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Strangeness measurements in 
hadronic collisions at the LHC

With links to expectations at the EIC and future programs

Present and future perspectives in Hadron Physics
David Dobrigkeit Chinellato
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collisions

• QED/QCD coupling: 𝛾∗ exchange
• Single scattering in initial state
• initial parton energy can be 
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Jet universality: 
Given a specific outgoing 

parton with a specific 
momentum, final hadrons 

are always the same
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lead-lead (Pb-Pb)
collisions

• 2 → 2 scatterings (LO QCD)
• Soft physics: initial and final state 

radiation, multi-parton interactions 
• MPI correlated via b, Q2

High-multiplicity pp,
proton-lead collisions

electron-proton 
collisions

Pb Pb

QGP

Quark-gluon plasma (QGP) 
kinematically and chemically 

equilibrated system: hydrodynamics 
and statistical principles

• QED/QCD coupling: 𝛾∗ exchange
• Single scattering in initial state
• initial parton energy can be 

inferred by kinematics

pe-

e-

𝛾*

?

hadronic hadronic

Describing electron, proton and nuclei collisions
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Why strangeness?
• One of the original traces of the QGP

• Thermal production via gluon fusion in a QGP scenario

• K0S, Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV: 
• Production wrt to 𝜋 enhanced
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• One of the original traces of the QGP
• Thermal production via gluon fusion in a QGP scenario

• K0S, Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV: 
• Production wrt to 𝜋 enhanced

• Also studied in p-Pb and pp 
• Strangeness increases with multiplicity following a universal 

trend
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• One of the original traces of the QGP
• Thermal production via gluon fusion in a QGP scenario

• K0S, Λ (1s), Ξ (2s) and Ω (3s) in Pb-Pb at 5.02 TeV: 
• Production wrt to 𝜋 enhanced

• Also studied in p-Pb and pp 
• Strangeness increases with multiplicity following a universal 

trend
• Not described by PYTHIA 

• How can this be achieved? 

[1] Comput. Phys. Commun. 178 (2008) 852–867

[1]
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Particle production in the Lund model
• Hadronization can be described as the breakup of 

color flux tubes (“strings”) with constant energy 
density / tension

• Standard PYTHIA with MPI: no increase of 
strangeness production

Strangeness measurements at the LHC 4

QCD 
perspective



Ropes build on a space time picture

If strings are colour fields with colour ends...

...then they should be able to act coherently

Christian Bierlich (Lund/NBI) Monte Carlo June 15, Light Up CERN 10 / 24

C. Bierlich, 
https://indico.cern.ch/event/732345/contributions/3024828/attachments/1668639/2676025/cbierlich.pdf 

Strangeness enhancement
Less sensitive on geometry – a game of density.
Described strangeness enhancement from pp to AA.
No direct comparison to unfolded data ... yet.

Christian Bierlich (Lund/NBI) Monte Carlo June 15, Light Up CERN 15 / 24

• Hadronization can be described as the breakup of 
color flux tubes (“strings”) with constant energy 
density / tension

• Standard PYTHIA with MPI: no increase of 
strangeness production

• New development: in high-density conditions, 
strings may overlap to form color ropes 

• Increased tension → increase in s production!

Strangeness measurements at the LHC

Particle production in the Lund model

5

QCD 
perspective

This is a violation of jet universality: not more of the same, 
but something else! → emergent phenomenon of QCD

https://indico.cern.ch/event/732345/contributions/3024828/attachments/1668639/2676025/cbierlich.pdf
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The statistical hadronization picture: 

Canonical suppression
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ALICE, Phys. Rev. C 99, 024906

Heavy-ion 
perspective

• Statistical Hadronization Models (e.g. Thermus) 
can be used to describe relative particle 
species abundances 

• In small systems and multiplicities: 
• strangeness must be exactly conserved
• leads to suppression of open strangeness

• Effect depends on system size; SHM 
description holds over certain rapidity range k

• From data, k = 1.35 ± 0.28

• Description OK for strangeness
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Heavy-ion 
perspective

The statistical hadronization picture: 

Canonical suppression
• Statistical Hadronization Models (e.g. Thermus) 

can be used to describe relative particle 
species abundances 

• In small systems and multiplicities: 
• strangeness must be exactly conserved
• leads to suppression of open strangeness

• Effect depends on system size; SHM 
description holds over certain rapidity range k

• From data, k = 1.35 ± 0.28

• Description OK for strangeness

• But fails for φ: net strangeness zero… 
• And fails for K*0: affected by post-hadronization effects (rescattering)
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Strangeness enhancement
Average yield enhancement 

with respect to pions
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Fast forward to 2024:
From discovery to experimental characterisation

Many additional studies performed! 
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Strangeness enhancement
Average yield enhancement 

with respect to pions

A B

?

