

The Gamma Factory @ CERN: **Extraordinary Tool for Extraordinary Tasks**

Workshop "Present and Future Perspectives in Hadronic Physics", LNF Frascati, June 17-19, 2024

Physics Opportunities with the Gamma Factory

Examples of physics opportunities (from 2021) Now **many more** additional papers have been published

SY

Accelerator Systems

Volume 534, Issue 3

Special Issue: Physics Opportunities with the Gamma Factory

March 2022

Issue Edited by: Dmitry Budker, Mikhail Gorchtein, Mieczyslaw Witold Krasny, Adriana Pálffy, Andrey Surzhykov

Review

Open Access
 Expanding Nuclear Physics Horizons with the Gamma Factory

Research Articles

Full Access
 Local Lorentz Invariance Tests for Photons and Hadrons at the Gamma Factory

- 🔂 Full Access
- Electric Dipole Polarizability of Neutron Rich Nuclei

Open Access
 Vacuum Birefringence at the Gamma Factory

- Full Access
 Double Twisted Spectroscopy with
- Double-Twisted Spectroscopy with Delocalized Atoms
 Trull Access
- Delta Baryon Photoproduction with Twisted Photons

🔂 Open Access

Resonant Scattering of Plane-Wave and Twisted Photons at the Gamma Factory

Full Access
 Probing Axion-Like-Particles at the CERN Gamma Factory

🔂 Open Access

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

- ____ 仓 Open Access
- Access to the Kaon Radius with Kaonic Atoms

🔂 Full Access

Radioactive Ion Beam Production at the Gamma Factory

🔂 Open Access

Possible Polarization Measurements in Elastic Scattering at the Gamma Factory Utilizing a 2D Sensitive Strip Detector as Dedicated Compton Polarimeter

🔂 Full Access

Polarization of Photons Scattered by Ultra-Relativistic Ion Beams

Physics Opportunities with the Gamma Factory

Examples of physics opportunities (from 2021) Now **many more** additional papers have been published

SY

Accelerator Systems

STI

Volume 534, Issue 3 Special Issue: Physics O

Special Issue: Physics Opportunities with the Gamma Factory

March 2022

Issue Edited by: Dmitry Budker, Mikhail Gorchtein, Mieczyslaw Witold Krasny, Adriana Pálffy, Andrey Surzhykov

Review

Open Access
 Expanding Nuclear Physics Horizons with the Gamma Factory

Research Articles

Ĝ Full Access
 □ Local Lorentz Invariance Tests for Photons and Hadrons at the Gamma Factory

- 🔂 Full Access
- Electric Dipole Polarizability of Neutron Rich Nuclei

Open Access
 Vacuum Birefringence at the Gamma Factory

- Full Access
 Double-Twisted Spectroscopy with Delocalized Atoms
- Full Access
 Delta Baryon Photoproduction with Twisted Photons

⊖ Open Access

□ Resonant Scattering of Plane-Wave and Twisted Photons at the Gamma Factory

Probing Axion-Like-Particles at the CERN Gamma Factory

🖯 Open Access

Charge-State Distributions of Highly Charged Lead Ions at Relativistic Collision Energies

🔄 🔂 Open Access

Access to the Kaon Radius with Kaonic Atoms

____ ∂ Full Access

Radioactive Ion Beam Production at the Gamma Factory

ි Open Access

Possible Polarization Measurements in Elastic Scattering at the Gamma Factory Utilizing a 2D Sensitive Strip Detector as Dedicated Compton Polarimeter

🔂 Full Access

Polarization of Photons Scattered by Ultra-Relativistic Ion Beams

GF @ LHC:

A versatile tool for a forefront research in particle, nuclear, atomic, accelerator and applied physics

Comparison to Other Existing X-ray or Gamma-ray Sources

"Can one make a technological leap of 7 orders of magnitude to deliver similar fluxes to FELs in the Gamma-rays?"

Example (GF for nuclear physics app):

European XFEL	Gamma Factory
27,000 pulses/s	20 MHz
24 keV	18 MeV
10 ¹⁶ photons/s	3.6 x 10 ¹⁷ photons/s
1.4 mJ/pulse	5 mJ/pulse (laser)
38 W (J/s)	570 kW (kJ/s)

The Gamma Factory operates with **MW** electric power and 10s MJ of stored beam energy

So far, the only facility currently providing such parameter space is the LHC

Accelerator Systems

Comparison to Other Existing X-ray or Gamma-ray Sources

nciple (PoP) experiment at SPS

"Can one make a technological leap of 7 orders of magnitude to deliver similar fluxes to FELs in the Gamma-rays?"

Example (GF for nuclear physics app):

European XFEL	Gamma Factory
27,000 pulses/s	20 MHz
24 keV	18 MeV
10 ¹⁶ photons/s	3.6 x 10 ¹⁷ photons/s
1.4 mJ/pulse	5 mJ/pulse (laser)
38 W (J/s)	570 kW (kJ/s)

The Gamma Factory operates with **MW** electric power and 10s MJ of stored beam energy

So far, the only facility currently providing such parameter space is the LHC

in preparation for 2027

Concept: Doppler effect with relativistic partially-stripped ions

(STI)

SY

Accelerator Systems

CÉRN

Absorption X' $\hbar k'$ Excited ion $X'_{\mathbb{A}}$ $\hbar k_{\prime}^{\prime}$ \widetilde{Z}' Emission $\hbar k_1'$ X'Z' $\hbar k_1'$ $\hbar m{k}$ $k'=k_1'=\omega'\!/c$

