical range
 - Investigation of a *characteristic* lightning signal based on self-triggered AERA measurements
- ⇒ First Milestone:

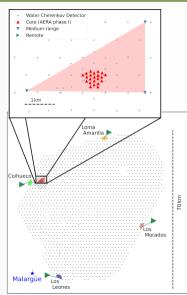
First AERA station with long trace read-out in November 2024

Investigation of Dynamical Range - Outline

- Question: Adjustment of AERA station signal amplitude?
- Study with already existing AERA measurements
- AERA measurements + external lightning trigger
 - External lightning trigger:
 - Lightning Detection System reconstructed lightning events
 - Lightning-vetoed WCDs within 5 km distance of AERA
 - Coincidences of GPS timestamps
 - Possible lightning signal
- ⇒ Adjustment of dynamical range to *characteristic* lightning signal

Investigation of Dynamical Range - Status and Challenge

- External trigger: Lightning Detection System reconstructed lightning events
- Modification of standard Auger analysis framework
 - → write out self-triggered AERA signal traces
- First analysis with new self-trigger of AERA regarding lightning
- Current challenge:
 - \circ No clear lightning assignment \to investigation of possible time offset


Summary and Outlook

- Thunderstorms and lightning are important for Auger
 - Impact WCDs and RDs
 - → WCDs lightning veto and Lightning Detection System
 - o Studies of high-energetic atmospheric phenomena
- First lightning mapping array done with AERA but not optimal (trace length $\sim 11 \, \mu s$)
- Interferometric Lightning Detection for correlation lightning stage ↔ TGF

Next steps:

- Solution for long trace readout
- Data handling
- Lightning assignment of (self-)triggered AERA signal traces

