Jet quenching in heavy ion collisions

- Carlota Andres (she/her)
 - LIP, Lisbon
- Present and future perspectives in Hadron Physics Frascati, June 17-19, 2024

QCD phase diagram

• Hot QCD emergent dynamics at reach in collider experiments!

QCD phase diagram

• Hot QCD emergent dynamics at reach in collider experiments!

Why jets?

- Production of high-energy partons unlikely to interfere with the medium formation
- Sensitive to the QGP dynamics through **jet** quenching: jets interact with the QGP getting modified w.r.t p-p jets
- In principle: under control in p-p collisions
- Multi-scale objects: broad range of momentum and spatial scales involved in the jet evolution
- Multi-observable: different observable jet properties sensitive to different QGP scales and properties?

Why jets?

- Production of high-energy partons unlikely to interfere with the medium formation
- Sensitive to the QGP dynamics through **jet** quenching: jets interact with the QGP getting modified w.r.t p-p jets
- In principle: under control in p-p collisions
- Multi-scale objects: broad range of momentum and spatial scales involved in the jet evolution
- Multi-observable: different observable jet properties sensitive to different QGP scales and properties?

Medium-induced radiation

• The main contribution to energy loss in the **QGP** is radiative energy loss

Dominant for light quarks and gluons

High-energy partons experience multiple scatterings with the medium which induce **extra gluon radiation** (w.r.t. p-p)

• During the formation time of the gluon **multiple scatterings** act **coherently**

Landau, Pomeranchuk, Migdal for QED

Suppression of the spectrum for large formation times

• Resummation of multiple scatterings: BDMPS-Z formalism (1990's)

CA, Apolinario, Martinez, Dominguez, JHEP 07 (2020) 114, JHEP 03 (2021) 102

Mehtar-Tani, Barata, JHEP 07 (2019) 057, JHEP 10(2020) 176

Carlota Andres

Schlichting, Soudi, Phys. Rev. D 105 (2022) 076002

BDMPS-Z spectrum

$$\bar{\omega}_c = \frac{1}{2}\mu^2 L$$

BDMPS-Z spectrum

$$\bar{\omega}_c = \frac{1}{2}\mu^2 L$$

BDMPS-Z spectrum

 $t_f \sim \frac{2\omega}{k^2}$

 $\bar{\omega}_c = \frac{1}{2}\mu^2 L$

BDMPS-Z spectrum 12Bethe-Heitler regime 10

Jet quenching

Jet quenching

Jet modifications in heavy ions

- Medium-induced energy loss
 - Out-of-cone energy loss
 - Jet and hadron suppression
- Color coherence effects
 - Expected to modify the jet inner structure
 - Not yet unequivocally seen in observables
- Medium response
 - Medium recoils become part of the jet
 - Not yet unequivocally seen in observables

Jet substructure

Carlota Andres

Can we use jet substructure to probe the QGP at various resolution scales?

Jet substructure

Carlota Andres

Can we use jet substructure to probe the QGP at various resolution scales?

Jet substructure: grooming

• What about grooming away soft physics?

Jet constituents are re-clustered (through C/A) and soft/wide angle radiation is rejected in this process Groomed jet radius

Jet substructure: grooming

• What about grooming away soft physics?

Jet constituents are re-clustered (through C/A) and soft/wide angle radiation is rejected in this process Groomed jet radius

A new (old) idea? Energy-energy correlators

New tool: energy correlators

heavy-ion substructure program

• EEC for a massless quark jet: Q = E

We are assuming we know the initial jet energy $E(\gamma/Z$ -jet)

$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma_{qg}} \int dz \frac{d\sigma_{qg}}{dzd\theta} z^{n} (1-z)^{n} + \mathcal{O}\left(\frac{\mu_{s}}{E}\right)^{(10)}_{\substack{(z) \\ w \in U \\ w$$

Carlota Andres

CA, Dominguez, Elayavalli, Holguin, Marquet, Moult <u>Phys. Rev. Lett. 130 (2023) 262301,</u> <u>JHEP 09 (2023) 088</u>

• EEC for a massless quark jet: Q = E

We are assuming we know the initial jet energy $E(\gamma/Z)$ -jet)

$$\frac{d\Sigma^{(n)}}{d\theta} = \frac{1}{\sigma_{qg}} \int dz \frac{d\sigma_{qg}}{dzd\theta} z^{n} (1-z)^{n} + \mathcal{O}\left(\frac{\mu_{s}}{E}\right)^{10} \stackrel{10}{\underset{l=0}{\overset{l$$

Carlota Andres

CA, Dominguez, Elayavalli, Holguin, Marquet, Moult Phys. Rev. Lett. 130 (2023) 262301, JHEP 09 (2023) 088

• Moving to inclusive jets CA, Dominguez, Holguin, Marquet, Moult, in preparation

Carlota Andres

Results for inclusive jets from ALICE and CMS underway!

• Moving to inclusive jets CA, Dominguez, Holguin, Marquet, Moult, in preparation

Carlota Andres

Results for inclusive jets from ALICE and CMS underway!

HF jets: filling the dead-cone

CA, Dominguez, Holguin, Marquet, Moult, <u>2307.15110</u>

Armesto, Salgado, Wiedemann, arXiv: hep-ph/0312106

$$\frac{\theta_L}{\Theta_0} \to 1: \text{Fil}$$

EEC sensitive to two different scales: HQ mass and onset of medium-induced radiation

Carlota Andres

lling the dead-cone

Energy correlators in heavy-ions

• First studies of the shape of the E3EC

Bossi, Kudinoor, Moult, Pablos, Rai, Rajagopal

Conclusions

• **QCD collectivity at experimental reach** at RHIC and the LHC

- Impressive progress on the study of the QGP and its pre-hydro stages
- Many interesting questions to be answered in the next decade

- Use jets as microscope of the QGP
- Energy Correlators: great potential for jet substructure studies of the QGP
- Many theoretical developments and experimental measurements on EECs to come!

Carlota Andres

How does a strongly-coupled fluid emerge from an asymptotically free gauge theory?

Carlota Andres

Thank you!

Jet substructure

Pb-Pb jets more energy toward the edge of the cone than p-p jets

Jet substructure: grooming

• Use photon-tagged jets

• Use photon-tagged jets

EECs in proton-proton by ALICE

ALI-PREL-538346

E3EC in proton-proton by CMS

arXiv:2402.13864