In the ion frame

Absorption

Lorentz transformation

$$\omega' \sin \theta' = \omega \sin \theta, \qquad \Delta \theta' \approx \frac{\Delta \theta}{2\gamma}$$

$$\omega' = (1 + \beta \cos \theta) \gamma \omega \approx \left(1 + \beta - \beta \frac{\theta^2}{2}\right) \gamma \omega \approx 2\gamma \omega.$$

Emission

$$\begin{split} \omega_{1} \sin \theta_{1} &= \omega' \sin \theta_{1}' \Rightarrow \sin \theta_{1} = \frac{\sin \theta_{1}'}{\gamma (1 + \beta \cos \theta_{1}')}, \\ \omega_{1} &= \gamma (1 + \beta \cos \theta_{1}') \omega' \approx 2\gamma^{2} (1 + \beta \cos \theta_{1}') \omega. \\ \mathbf{v}^{\text{max}} \longrightarrow (4 \gamma_{\text{L}}^{2}) \mathbf{v}_{\text{j}} \end{split}$$

The Gamma Factory Intensity Leap

Tune laser frequency to resonant atomic transition -> ~every photon in the bunch interacts

FEL with <400 MeV energy

The Gamma Factory in the Global γ -Source Landscape

Bremsstrahlung tagged-photon facilities

Facility name	ility name MAMI A2		ELSA	MAX IV	
Location	Mainz	Newport News	Bonn	Lund	
Electron energy (GeV)	1.6	12	4.68	220	
Max γ energy (MeV)	1600	9200	2400	180	
Energy resolution (MeV)	$2\text{-}4\mathrm{MeV}$	30	12.5	0.3	
Photon polarization	≤ 0.8	≤ 0.4		_	
Max on–target flux (γ/s)	-10^{8}	-10^{8}	5×10^6	4×10^6	
Reference	[519]	[520]	[521]	[522]	

The Gamma Factory in the Global γ -Source Landscape

Bremsstrahlung tagged-photon facilities

Facility name	MAMI A2	JLab Hall D	ELSA	MAX IV	
Location	Mainz	Newport News	Bonn	Lund	
Electron energy (GeV)	1.6	12	4.68	220	
Max γ energy (MeV)	1600	9200	2400	180	
Energy resolution (MeV)	$24\mathrm{MeV}$	30	12.5	0.3	
Photon polarization	≤ 0.8	≤ 0.4		_	
Max on–target flux (γ/s)	-10^{8}	-10^{8}	5×10^6	4×10^6	
Reference	[519]	[520]	[521]	[522]	

Compton backscattering facilities

Facility name	ROKK-1M	GRAAL	LEPS	$HI\gamma S$	ELI-NP	SLEGS	CLS ^a	GF
Location	Novosibirsk	Grenoble	Harima	Duke	Bucharest	Shanghai	Saskatoon	CERN
Storage ring	VEPP-4M	ESRF	SPring-8	Duke–SR	linac	\mathbf{SSRF}	$2.9{ m GeV}$	LHC
Laser-photon energy (eV)	1.17 - 4.68	2.41 - 3.53	2.41 - 4.68	1.17 - 6.53	1.50 - 1.52	$0.117(CO_2)$	$0.117(CO_2)$	multiple
γ -beam energy (MeV)	100 - 1600	550 - 1500	1500 - 2400	1-100(158)	0.2 - 20	<22	≤ 15	$\leq 400^{\rm b}$
$\Delta E/E$	0.01 - 0.03	0.011	0.0125	0.008 - 0.1	0.005	$10^5 - 10^7$	$\sim 0.0011^{\rm c}$	$\sim 10^{-4} - 10^{-6}$
Max on-target flux (γ/s)	10^{6}	3×10^{6}	5×10^{6}	$10^4 - 5 \times 10^8$	8×10^{8}	$10^9 - 10^{10}$	$10^{10 \text{d}}$	10^{17d}

The Gamma Factory in the Global γ -Source Landscape

Bremsstrahlung tagged-photon facilities

Facility name	MAMI A2	JLab Hall D	ELSA	MAX IV
Location	Mainz	Newport News	Bonn	Lund
Electron energy (GeV)	1.6	12	4.68	220
Max γ energy (MeV)	1600	9200	2400	180
Energy resolution (MeV)	$24\mathrm{MeV}$	30	12.5	0.3
Photon polarization	≤ 0.8	≤ 0.4		_
Max on–target flux (γ/s)	-10^{8}	-10^{8}	5×10^6	4×10^6
Reference	[519]	[520]	[521]	[522]

Compton backscattering facilities

Facility name	ROKK-1M	GRAAL	LEPS	$HI\gamma S$	ELI-NP	SLEGS	CLS ^a	GF
Location	Novosibirsk	Grenoble	Harima	Duke	Bucharest	Shanghai	Saskatoon	CERN
Storage ring	VEPP-4M	ESRF	SPring-8	Duke–SR	linac	\mathbf{SSRF}	$2.9{ m GeV}$	LHC
Laser-photon energy (eV)	1.17 - 4.68	2.41 - 3.53	2.41 - 4.68	1.17 - 6.53	1.50 - 1.52	$0.117(CO_2)$	$0.117(CO_2)$	$\operatorname{multiple}$
γ -beam energy (MeV)	100 - 1600	550 - 1500	1500 - 2400	1-100(158)	0.2 - 20	$<\!\!22$	≤ 15	$\leq 400^{\rm b}$
$\Delta E/E$	0.01 - 0.03	0.011	0.0125	0.008 - 0.1	0.005	$10^5 - 10^7$	$\sim 0.0011^{\rm c}$	$\sim 10^{-4} - 10^{-6}$
Max on-target flux (γ/s)	10^{6}	3×10^{6}	5×10^{6}	$10^4 - 5 \times 10^8$	8×10^{8}	$10^9 - 10^{10}$	$10^{10 \mathrm{d}}$	10 ^{17d}

