Image by David Dobrigkeit Chinellato

High-precision measurements of the strong interaction

Otón Vázquez Doce, LNF -INFN Present and future perspectives in Hadron Physics Frascati, 19 june 2024

Hadron-hadron strong interaction

Running coupling constant defines the boundaries of "Low energy QCD" - Q ~ 1 GeV, R ~ 1 fm - Far away from the perturbative regime

High energy colliders data

from high-energy physics facility to nuclear physics

Hadron-hadron interactions

Experimental data

Hadron-hadron strong interactions

 $\mathcal{L}_{EFT}[\pi, N, \ldots; m_{\pi}, m_N, \ldots, C_i]$

Effective theories (EFT)

- Hadrons as degrees of freedom
- Low-energy EFT coefficients by data

 $\mathcal{L}_{QCD}[q,\overline{q},A;m_q,\alpha_s]$

Lattice QCD

- Understanding of the interaction starting from quark and gluons constraint

otonvd@cern.ch

Hadron-hadron interactions

(with strangeness)

Traditional femtoscopy in heavy-ion collisions

- Study pairs of bosons (typically ππ, KK)
 - Correlation produced by quantum statistics effect + known interaction (Coulomb)
- Source sizes ~ 3-10 fm

"Non-traditional" femtoscopy

- Study the interaction given a known source
- Applied to small collision systems, pp ⇒ Source size ~1fm

L. Fabbietti, V. Mantovani, O. Vázquez Doce, Annu. Rev. Nucl. Part. Sci. (2021) 71:377

$$C(k^*) = \int S(r^*) \left| \Psi(k^*, \overrightarrow{r^*}) \right|^2 d^3r^*$$

S. E. Koonin, *Physics Letters B* **70** (1977) 43-47 S. Pratt, *Phys. Rev. C* **42** (1990) 2646-2652

Relative momentum $\vec{k}^* = \frac{1}{2} | \vec{p}_1^* - \vec{p}_2^* |$ and $\vec{p}_1^* + \vec{p}_2^* = 0$ Relative distance $\vec{r}^* = \vec{r}_1^* - \vec{r}_2^*$

$$C(k^*) = \int S(r^*) \left| \Psi(k^*, \vec{r^*}) \right|^2 d^3r^*$$

Emission source $S(r^*)$

A necessary first step: Setting the source

"Universal" dependence of the source size with pair transverse mass $\langle m_{\tau} \rangle$

- related to hydrodinamics /collective phenomena?

newst results:

ALICE Coll..arXiv:2311.14527 [hep-ph] EPJC in press Source size $\langle m_T \rangle$ scaling in pp collisions confirmed as well with π - π and K-p pairs

$$m_{\rm T} = \sqrt{k_{\rm T}^2 + m^2}$$
 $k_{\rm T} = \frac{1}{2} |p_{{\rm T},1} + p_{{\rm T},2}|$

S = -1

Kaon and antiKaon interactions with nucleons are totally different

KN interaction: mild and repulsive, perfectly constraint by scattering data

KbarN interaction:

- appearance of the Λ(1405) below (and close to) threshold
- Strong coupled channel dynamics KbarN-Σπ

S = -1

Kaon and antiKaon interactions with nucleons are totally different

KN interaction: mild and repulsive, perfectly constraint by scattering data

KbarN interaction:

- appearance of the Λ(1405) below (and close to) threshold
- Strong coupled channel dynamics KbarN-Σπ

S = -1

<u>K⁻p femtoscopy in pp collsions</u>

ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020) ALICE Coll. arXiv:2205.15176, EPJC in press (2022)

Strong interaction: Kyoto model K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201 ⇒ Provides a quantitative test of coupled channels in the theory
 Effects of coupled channels enhanced by small source

S = -1

<u>K⁻p femtoscopy</sub> in pp collsions</u>

ALICE Coll. Phys. Rev. Lett. 124, 092301 (2020) ALICE Coll. arXiv:2205.15176, EPJC in press (2022)

Strong interaction: Kyoto model K. Miyahara, T. Hyodo, W. Weise, Phys. Rev. C98, 2, (2018) 025201 ⇒ Provides a quantitative test of coupled channels in the theory
 Effects of coupled channels enhanced by small source

Kamiya, Hyodo, Morita, Ohnishi, Weise, PRL 124 (2020) 13, 132501 \Rightarrow Predicted to be negligible in larger sources

ALICE Coll., PLB 822 (2021) 136708

(* 1.3 U ALICE Pb–Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 30-40% 1.2 $R_{\rm Kp} = 5.2 \pm 0.11(\text{stat})^{+0.19}_{-0.52}$ (syst) fm 1.1 0.9 k* (MeV/c) 0 50 100 C(k*) HIC: size determined by simultaneous analysis of 0.9 K+p corr. func: 0.8

