Adding interferometric lightning detection to the Pierre Auger Observatory

AtmoHEAD 2024

Melanie Joan Weitz for the Pierre Auger Collaboration July 16, 2024

University of Wuppertal

BERGISCHE UNIVERSITÄT WUPPERTAL

Bundesministerium für Bildung und Forschung

PIERRE OBSERVATORY

- World's largest observatory for studying ultra-high energy cosmic rays $(>10^{17} eV)$
- Located in Pampa Amarilla, Argentina
- 3000 km^2 hybrid array:
	- Air fluorescence telescope (FD)
	- Water Cherenkov detector (WCD)
	- Radio detector (RD)
	- Underground Muon detector
	- Scintillator Surface detector
- Offers large opportunities for observation of high-energetic atmospheric phenomena

Detection of peculiar events with WCDs of Pierre Auger Observatory

Terrestrial Gamma-ray Flashes at Pierre Auger Observatory

Detection of peculiar events during thunderstorms with WCDs of Pierre Auger Observatory (Auger) \rightarrow likely related to Terrestrial Gamma-ray Flashes

(Roberta Colalillo, PoS(ICRC2023)439)

• Observations:

weitz@uni-wuppertal.de [Adding interferometric lightning detection to the Pierre Auger Observatory](#page-0-0) AtmoHEAD 2024 3 / 20

Terrestrial Gamma-ray Flashes at Pierre Auger Observatory

Detection of peculiar events during thunderstorms with WCDs of Pierre Auger Observatory (Auger) \rightarrow likely related to Terrestrial Gamma-ray Flashes

 $\frac{1}{2}$ 40 **JUANC** long-signal stations Signal/AD PMT1 * lightning station X muon stations $30₁$ PMT₂ PMT3 \mathbf{a} PMT3 250 200 150 100 50 long-signal trace lightning trace $\overline{10}$ $\overline{12}$ x[km]

(Roberta Colalillo, PoS(ICRC2023)439)

• Motivation:

What are the properties of thunderstorms triggering Terrestrial Gamma-ray Flashes and at which lightning stage are they produced?

weitz@uni-wuppertal.de [Adding interferometric lightning detection to the Pierre Auger Observatory](#page-0-0) AtmoHEAD 2024 3 / 20

- Gamma-ray bursts originating from Earth's atmosphere during thunderstorms
	- Upward
	- Downward
- Lasting from tens of μ s up to ms
- Not clear:
	- Characteristics of boundary conditions
	- Lightning stage involved

Artist interpretation (C)NASA/Goddard Space Flight Center)

Thunderstorms influence measurements of Auger hybrid array \Rightarrow Large disruption source:

- Optical emission \rightarrow FD
- Electric field \rightarrow RD
- Radio signal of lightning \rightarrow RD, WCD

Thunderstorms influence measurements of Auger hybrid array \Rightarrow Large disruption source:

- Optical emission \rightarrow FD
- Electric field \rightarrow RD
- Radio signal of lightning \rightarrow RD, WCD

Thunderstorms influence measurements of Auger hybrid array \Rightarrow Large disruption source:

- Optical emission \rightarrow FD
- Electric field \rightarrow RD
- Radio signal of lightning \rightarrow RD, WCD
	- Lightning strikes emit radio signal in low frequency band (LF: kHz) and very high frequency band (VHF: MHz)
	- \rightarrow Cloud-to-ground lightning detection via Lightning Detection System at Auger for investigation of cosmic ray \leftrightarrow lightning connection

Lightning Detection System at Pierre Auger Observatory

- Lightning Detection System consists of 5 Lightning Detection Stations (LDS) installed at FD sites and Malargüe campus
- LDS consist of:
	- Commercial lightning detector:
		- Boltek StormTracker
		- PCI card with external antenna
		- 2 polarizations: North-South and East-West
		- Sensitivity: ∼ 10 − 90 kHz
	- GPS extension:
		- Own-build extension card with ublox LEA-6T chip
		- Delivers GPS time stamp left: Boltek StormTracker, right: ublox LEA-6T

(Lukas Niemietz, PhD thesis)

- Individual StormTracker data
- Direction and distance based on ratio of polarizations and amplitude
	- \rightarrow measurements of October 16, 2014

• Background, e.g. laser firing for atmospheric monitoring

• StormTracker data combined with GPS time

BERGISCHE UNIVERSITÄT **WUPPERTAL**

(adapted from Lukas Niemietz, PhD thesis)

- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
	- Position of stations to each other
	- \circ Time offsets Δt_i from LDS signals to each other