GF @ LHC: unprecedented flux, energy range & resolution

PoP experiment @ SPS setup

Proposed parameters & status of the PoP experiment @ SPS

Status of the optical systems for PoP experiment

- TI18 area, conversion to a laser lab in LS3
- Ultra low-phase noise laser and amplification chain procurement and commissioning
- Fabry-Perot Cavity with large gain factor pumped by 100W laser at IJCLab. After successful test transfer to CERN
- Laser beam delivery system testing, controls, integration and diagnostics at IP
- Demonstrate full remote end-to-end operation of laser beams and Fabry-Perot cavity

Physics Highlights with Primary, Secondary and Tertiary γ 's

Distinction

Primary photons: energy in the c.m. of Ion + γ Secondary photons: energy in the LAB frame Tertiary photons: energy in the LAB frame $\omega_{1} = (2\gamma_{\text{ion}}) \omega_{L}$ $\omega_{2} \le (2\gamma_{\text{ion}})^{2} \omega_{L}$ $\omega_{3} \le (2\gamma_{\text{ion 1}})^{2} (2\gamma_{\text{ion 2}})^{2} \omega_{L}$

Physics tasks for GF can be generically subdivided into 2 classes:

Class 1. Tasks that can only be done at the GF

Class 2. Tasks that can be done at other facilities (but GF do better)

Nuclear physics opportunities with primary γ 's

lsotope	T ^g _{1/2}	E _e [keV]	lg	l _e	λL	T ^{rad} [s]	$\alpha(K)$	α (L)
²²⁹ Th	7880 y	0.008 ^{a)}	5/2+	3/2+	<i>M</i> 1	5.19 × 10 ³	_	_
²³⁵ U	7×10^8 y	0.076	7/2-	1/2+	E3	7.03×10^{23} ^{b)}	_	_
²⁰¹ Hg	stable	1.565	3/2-	1/2-	<i>M</i> 1	3.76×10^{-3}	_	_
²⁰⁵ Pb	1.7 × 10 ⁷ y	2.329	5/2-	1/2-	E2	9.07×10^{2}	_	_
¹⁸¹ Ta	stable	6.238	7/2+	9/2-	<i>E</i> 1	4.34×10^{-4}	_	_
²³⁹ Pu	2.4×10^4 y	7.861	1/2+	3/2+	<i>M</i> 1	2.04×10^{-7}	_	_
¹⁶⁹ Tm	stable	8.410	1/2+	3/2+	<i>M</i> 1	1.07×10^{-6}	_	_
⁸³ Kr	stable	9.406	9/2+	7/2+	<i>M</i> 1	2.80×10^{-6}	_	14
¹⁸⁷ Os	stable	9.756	1/2-	3/2-	<i>M</i> 1	9.01×10^{-7}	_	_
¹³⁷ La	6×10^4 y	10.560	7/2+	5/2+	<i>M</i> 1	1.04×10^{-5}	_	93.2
⁴⁵ Sc	stable	12.400	7/2-	3/2+	(M2)	1.96×10^{2}	362	54
²³⁵ U	_c)	13.034	1/2 ^{+^{d)}}	3/2+	M1	$2.43 \times 10^{-7^{e}}$	_	_

Low-lying nuclear states < 60 keV

- Nuclear spectroscopy in the ion beam, isomers
- Interaction of atomic and nuclear d.o.f.
- Nuclear clocks (e.g. with Th-229 8eV isomer)
- Laser cooling of ion beams
- Production of higher energy γ 's: use GDR at ~15 MeV

P-, CP-Violation with Primary Photons

Compton scattering off relativistic ions at LHC ($\gamma \approx 3000$) $\omega_2 = (2\gamma_{ion}) \omega_1 \lesssim 60 \,\text{keV}$ Single-spin asymmetry circular photon polarization — clearly parity-violating (PV)

$$A_{\gamma} \equiv \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} = A_{\gamma}^{\text{PVTC}} \cos^{4} \frac{\theta}{2} + A_{\gamma}^{\text{PVTV}} \sin^{4} \frac{\theta}{2} \qquad MG, 0803.0343$$

Both time-reversal conserving (TC) ~ $\vec{S}_{\gamma} \cdot (\vec{q} + \vec{q}')$ and violating (TV) ~ $\vec{S}_{\gamma} \cdot (\vec{q} - \vec{q}')$ present! Access P-odd and P,T-odd nuclear polarizabilities

P-, CP-Violation with Primary Photons

Compton scattering off relativistic ions at LHC ($\gamma \approx 3000$) $\omega_2 = (2\gamma_{ion}) \omega_1 \lesssim 60 \,\text{keV}$ Single-spin asymmetry circular photon polarization — clearly parity-violating (PV)

$$A_{\gamma} \equiv \frac{\sigma^{+} - \sigma^{-}}{\sigma^{+} + \sigma^{-}} = A_{\gamma}^{\text{PVTC}} \cos^{4} \frac{\theta}{2} + A_{\gamma}^{\text{PVTV}} \sin^{4} \frac{\theta}{2} \qquad MG, \, 0803.0343$$

Both time-reversal conserving (TC) ~ $\vec{S}_{\gamma} \cdot (\vec{q} + \vec{q}')$ and violating (TV) ~ $\vec{S}_{\gamma} \cdot (\vec{q} - \vec{q}')$ present! Access P-odd and P,T-odd nuclear polarizabilities

