

Sezione di Bari

1

ALICE 3 A next generation heavy-ion detector for LHC Run 5 and beyond

Triloki (Politecnico and INFN, Bari) for the ALICE Collaboration Present and future perspectives in Hadron Physics June 17–21, 2024

Triloki – Politecnico and INFN, Bari, Italy

ALICE 3 motivation

LS3 & Run 4: ITS3, FoCal

Main experimental goal of the ALICE Collaboration

Study the microscopic dynamics of the strongly-interacting matter produced in heavy-ion collisions

BUT

Run 3+4 will increase the precision of the measurements

- Medium effects on single heavy-flavour hadrons
- Time averaged thermal QGP radiation
- Collective effects from small to large systems

Some open fundamental questions

- QGP properties driving constituents to equilibrium
- Partonic EoS and its temperature dependence
- Underlying dynamics of chiral symmetry restoration
- Hadronization mechanisms of the QGP

Substantial improvement needed in detector performance and statistics

ALICE

ALICE 3 timeline

ALICE 3 milestones

- Idea for **next-generation heavy-ion programme** for LHC Runs 5 and 6 developed within ALICE in 2018/19
 - First ideas at Heavy-Ion town meeting (2018)
 - Expression of Interest submitted as input to the European Strategy for Particle Physics Update (2019) <u>arXiv:1902.01211</u>
- Letter of Intent for ALICE 3: Review concluded with very positive feedback by the LHCC in March 2022 <u>ALICE CERN-LHCC-2022-009</u>
- Scoping Document: Prepared and under submission

ALICE 3 physics goals

Fundamental questions for our understanding of QGP will remain open after LHC Runs 3 and 4

Early stages: temperature, chiral symmetry restoration

Dilepton and photon production, elliptic flow

Heavy flavour diffusion and thermalization in the QGP

• Beauty and charm flow, charm hadron correlation

Hadronization in heavy-ion collisions

- Multi-charm baryon production: quark recombination
- Quarkonia, exotic mesons: dissociation and regeneration

Understanding fluctuations of conserved charges

Hadron correlation and fluctuation measurements

Nature of exotic hadrons

Momentum correlations, production yields and dacays

Beyond QGP physics

- Ultra-soft photon production: test of Low's theorem
- Search for axion-like particles in ultra-peripheral Pb-Pb
- Search for super-nuclei (c-deuteron, c-triton)

Triloki – Politecnico and INFN, Bari, Italy

5

ALICE 3 detector concept

Key requirements

- Retractable vertex detector
- Compact and light all-silicon tracker
- Superconducting magnet system
- Extensive particle identification
- Large acceptance: $|\eta| < 4$
- Continuous readout + online processing

Vertexing: The vertex detector

Requirements

• Pointing resolution $\approx 10 \ \mu m @ p_T = 200 \frac{MeV}{c}$

✓ $X_{1st}/X_0 \approx 0.1$ %, $R_{1st} = 5$ mm ✓ $\sigma_{pos} \approx 2.5 \ \mu\text{m} \rightarrow 10 \ \mu\text{m}$ pixel pitch

Implementation

- 3(barrel)+3·2(disk) layers within beam pipe
- Retractable detector: $R = 5-25 \text{ mm} \leftrightarrow 16-35 \text{ mm}$
- Wafer-sized, bent Monolithic Active Pixel Sensors

Vertexing: The vertex detector

Requirements

• Pointing resolution $\approx 10 \ \mu m @ p_T = 200 \frac{MeV}{c}$

✓ $X_{1st}/X_0 \approx 0.1$ %, $R_{1st} = 5$ mm ✓ $\sigma_{pos} \approx 2.5 \ \mu\text{m} \rightarrow 10 \ \mu\text{m}$ pixel pitch

Implementation

- 3(barrel)+3·2(disk) layers within beam pipe
- Retractable detector: $R = 5-25 \text{ mm} \leftrightarrow 16-35 \text{ mm}$
- Wafer-sized, bent Monolithic Active Pixel Sensors