REBGISCHE WIIPPERTAL

(adapted from Lukas Niemietz, PhD thesis)

- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
	- Position of stations to each other
	- \circ Time offsets Δt_i from LDS signals to each other
		- \rightarrow Distance difference:

$$
\Delta s = \underbrace{(t_i - t_0)}_{\Delta t_i} \cdot c
$$

RERGISCHE **WIIPPERTAL**

- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
	- Position of stations to each other
	- \circ Time offsets Δt_i from LDS signals to each other
		- \rightarrow Distance difference:

$$
\Delta s = \underbrace{(t_i - t_0)}_{\Delta t_i} \cdot c
$$

 \rightarrow Application of cross-correlation method for optimal Δt_i

RERGISCHE **WIIPPERTAL**

- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
	- Position of stations to each other
	- \circ Time offsets Δt_i from LDS signals to each other
		- \rightarrow Distance difference:

$$
\Delta s = \underbrace{(t_i - t_0)}_{\Delta t_i} \cdot c
$$

- \rightarrow Application of cross-correlation method for optimal Δt_i
- \Rightarrow Triangulation for distance to lightning
- More information:
	-

PERCICCUE

- StormTracker data combined with GPS time
- Reconstructed lightning position dependent on
	- Position of LDS to each other
	- \circ Time offsets Δt_i from LDS signals to each other
		- \rightarrow Distance difference:

$$
\Delta s = \underbrace{(t_i - t_0)}_{\Delta t_i} c
$$

- \rightarrow Application of cross-correlation method for optimal Δt_i
- \Rightarrow Triangulation for distance to lightning
- More information:
	- J. Rautenberg, PoS(ICRC2015)678

• Optimal Δt_i for lightning position estimation

- Optimal Δt_i for lightning position estimation
- Cross-correlation method:

- Optimal Δt_i for lightning position estimation
- Cross-correlation method:
	- Highest signal-product of full traces:

$$
CC(offseti) = max \left[\sum_{j} (S_{0,j} S_{i,j+offseti) \right]
$$

with $S_{i,j} = \sqrt{S_{i,NS,j}^{2} + S_{i,EW,j}^{2}}$

- Optimal Δt_i for lightning position estimation
- Cross-correlation method:
	- Highest signal-product of full traces:

$$
CC(offseti) = max \left[\sum_{j} (S_{0,j} S_{i,j+offset_{i}}) \right]
$$

with
$$
S_{i,j} = \sqrt{S_{i,NS,j}^2 + S_{i,EW,j}^2}
$$

o Including time binning:

$$
\Delta t_i = \text{offset}_i \cdot 125 \,\text{ns}
$$

- Optimal Δt_i for lightning position estimation
- Cross-correlation method:
	- Highest signal-product of full traces:

$$
CC(offseti) = max \left[\sum_{j} (S_{0,j} S_{i,j+offset_i}) \right]
$$

with
$$
S_{i,j} = \sqrt{S_{i,NS,j}^2 + S_{i,EW,j}^2}
$$

 \circ Including time binning:

$$
\Delta t_i = \text{offset}_i \cdot 125\,\text{ns}
$$

• Resolution of reconstruction: ∼ km

Single Information and Multiple LDS

• Multiple station reconstruction suppresses background noise \rightarrow important for trigger

Why Interferometric Lightning Detection at Auger?

- Key for connection lightning \leftrightarrow TGFs
	- \rightarrow Enhance understanding of thunderstorms and lightning
- One possible enhancement
	- \rightarrow Construction of Cloud-to-ground lightning conducting path
- Can lead to
	- \rightarrow Properties of thunderstorms triggering TGFs

Why Interferometric Lightning Detection at Auger?

- Key for connection lightning \leftrightarrow TGFs
	- \rightarrow Enhance understanding of thunderstorms and lightning
- One possible enhancement
	- \rightarrow Construction of Cloud-to-ground lightning conducting path
- Can lead to
	- \rightarrow Properties of thunderstorms triggering TGFs

BUT: Lightning Detection System resolution is too small

Why Interferometric Lightning Detection at Auger?