Motivation: determination of 4-quark effective operators that explicitly violate P or P,T Complication: these operators are embedded into hadronic/nuclear matrix elements Requires understanding low-energy nonperturbative QCD Relevant formalism: chiral EFT that supplanted old DDH (PV meson-mediated nuclear potential)

> Desplanques, Donoghue, Holstein Annals Phys. 124 (1980) 449; De Vries, Epelbaum, Girlanda, Gnech, Mereghetti, 2001.09050

P-, CP-Violation with Primary Photons

Compton scattering off relativistic ions at LHC ($\gamma \approx 3000$) $\omega_2 = (2\gamma_{ion}) \omega_1 \lesssim 60 \,\text{keV}$ Single-spin asymmetry circular photon polarization — clearly parity-violating (PV)

$$A_{\gamma} \equiv \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = A_{\gamma}^{\text{PVTC}} \cos^4 \frac{\theta}{2} + A_{\gamma}^{\text{PVTV}} \sin^4 \frac{\theta}{2} \qquad \text{MG, 0803.0343}$$

Both time-reversal conserving (TC) ~ $\vec{S}_{\gamma} \cdot (\vec{q} + \vec{q}')$ and violating (TV) ~ $\vec{S}_{\gamma} \cdot (\vec{q} - \vec{q}')$ present! Access P-odd and P,T-odd nuclear polarizabilities

Motivation: determination of 4-quark effective operators that explicitly violate P or P,T Complication: these operators are embedded into hadronic/nuclear matrix elements Requires understanding low-energy nonperturbative QCD Relevant formalism: chiral EFT that supplanted old DDH (PV meson-mediated nuclear potential)

> Desplanques, Donoghue, Holstein Annals Phys. 124 (1980) 449; De Vries, Epelbaum, Girlanda, Gnech, Mereghetti, 2001.09050

Natural size:
$$A_{\gamma}^{\text{PVTC}} \sim 10^{-8} \left(\omega_2 / m_{\pi} \right)^3$$
, $A_{\gamma}^{\text{PVTV}} \lesssim 10^{-11} \left(\omega_2 / m_{\pi} \right)^2$

PVTV Compton scattering @ GF: extend the pool of PVTV observables (beyond EDM & mixings)

Look for enhancements: parity doublets

 $A_{\gamma}^{\rm PVTC} \sim 10^{-8} R \left(\omega_2 / E_{pd} \right)^3$, $R = E_N / E_{pd} \gg 1$ with typical nuclear energy scale $E_N \approx 10 \,{\rm MeV}$

Large PVTC nuclear polarizabilities

Energy not enough to resolve the resonance

Look for enhancements: parity doublets $A_{\gamma}^{\text{PVTC}} \sim 10^{-8} R \left(\omega_2 / E_{pd} \right)^3, R = E_N / E_{pd} \gg 1$ with typical nuclear energy scale $E_N \approx 10 \text{ MeV}$ Large PVTC nuclear polarizabilities $\vec{\gamma}(60 \text{ keV})$ $\sqrt{10}$ $\sqrt{10}$ Energy not enough to resolve the ^lresonance Figure of merit (inverse time needed to observe the asymmetry): $FOM = Rate \times A^2$ $\searrow N_{\text{Ions/bunch}} \times N_{\text{bunches}} \times N_{\gamma} \times \frac{\sigma}{S} \longrightarrow \text{Thomson scattering CS} \quad \sigma = \frac{8\pi}{3} \left(\frac{Z^2 \alpha \hbar}{Mc}\right)^2$ $\longrightarrow \text{Laser beam cross section} \approx (20 \mu m)^2$

Look for enhancements: parity doublets $A_{\gamma}^{\text{PVTC}} \sim 10^{-8} R \left(\omega_2 / E_{pd} \right)^3, R = E_N / E_{pd} \gg 1$ with typical nuclear energy scale $E_N \approx 10 \text{ MeV}$ Large PVTC nuclear polarizabilities $\vec{\gamma}(60 \text{ keV})$ 110 keV 19 E(1/2+)Energy not enough to resolve the ^lresonance Figure of merit (inverse time needed to observe the asymmetry): $FOM = Rate \times A^2$ $\searrow N_{\text{Ions/bunch}} \times N_{\text{bunches}} \times N_{\gamma} \times \frac{\sigma}{S} \longrightarrow \text{Thomson scattering CS} \quad \sigma = \frac{8\pi}{3} \left(\frac{Z^2 \alpha \hbar}{Mc}\right)^2$ $\longrightarrow \text{Laser beam cross section} \approx (20 \mu m)^2$ A study for known parity doublets (fully stripped ions) with 60 keV photons $10^8 A_{\gamma}^{\rm PVTC}$ I_2^P I_1^P $FOM(s^{-1})$ Isotope $T_{1/2}$ $E_1 \,(\mathrm{keV})$ $E_2 \,(\mathrm{keV})$ $\Delta E \,(\mathrm{keV})$ R $^{18}{\rm F}\,(1^+)$ 0^{+} 109.77(5) min 2.5×10^{-8} 1042 0.051081 0^{-} 39 256 $^{19}{
m F}\left(\frac{1}{2}^{+1}\right)$ $\frac{1}{2}^{+}$ $\frac{1}{2}^{-}$ 2×10^{-3} stable 110 91 150 110 2.5×10^{-22} 20 Ne (0⁺ 5×10^{-4} 1^{+} 11255 1^{-} 3125 stable 11258 3.2