7

Vertexing: The vertex detector

Status: Ongoing experimental facilities development for outgassing study in vacuum

There are three ways to perform outgassing measurement:

- Comparing the vacuum level with and without sample
- Comparing residual atmosphere of vacuum chamber with and without sample using RGA
- Comparing the TML of sample before and after pumping

Preliminary results (E-6 mbar pressure): outgassing test

Residual gas compassions: @ 1E-6 mbar pressure

Samples to test

- 3D printed aluminium nitride (AIN) samples disks
- Al2O3 samples disk: 3D printed alumina (Al₂O₃) samples disks
- 3D printed AlSi samples disks
- Carbon (LAYPUS) Substrate of the cold plate
- Carbon Fleece of the cold plate
- Carbon foam All comp high density
- Carbon foam All comp low density
- Carbon foam ERG duocel
- Optical Fiber with connector
- Si wafer
- Wire bonded Si wafer
- FPC
- NASA Epoxy

Triloki – Politecnico and INFN. Bari. Italy

ALICE

Tracking: The outer tracker

Requirements

• $\sigma_{p_T}/p_T \approx 1\%$ up to $|\eta| = 4$ $\checkmark X_i/X_0 \approx 1\%$ $\checkmark \sigma_{pos} \sim 10 \ \mu\text{m} \rightarrow 50 \ \mu\text{m}$ pitch

Implementation

- 8(barrel)+9·2(disk) layers,
- $R_{out} \approx 80$ cm, |z| < 4 m
- Monolithic Active Pixel Sensors

R&D challenge

- Industrialization of the module assembly to cover $\approx \, 60 \; m^2$ area

PID: The TOF detector

first author "et al."

Requirements

- e/π separation up to $\approx 500 \text{ MeV}/c$
- π/K separation up to $\approx 2 \text{ GeV}/c$
- K/p separation up to $\approx 4 \text{ GeV}/c$
- $\propto L/\sigma_{TOF} \rightarrow \sigma_{TOF} \approx 20 \text{ ps}$
- Larger radius \rightarrow Lower p_T bounds

Implementation

- 2(barrel)+1·2(disk) layers
- Inner TOF at $R \approx 0.19$ m, |z| < 0.62 m
- Outer TOF at $R \approx 0.85$ m, |z| < 2.79 m
- Forward TOF at $z \approx 4.05$ m, |R| < 1.5 m

Technology options

- Monolithic Active Pixel Sensors (MAPS)
 - ARCADIA* MAPS with gain layer
- Low Gain Avalanche Diodes (LGADs)
 - Single/double LGADs
- Silicon Photomultipliers (SiPMs)
 - Interesting in combination with RICH

*Advanced Readout CMOS Architectures with Depleted Integrated sensor Arrays (INFN Project)

Triloki – Politecnico and INFN, Bari, Italy

PID: The RICH detector

Requirements

- Extend charged PID beyond TOF limits
 - e/π up to $\approx 2 \text{ GeV}/c$
 - π/K up to $\approx 10 \text{ GeV}/c$
 - K/p up to $\approx 16 \text{ GeV}/c$
- Cherenkov threshold: $p \ge m/\sqrt{n^2 1}$
 - \rightarrow n = 1.03 (barrel), n = 1.006 (forward)
 - \Rightarrow Aerogel radiator
- Angular resolution: $\sigma_{ring} \approx 1.5 \text{ mrad}$

Implementation

- 1(barrel)+1·2(disk) layers
- Barrel RICH at $R \approx 0.90$ m, |z| < 2.80 m
- Forward RICH at $|z| \approx 4.10 \text{ m}$, R < 1.70 m
- Silicon Photomultipliers (SiPMs)