- Key for connection lightning \leftrightarrow TGFs
	- \rightarrow Enhance understanding of thunderstorms and lightning
- One possible enhancement
	- \rightarrow Construction of Cloud-to-ground lightning conducting path
- Can lead to
	- \rightarrow Properties of thunderstorms triggering TGFs

BUT: Lightning Detection System resolution is too small ⇒ Possible solution:

> Reuse stations of Auger Engineering Radio Array (AERA) for interferometric lightning detection

Auger Engineering Radio Array (AERA)

Measurement of short radio pulses emitted by cosmic ray air showers

- Covers $\sim 17\,\text{km}^2$ ($\approx 5\,\%$ of Auger area)
- Radio signal detection: 30 to 80 MHz \Rightarrow possibility of VHF lightning measurement with resolution in meter
- 154 radio detector stations with 2 different antenna types

left: Logarithmic Periodic Dipole Antenna, right: Butterfly Antenna

weitz@uni-wuppertal.de [Adding interferometric lightning detection to the Pierre Auger Observatory](#page-0-0) AtmoHEAD 2024 12 / 20

- AERA event at January 19, 2012
	- Early stage of AERA phase I ◦ AERA ran with different configurations
- Reconstruction of standard Auger analysis framework
	- Time trace length: ∼ 11 µs
- Cross-correlation had been implemented
- Self-triggered traces of AERA stations
	- \rightarrow Visible lightning signal
	- \rightarrow Proof of principle

(Lukas Niemietz, PhD thesis)

Interferometric Lightning Detection at Auger: Basic Design

REBGISCHE WUPPERTAL

Planned configuration: 3 cluster

- Core
	- 4 stations
	- Baselines: 58 127 m
	- \rightarrow pulse identification density: 137 300 ns for sources at zenith angles of 45°
- Medium-range
	- 3 stations
	- \circ Baseline: $1.0 2.5$ km
- Remote
	- 4 stations
	- \circ Baseline: $3.5 66$ km

weitz@uni-wuppertal.de [Adding interferometric lightning detection to the Pierre Auger Observatory](#page-0-0) AtmoHEAD 2024 14 / 20

- Modification of AFRA stations
	- Change trace length from µs up to s
	- Data handling
	- Development of a new filter
- Adjustment of signal dynamical range
	- Investigation of a characteristic lightning signal based on self-triggered AERA measurements
- ⇒ Next Milestone:

First AERA station with long trace read-out in November 2024

- Modification of AFRA stations
	- Change trace length from µs up to s
	- Data handling
	- Development of a new filter
- Adjustment of signal dynamical range
	- Investigation of a characteristic lightning signal based on self-triggered AERA measurements
- ⇒ Next Milestone:

First AERA station with long trace read-out in November 2024

AERA Read-out Status

University of Siegen (Q. Dorosti)

- Local test setup including AERA boards ◦ Read-out seems to be flawless
- Implementation of long trace read-out
	- Completed
		- -10 ms
		- -100 ms
- Challenges:
	- Slow read-out
	- Long dead time
	- Sampling faster than read-out
		- \rightarrow possibly overtakes read-out

• Data Handling

- 2 channels with each 2 B per sample
- Sampling rate: 180 MHz
	- \rightarrow 720 MBs $^{-1}$ for both channels
- \Rightarrow 8 s trace length: 5.76 GB
- Low communication band-width
	- WiFi Bandwidth: 22 MBs−¹
	- Read-out time of 8 s trace length ∼ 4.4 min
	- Some stations have optical fibers
	- Long dead time

- Modification of AFRA stations
	- Change trace length from µs up to s
	- Data handling
	- Development of a new filter
- Adjustment of signal dynamical range
	- Investigation of a characteristic lightning signal based on self-triggered AERA measurements
- ⇒ First Milestone:

First AERA station with long trace read-out in November 2024

- Question: Adjustment of AERA station signal amplitude?
- Study with already existing AERA measurements
- AERA measurements $+$ external lightning trigger
	- External lightning trigger:
		- Lightning Detection System reconstructed lightning events
		- Lightning-vetoed WCDs within 5 km distance of AERA
	- Coincidences of GPS timestamps
	- Possible lightning signal
- \Rightarrow Adjustment of dynamical range to *characteristic* lightning signal

- External trigger: Lightning Detection System reconstructed lightning events
- Modification of standard Auger analysis framework \rightarrow write out self-triggered AERA signal traces
- First analysis with new self-trigger of AERA regarding lightning
- Current challenge:
	- \circ No clear lightning assignment \rightarrow investigation of possible time offset

Summary and Outlook

- Thunderstorms and lightning are important for Auger
	- Impact WCDs and RDs \rightarrow WCDs lightning veto and Lightning Detection System
	- Studies of high-energetic atmospheric phenomena
- First lightning mapping array done with AERA but not optimal (trace length $\sim 11 \,\mu s$)
- Interferometric Lightning Detection for correlation lightning stage \leftrightarrow TGF

Next steps:

- Solution for long trace readout
- Data handling
- Lightning assignment of (self-)triggered AERA signal traces

REBGISCHE **WIIPPERTAL**