 $\frac{1}{2}^{-}$

5.7

1754

0.02

2795

 4×10^{-9}

 $\frac{1}{2}^{+}$

2789

 21 Ne $(\frac{3}{2}^+)$

stable

\sim

Hadronic P-, CP-Violation with Primary Photons

Look for enhancements: parity doublets

 21 Ne $(\frac{3}{2}^+)$

stable

 $A_{\gamma}^{\text{PVTC}} \sim 10^{-8} R \left(\omega_2 / E_{pd} \right)^3, R = E_N / E_{pd} \gg 1$ with typical nuclear energy scale $E_N \approx 10 \text{ MeV}$ Large PVTC nuclear polarizabilities $\vec{\gamma}(60 \text{ keV}) \qquad 110 \text{ keV} \qquad 19 E(1/2^{+})$ Energy not enough to resolve the Iresonance Figure of merit (inverse time needed to observe the asymmetry): $FOM = Rate \times A^2$ $\searrow N_{\text{Ions/bunch}} \times N_{\text{bunches}} \times N_{\gamma} \times \frac{\sigma}{S} \longrightarrow \text{Thomson scattering CS} \quad \sigma = \frac{8\pi}{3} \left(\frac{Z^2 \alpha \hbar}{Mc}\right)^2$ $\longrightarrow \text{Laser beam cross section} \approx (20 \mu m)^2$ A study for known parity doublets (fully stripped ions) with 60 keV photons $10^8 A_{\gamma}^{\rm PVTC}$ I_1^P I_2^P $FOM(s^{-1})$ $T_{1/2}$ $E_1 \,(\mathrm{keV})$ $E_2 \,(\mathrm{keV})$ $\Delta E \,(\mathrm{keV})$ RIsotope $^{18}{\rm F}\,(1^+)$ 0^{+} 109.77(5) min 2.5×10^{-8} 1042 0.051081 0^{-} 39 256 $^{19}{
m F}\left(\frac{1}{2}^{+}\right)$ $\frac{1}{2}^{+}$ 2×10^{-3} $\frac{1}{2}^{-}$ stable 110 91 150 110 2.5×10^{-22} 20 Ne (0⁺ 1^{+} 5×10^{-4} 11255 1^{-} 3.23125 stable 11258

 ^{19}F : 10% measurement of a 10^{-7} asymmetry in one day

1754

0.02

 4×10^{-9}

 $\frac{1}{2}$ -

5.7

2795

 $\frac{1}{2}^{+}$

2789

 20 Ne (0^{+})

 21 Ne $(\frac{3}{2}^+)$

stable

stable

 $A_{\gamma}^{\text{PVTC}} \sim 10^{-8} R \left(\omega_2 / E_{pd} \right)^3, R = E_N / E_{pd} \gg 1$ with typical nuclear energy scale $E_N \approx 10 \text{ MeV}$ Large PVTC nuclear polarizabilities $\vec{\gamma}(60 \text{ keV})$ 110 keV 19E(1/2+)Energy not enough to resolve the ^lresonance Figure of merit (inverse time needed to observe the asymmetry): $FOM = Rate \times A^2$ $\searrow N_{\text{Ions/bunch}} \times N_{\text{bunches}} \times N_{\gamma} \times \frac{\sigma}{S} \longrightarrow \text{Thomson scattering CS} \quad \sigma = \frac{8\pi}{3} \left(\frac{Z^2 \alpha \hbar}{Mc}\right)^2$ $\implies \text{Laser beam cross section} \approx (20 \mu m)^2$ A study for known parity doublets (fully stripped ions) with 60 keV photons $10^8 A_{\gamma}^{\rm PVTC}$ I_1^P I_2^P $FOM (s^{-1})$ $T_{1/2}$ $E_1 \,(\mathrm{keV})$ $\Delta E \,(\mathrm{keV})$ RIsotope E_2 (keV) $^{18}\mathrm{F}\,(1^+)$ 0^{+} 2.5×10^{-8} 109.77(5) min 0.051042 1081 0^{-} 39 256 $^{19}{
m F}\left(\frac{1}{2}^{+1}\right)$ $\frac{1}{2}^{+}$ $\frac{1}{2}^{-}$ 2×10^{-3} stable 110 91 150 110

 2.5×10^{-22} 5×10^{-4} 11255 3125 11258 3.2 $\frac{1}{2}^{+}$ $\frac{1}{2}$ - 4×10^{-9} 5.7175427892795 0.02 ^{19}F : 10% measurement of a 10^{-7} asymmetry in one day

Backward angles: for the first time set limits on non-EDM PVTV em observable

Class-1 task — only feasible with GF @ LHC: FOM $\propto P_{\gamma}^2 Z^2 \gamma_{\text{Ion}}^6 N_{\text{Ions}} \times N_{\gamma}$

 1^{-}

 1^{+}

Hadronic and Nuclear Physics Highlights: Secondary Photons ($\omega_2 = 40 \,\text{keV} - 400 \,\text{MeV}$) on Fixed Target

Hadronic and Nuclear Physics Highlights: Secondary Photons ($\omega_2 = 40 \text{ keV} - 400 \text{ MeV}$) on Fixed Target

Photoabsorption in the nuclear range

- Spectroscopy: tunable energy + high energy resolution + polarization allows to study narrow states, determine their quantum numbers (E1, M1, pygmy DR)
- Collective nuclear degrees of freedom: Electric/magnetic dipole strengths, neutron skins
- Photon interactions with radioisotopes capitalize on the proximity of ISOLDE