50

k* (MeV/c)

100

Large systems (HIC): Pb-Pb collisions, up to r~9fm

Strength of coupled channels significantly reduced

- Kyoto model
- Fit to the scattering parameters R. Lednický Phys. Atom. Nucl. 67 (2004) 72

ALICE Coll., PLB 822 (2021) 136708

Large systems (HIC): Pb-Pb collisions, up to r~9fm

Strength of coupled channels significantly reduced

Fit to the scattering parameters R. Lednický Phys. Atom. Nucl. 67 (2004) 72

 \Rightarrow Antikaonic-hydrogen and K-p femtoscopy scattering parameters compatible

Digression: KbarN at threshold and low momentum

Deliver different observables ←⇒ scattering lengths can be obtained from both (via Deser-type and Lednický–Lyuboshitz formulae)

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

K⁻d Femtoscopy with ALICE in Pb-Pb collisions

W. Resza @ Hadron 2023

Fit to K⁻d correlation function:

⇒ Real and imaginary part of K⁻d scattering length via Lednicky model

F. Sgaramella SIDDHARTA-2

$p-\Lambda$ interaction

\rightarrow Chiral SU(3) EFT vs scattering data

S = -1

LO: H. <u>Polinder, J. Haidenbauer, U. Meißner,</u> <u>Nucl. Phys. A779 (2006) 244.</u> NLO: <u>J. Haidenbauer et al.</u> <u>Nucl. Phys. A915 (2013) 24.</u>

S = -1

$p-\Lambda$ interaction

$p-\Lambda$ interaction

⇒ Combined analysis of femtoscopy and scattering data

S = -1

 $\rho | \rho_0$

D. Mihaylov, J. Haidenbauer, V. Mantovani Sarti Phys. Lett. B 850 (2024) 138550

D^(*)-π/K femtoscopy

- Exploit the decay vertex topology for identification
- <u>Machine learning algorithm</u> based on boosted decision trees
- Account for uncorrelated backgrounds: D mesons from beauty-hadron decays

D^(*)-π femtoscopy

L. Liu et al, Phys. Rev. D87 (2013) 014508 X.-Y. Guo et al, Phys. Rev. D 98 (2018) 014510 Z.-H. Guo et al Eur. Phys. J. C 79 (2019) 13 B.-L. Huang et al, Phys. Rev. D 105 (2022) 036016

J. M. Torres-Rincon et al, Phys. Rev. D 108 (2023) 096008

D^(*)-π interaction ALICE Coll. arXiv:2401.13541 [nucl-ex]

Three-body femtoscopy

Three-particle correlation function:

$$C(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}) \equiv \frac{P(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3})}{P(\mathbf{p}_{1}) P(\mathbf{p}_{2}) P(\mathbf{p}_{3})} = \frac{N_{\text{same }}(Q_{3})}{N_{\text{mixed }}(Q_{3})}$$

The Lorentz invariant Q_3 is defined as:

$$Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}$$

Three-particle correlation function function incorporates:

- Two body interactions
- Three body interactions

$p-p-\Lambda$ correlation function

⇒ Exploiting current LHC run and new detectors

$p-p-\Lambda$ correlation function

 \Rightarrow Exploiting current LHC run and new detectors

First theoretical predictions:

- NA interaction from χ EFT NLO19
- NN Λ interaction fixed to hypertriton BE

proton-deuteron correlation function

36

proton-deuteron correlation function as a two-body system

ALICE data in pp HM collisions compared with theoretical correlation function **considering deuteron as a point-like particle**

- Lednický model:
 - s-wave asymptotic wave function from scattering parameters R. Lednický, Phys. Part. Nucl. 40, 307 (2009)
- Strong interaction constrained from the scattering measurements

p-d correlation function **including <u>three-body dynamics</u>**

Red curve: full-fledged three-body calculation describes the data by including:

- **2N** force (AV18 potential) + **3N** force (UIX potential)
- \circ Calculation up to d-wav

ALICE measurement of the p-d correlation function sensitive to dynamics of the three-body p-(pn) system at short distances

Summary and outlook

Femtoscopy technique can be used to provide **unprecedented constraints on hadron-hadron interactions**...

- We are testing lattice calculations and EFT approaches
- We study **bound states** and **channel couplings**
- We provide important constraints to the equation of state of neutron stars
- Direct measurements of three-body dynamics
- Access to D meson interactions
- More data, more people, more experiments... more fun
 - **STAR**: S= -4 *EE* femtoscopy, deuteron femtoscopy: coalesence vs thermal models
 - CMS Λ K femtoscopy
 - HADES proton-cluster femtoscopy
 - ALICE with current LHC data x100 stats... and DD femtoscopy with ALICE 3
 ... stay tuned for more!!!