R&D challenges

- Projective bRICH to improve coverage at large $|\eta|$ while saving on overall photosensitive area
- Merged oTOF+bRICH system using a common SiPM layer coupled to a thin radiator window

First prototype tested on beam in October 2022

PID: The MID detector

Requirements

- Muon ID down to $p_T \approx 1.5 \text{ GeV}/c$
- Pseudorapidity coverage $|\eta| < 1.3$

Hadron absorber

- Magnetic/non-magnetic steel
- Thickness of $\approx 70 \text{ cm}$ at $\eta = 0$

Muon chambers

- $\Delta \eta \ge \Delta \phi$ granularity $\rightarrow 5 \ge 5 \text{ cm}^2$ cells
- 2 layers of plastic scintillator bars
- Silicon Photomultiplier readout
- Coupling to WLS fibers is under study
- Alternative options: MWPCs, RPCs

QGP temperature

Averaged temperature T of the QGP using thermal dielectron m_{ee} spectrum at $m_{ee} > 1.1 \text{ GeV}/c^2$

Crucial requirements

- Very good electron identification down to low p_T
- Small material budget (γ conversion background)
- Good pointing resolution (heavy flavour decays)

ALICE 3 unique for high-precision dielectron based QGP temperature measurements

Time evolution

Probe time dependence of temperature using **double-differential spectra** of m_{ee} and $p_{T,ee}$

Crucial requirements

- Very good electron identification down to low p_T
- Small material budget (γ conversion background)
- Good pointing resolution (heavy flavour decays)

ALICE 3 unique for high-precision dielectron based QGP temperature measurements

Heavy-quark correlations

Angular decorrelation of heavy-flavour hadrons

Probe QGP scattering

- Sensitive to energy loss and thermalization degree ٠
- Strongest signal at low p_T ٠
- Requires high purity, efficiency and η coverage ٠

Heavy-ion measurement only possible with ALICE 3

3

 $\Delta \varphi$ (rad)

<u>×1</u>0^{−3}

60

50

30

10

(rad⁻¹⁾

 $d\Delta \varphi$ 80

 $N_{\mathbf{D}^0}$

dNasso

-

120

100

20

(rad⁻¹⁾

 $d\Delta \varphi$

 N_{D^0}

dNasso

-

Multi-charm baryon reconstruction

 $\Xi_c^+ \to \Xi^- + 2 \pi^+$

First ALICE 3 tracking layer at 5 mm

Track strange baryon (Ξ^-) before it decays High selectivity thanks to pointing resolution

Heavy-ion measurement only possible with ALICE 3

Strangeness tracking in Ξ_{cc}^{++} decay

Summary

- □ ALICE 3 is needed to unravel the microscopic dynamics of the quark-gluon plasma beyond current limits by fully exploiting the potential of the LHC as a heavy-ion collider
- □ ALICE 3 also addresses fundamental open questions in **QCD physics** and beyond
- □ Innovative detector concept to meet the requirements of the rich physics program
- Several **novel R&Ds** with broad impact on future HEP "FCC-ee" and "EIC" and nuclear experiments

Outlook

- **2023-2025**: Selection of technologies, small-scale prototypes
- **2026-2027**: Large-scale prototypes, Technical Design Reports

Thank you for your attention!

PID: The ECal detector

Requirements

- High-energy electron and photon ID
 - Up to 100 GeV for $|\eta| < 1.5$
 - Up to 250 *GeV* for $1.5 < \eta < 4$
- Energy resolution

 $\frac{\sigma_E}{E} = \frac{a}{E} \oplus \frac{b}{\sqrt{E}} \oplus c$

Implementation

- 2(barrel)+1(disk) layers
 - Sampling Pb + scintillator
 (à la ALICE EMCal/Dcal)
 - High-resolution segment based on PbWO₄ crystals, $|\eta| < 0.22$ (à la ALICE PHOS)
 - Silicon Photomultiplier readout

PbWO₄ sector