Hadronic and Nuclear Physics Highlights: Secondary Photons ($\omega_2 = 40 \,\text{keV} - 400 \,\text{MeV}$) on Fixed Target

Photoabsorption in the nuclear range

- Spectroscopy: tunable energy + high energy resolution + polarization allows to study narrow states, determine their quantum numbers (E1, M1, pygmy DR)
- Collective nuclear degrees of freedom: Electric/magnetic dipole strengths, neutron skins
- Photon interactions with radioisotopes capitalize on the proximity of ISOLDE

Class-2 tasks — investigated at other NP gamma-source facilities, but GF offers unique possibilities

Hadronic and Nuclear Physics Highlights: Secondary Photons ($\omega_2 = 40 \, \text{keV} - 400 \, \text{MeV}$) on Fixed Target

Particle production in the nuclear range

- $(\gamma, \alpha), (\gamma, p), (\gamma, n)$ photonuclear reactions <u>at astrophysical</u> energies: reversed astrophysical $(\alpha, \gamma), (p, \gamma), (n, \gamma)$ processes —> nucleosynthesis.
- (γ, α) reactions for α -clustering in heavy nuclei:

nuclear analog of BCS superconductivity & boson condensation

- (γ, n) reactions and mono energetic neutron source (e.g. on C-13)
- PVTC resonance excitation and hadronic PV: until now studied only in γ -decay mode

Hadronic and Nuclear Physics Highlights: Secondary Photons ($\omega_2 = 40 \, \text{keV} - 400 \, \text{MeV}$) on Fixed Target

Particle production in the nuclear range

- $(\gamma, \alpha), (\gamma, p), (\gamma, n)$ photonuclear reactions <u>at astrophysical</u> energies: reversed astrophysical $(\alpha, \gamma), (p, \gamma), (n, \gamma)$ processes —> nucleosynthesis.
- (γ, α) reactions for α -clustering in heavy nuclei:

nuclear analog of BCS superconductivity & boson condensation

- (γ, n) reactions and mono energetic neutron source (e.g. on C-13)
- PVTC resonance excitation and hadronic PV: until now studied only in γ -decay mode

Photonuclear processes in hadronic range

- Nucleon resonances due to limited energy only $\Delta(1232)$ resonance is accessible
- Neutron skins via coherent π^0 production on heavy nuclei in the $\Delta(1232)$ region
- Photoproduction of bound π^- : ~5 o.o.m. improvement over π^- capture
- Polarizabilities of nucleons and light nuclei, sum rules
- Gamma-asymmetry in FCNC process $\vec{\gamma} + p \rightarrow \Sigma^+$; PV pion production

Hadronic and Nuclear Physics Highlights: Secondary Photons ($\omega_2 = 40 \,\text{keV} - 400 \,\text{MeV}$) on Fixed Target

Particle production in the nuclear range

- $(\gamma, \alpha), (\gamma, p), (\gamma, n)$ photonuclear reactions <u>at astrophysical</u> energies: reversed astrophysical $(\alpha, \gamma), (p, \gamma), (n, \gamma)$ processes —> nucleosynthesis.
- (γ, α) reactions for α -clustering in heavy nuclei:

nuclear analog of BCS superconductivity & boson condensation

- (γ, n) reactions and mono energetic neutron source (e.g. on C-13)
- PVTC resonance excitation and hadronic PV: until now studied only in γ -decay mode

Photonuclear processes in hadronic range

- Nucleon resonances due to limited energy only $\Delta(1232)$ resonance is accessible
- Neutron skins via coherent π^0 production on heavy nuclei in the $\Delta(1232)$ region
- Photoproduction of bound π^- : ~5 o.o.m. improvement over π^- capture
- Polarizabilities of nucleons and light nuclei, sum rules
- Gamma-asymmetry in FCNC process $\vec{\gamma} + p \rightarrow \Sigma^+$; PV pion production

Class-2 tasks — investigated at other NP gamma-source facilities, but GF offers unique possibilities

Secondary Photons in Colliding Mode on proton/ion beam $(\sqrt{s} \le 100 \,\mathrm{GeV})$

0.5

 $\sigma_{x,y} \approx 19 \ \mu \text{m}$). The beams are separated by $10\sigma_x \approx 0.2 \text{ mm}$ horizontally in order to avoid stripping of the PSI due to collisions with counter-propagating ion or proton beam.

Possibility to study inclusive and exclusive processes at (sub) asymptotic energies:

Inclusive structure function — novelty: parity violating SF with real photons Vector meson photoproduction, wide-angle Compton scattering — access GPD's, TMD's

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

Inclusive structure functions (inclusive cross section) Photon (circular) polarization $\xi = \pm 1$, proton helicity $h = \pm 1/2$

$$\sigma(\xi,h) = \frac{8\pi^2 \alpha}{s - M^2} \left[F_1 - 2h\xi g_1 + \frac{\xi}{2}F_3 + 2hg_5 \right]$$

QCD Highlights: Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \le 100 \, {\rm GeV}$)

Inclusive structure functions (inclusive cross section) Photon (circular) polarization $\xi = \pm 1$, proton helicity $h = \pm 1/2$

$$\sigma(\xi,h) = \frac{8\pi^2 \alpha}{s - M^2} \left[F_1 - 2h\xi g_1 + \frac{\xi}{2}F_3 + 2hg_5 \right]$$

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

Inclusive structure functions (inclusive cross section) Photon (circular) polarization $\xi = \pm 1$, proton helicity $h = \pm 1/2$

$$\sigma(\xi,h) = \frac{8\pi^2 \alpha}{s - M^2} \left[F_1 - 2h\xi g_1 + \frac{\xi}{2}F_3 + 2hg_5 \right]$$

Polarized structure function g_1 -HE part of the GDH sum rule (axial vector Regge) Highest energies (low Q2) - COMPASS

Gerasimov-Drell-Hearn sum rule

$$I^{\text{GDH}} \equiv \int_{0}^{\infty} \frac{d\nu}{\nu} \left[\sigma(1, 1/2) - \sigma(1, -1/2) \right] = 2\pi^{2} \kappa^{2} \frac{\alpha}{M^{2}}$$

Anomalous magnetic moment κ (spin precession) <--> spin-dependent photoabsorption at HE

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

PV asymmetry $A_{\gamma}^{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{F_{3}^{\gamma}}{2F_{1}} \sim \frac{G_{F}\Lambda_{h}^{2}}{4\pi\alpha\sqrt{2}} \frac{c^{-}s^{\alpha_{-}}}{c^{+}s^{\alpha_{+}}} \sim 10^{-4} - 10^{-5}$

Measurement over a wide energy range: check the superconvergence sum rule

$$\int_{0}^{\infty} \frac{d\nu}{\nu} F_{3} = 0 \qquad Lukaszuk, Kurek, hep-ph/0402297$$

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

PV asymmetry $A_{\gamma}^{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{F_{3}^{\gamma}}{2F_{1}} \sim \frac{G_{F}\Lambda_{h}^{2}}{4\pi\alpha\sqrt{2}} \frac{c^{-}s^{\alpha_{-}}}{c^{+}s^{\alpha_{+}}} \sim 10^{-4} - 10^{-5}$

Measurement over a wide energy range: check the superconvergence sum rule $\int_{0}^{\infty} \frac{d\nu}{\nu} F_{3} = 0 \qquad Lukaszuk, Kurek, hep-ph/0402297$

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

PV asymmetry $A_{\gamma}^{PV} = \frac{\sigma_{+} - \sigma_{-}}{\sigma_{+} + \sigma_{-}} = \frac{F_{3}^{\gamma}}{2F_{1}} \sim \frac{G_{F}\Lambda_{h}^{2}}{4\pi\alpha\sqrt{2}} \frac{c^{-}s^{\alpha_{-}}}{c^{+}s^{\alpha_{+}}} \sim 10^{-4} - 10^{-5}$

Measurement over a wide energy range: check the superconvergence sum rule $\int_{0}^{\infty} \frac{d\nu}{\nu} F_{3} = 0 \qquad Lukaszuk, Kurek, hep-ph/0402297$

Class-1 task — only feasible with GF @ LHC: Colliding beams + Energy + Rates + Polarization

QCD Highlights: Secondary Photons in Colliding Mode on proton/ion beam $(\sqrt{s} \leq 100\,{\rm GeV})$

Exclusive/semi-inclusive vector meson photoproduction At present: UPC at ATLAS, CMS, LHCb, ALICE, STAR Quasi-real WW photon collinear to the ion beam + pomeron from colliding proton/ion beam

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100\,{\rm GeV}$)

Exclusive/semi-inclusive vector meson photoproduction At present: UPC at ATLAS, CMS, LHCb, ALICE, STAR Quasi-real WW photon collinear to the ion beam + pomeron from colliding proton/ion beam

Physics motivation:

unintegrated gluon density in the nucleon/GPDs/TMDs Depending on exclusive/semi-inclusive, kinematics and flavor

Secondary Photons in Colliding Mode on proton/ion beam ($\sqrt{s} \leq 100 \, {\rm GeV}$)

Exclusive/semi-inclusive vector meson photoproduction At present: UPC at ATLAS, CMS, LHCb, ALICE, STAR Quasi-real WW photon collinear to the ion beam + pomeron from colliding proton/ion beam

Physics motivation:

unintegrated gluon density in the nucleon/GPDs/TMDs Depending on exclusive/semi-inclusive, kinematics and flavor

Class-2 task — feasible with UPC or at other facilities;

GF advantageous over UPC due to: well-defined initial conditions + polarization linear/circular

Tune the gamma ray to be on the Delta resonance (in the rest frame of the proton beam)

$$p + \gamma \rightarrow \Delta \rightarrow p + \pi^0 \rightarrow p + 2\gamma$$

Tune the gamma ray to be on the Delta resonance (in the rest frame of the proton beam)

$$p + \gamma \rightarrow \Delta \rightarrow p + \pi^0 \rightarrow p + 2\gamma$$

Incident beam: $\omega \approx 300 \,\mathrm{MeV}/2\gamma \sim 22 \,\mathrm{keV}$

Pion will be produced at $\omega_{\pi} \sim 2\gamma 230 \,\mathrm{MeV} = 3.2 \,\mathrm{TeV}$

All pions will decay into 2 photons within $\gamma \tau_{\pi^0} \approx 2.5 \times 10^{-13} s$

Ultrarelativistic kinematics: all photons fly forward within an angle $\sim m_{\pi}/\omega_{\pi}$

Tune the gamma ray to be on the Delta resonance (in the rest frame of the proton beam)

$$p + \gamma \rightarrow \Delta \rightarrow p + \pi^0 \rightarrow p + 2\gamma$$

Incident beam: $\omega \approx 300 \,\mathrm{MeV}/2\gamma \sim 22 \,\mathrm{keV}$

Pion will be produced at $\omega_{\pi} \sim 2\gamma 230 \,\mathrm{MeV} = 3.2 \,\mathrm{TeV}$

All pions will decay into 2 photons within $\gamma \tau_{\pi^0} \approx 2.5 \times 10^{-13} s$

Ultrarelativistic kinematics: all photons fly forward within an angle $\sim m_{\pi}/\omega_{\pi}$

Rate estimate: 4300 photons/s

The highest photon energy produced in the lab - studies relevant for astrophysics

Tune the gamma ray to be on the Delta resonance (in the rest frame of the proton beam)

$$p + \gamma \rightarrow \Delta \rightarrow p + \pi^0 \rightarrow p + 2\gamma$$

Incident beam: $\omega \approx 300 \,\mathrm{MeV}/2\gamma \sim 22 \,\mathrm{keV}$

Pion will be produced at $\omega_{\pi} \sim 2\gamma \, 230 \, \mathrm{MeV} = 3.2 \, \mathrm{TeV}$

All pions will decay into 2 photons within $\gamma \tau_{\pi^0} \approx 2.5 \times 10^{-13} s$

Ultrarelativistic kinematics: all photons fly forward within an angle $\sim m_{\pi}/\omega_{\pi}$

Rate estimate: 4300 photons/s

The highest photon energy produced in the lab - studies relevant for astrophysics

Class-1 task — only feasible with GF @ LHC: Colliding beams + Energy + Rates

Summary

- The Gamma Factory @ LHC: a unique gamma source
- Unprecedented photon flux, wide energy range, high energy resolution, 100% polarized
- A wide range of physics tasks with photons from 40 keV to 3.2 TeV
- Will deliver crucial insights in atomic, nuclear, hadronic, particle physics, BSM searches
- Will allow to achieve significant improvement in "conventional" physics tasks: spectroscopy, photonuclear reactions on stable and radioactive isotopes, nuclear structure, QCD in the perturbative/non-perturbative regime, ...
- Will for the first time allow to study processes that could not be studied before, e.g. Compton scattering with P/CP violation (non-EDM P,CP-V em observable); PV inelastic structure functions and odderon without antiparticles; production of VHEGR in the lab

Gamma Factory Collaboration:

100+ physicists from 40 institutes in 15 countries contributed to the GF studies in its various aspects

A. Abramov¹, A. Afanasev³⁷
G. Arduini², D. Balabanski³⁴,
J. Bieroń⁷, A. Bogacz⁸, A. Bose
K. Cassou¹¹, F. Castelli¹², I. Ch
K. Dupraz¹¹, Y. Dutheil², K.
Martinez², S.M. Gibson¹, B. Ge
T. Hayakawa²⁶, S. Hirlander²
M.W. Krasny^{16,2}, F. Kroeger¹⁷,
A. Martens¹², C. Michel⁴⁰ S. M
Y. Papaphilippou², A. Petrenko
Y. Peinaud¹¹, S. Pustelny⁷, S. R
R. Scrivens², L. Serafini¹², V.F
F. Velotti², A. Viatkina⁹ A.V.
Vallgren², M. Zanetti^{23,13}, F. Z

A. Abramov¹, A. Afanasev³⁷, S.E. Alden¹, R. Alemany Fernandez², P.S. Antsiferov³, A. Apyan⁴,
G. Arduini², D. Balabanski³⁴, R. Balkin³², H. Bartosik², J. Berengut⁵, E.G. Bessonov⁶, N. Biancacci²,
J. Bieroń⁷, A. Bogacz⁸, A. Bosco¹, T. Brydges³⁶, R. Bruce², D. Budker^{9,10}, M. Bussmann³⁸, P. Constantin³⁴,
K. Cassou¹¹, F. Castelli¹², I. Chaikovska¹¹, C. Curatolo¹³, C. Curceanu³⁵, P. Czodrowski², A. Derevianko¹⁴,
K. Dupraz¹¹, Y. Dutheil², K. Dzierżęga⁷, V. Fedosseev², V. Flambaum²⁵, S. Fritzsche¹⁷, N. Fuster
Martinez², S.M. Gibson¹, B. Goddard², M. Gorshteyn²⁰, A. Gorzawski^{15,2}, M.E. Granados², R. Hajima²⁶,
T. Hayakawa²⁶, S. Hirlander², J. Jin³³, J.M. Jowett², F. Karbstein³⁹, R. Kersevan², M. Kowalska²,
M.W. Krasny^{16,2}, F. Kroeger¹⁷, D. Kuchler², M. Lamont², T. Lefevre², T. Ma³², D. Manglunki², B. Marsh²,
A. Martens¹², C. Michel⁴⁰ S. Miyamoto³¹ J. Molson², D. Nichita³⁴, D. Nutarelli¹¹¹, L.J. Nevay¹, V. Pascalutsa²⁸,
Y. Papaphilippou², A. Petrenko^{18,2}, V. Petrillo¹², L. Pinard⁴⁰ W. Płaczek⁷, R.L. Ramjiawan², S. Redaelli²,
Y. Peinaud¹¹, S. Pustelny⁷, S. Rochester¹⁹, M. Safronova^{29,30}, D. Samoilenko¹⁷, M. Sapinski²⁰, M. Schaumann²,
R. Scrivens², L. Serafini¹², V.P. Shevelko⁶, Y. Soreq³², T. Stoehlker¹⁷, A. Surzhykov²¹, I. Tolstikhina⁶,
F. Velotti², A. Viatkina⁹ A.V. Volotka¹⁷, G. Weber¹⁷, W. Weiqiang²⁷ D. Winters²⁰, Y.K. Wu²², C. Yin-Vallgren², M. Zanetti^{23,13}, F. Zimmermann², M.S. Zolotorev²⁴ and F. Zomer¹¹

Systems

New ideas, applications, collaborations are welcome!