(s)

(s)
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Fast forward to 2024:
From discovery to experimental characterisation

Many additional studies performed! 

What actually causes strangeness enhancement?
→ Forward selections, spherocity



Selecting on ‘effective energy’: ZDC

Strangeness measurements at the LHC 8

• Zero-degree Calorimeters: select very very 
forward → inversely proportional to available 
energy for midrapidity processes

high mult

low mult
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• Important: strangeness 
enhancement is decided early on in 
the collision (rapidity ⇆ causal 
disconnection)

In MPI-based models: 
• N(partonic inter.) decided early 
• ‘final-state’ factors such as colour 

ropes depend on N(partonic inter.) 



Double-differential study: 

Fixed midrapidity but different forward multiplicity
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• Solid black: classical strangeness enhancement result with single 
V0M-based selection

• Coloured: fixed midrapidity multiplicity but varying V0M 
(forward) scintillator amplitude

• At fixed midrapidity multiplicity, one can still increase the relative 
strangeness content by selecting in forward multiplicities 

Important: 
• “local mult. drives strangeness enhancement” is incorrect
• “local mult. is correlated with strangeness enhancement” -> OK 

Generally consistent with PYTHIA 8 expectation:
More MPI → more strings → rope formation → extra strangeness

+ Consistent also with other results (spherocity, etc)
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Strangeness enhancement
Average yield enhancement 

with respect to pions

A B

?

(s)

(s)
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Fast forward to 2024:
From discovery to experimental characterisation

Many additional studies performed! 

What actually causes strangeness enhancement?
→ Forward selections, spherocity

Soft/hard/jets: where is the enhancement in phase space?
→ RT analysis, strangeness in jets, 2 part. corr.



Ξ/K!" ratio in toward- and transverse to leading particle region

Strangeness measurements at the LHC 11
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• transverse-to-leading phase space 
region: dominant contribution to the 
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# 

• Generally compatible with high-pT 
processes being less coupled to the 
actual increase of strangeness

• But: both contributions increase with 
multiplicity
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• transverse-to-leading phase space 
region: dominant contribution to the 
Ξ/K"

# 

• Generally compatible with high-pT 
processes being less coupled to the 
actual increase of strangeness

• But: both contributions increase with 
multiplicity 

• Monte Carlo models not in agreement 
with observed values, though qualitative 
trends similar

Progress towards quantification of 
strangeness enhancement phase space 
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Strangeness enhancement
Average yield enhancement 

with respect to pions

A B

?

s-hadron

s-hadron

s-hadron
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Fast forward to 2024:
From discovery to experimental characterisation

Many additional studies performed! 

What actually causes strangeness enhancement?
→ Forward selections, spherocity

Soft/hard/jets: where is the enhancement in phase space?
→ RT analysis, strangeness in jets, 2 part. corr.

From quarks to number of s-hadrons produced E-by-E
→ P(N(s-hadron))
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Production of a certain 
number of s-hadrons

• Multiple production of single-strange: easier to 
produce multiple baryons vs mesons at higher 
multiplicity
• Given a certain number of strange quarks, it is 

easier to combine with other light quarks at 
higher multiplicity 
Indicative of a partonic coalescence picture? 
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• Multiple production of single-strange: easier to 
produce multiple baryons vs mesons at higher 
multiplicity
• Given a certain number of strange quarks, it is 

easier to combine with other light quarks at 
higher multiplicity 
Indicative of a partonic coalescence picture? 

• Trends fairly well reproduced by PYTHIA
• …even beyond simple averaged yields…
• …provided colour ropes are used!

• Begs for an attempt of following strange 
quantum number very precisely! 
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From discovery to experimental characterisation
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Strangeness enhancement
Average yield enhancement 

with respect to pions

A B

?

+s

Many additional studies performed! 

-s

+s

-s

Strangeness number conservation
→ Correlation studies

What actually causes strangeness enhancement?
→ Forward selections, spherocity

Soft/hard/jets: where is the enhancement in phase space?
→ RT analysis, strangeness in jets, 2 part. corr.

From quarks to number of s-hadrons produced E-by-E
→ P(N(s-hadron))



Correlations of opposing strangeness quantum numbers
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• Opposite sign: carried away in the same direction
• Same sign: carried away somewhat more significantly in the away side

0 2 4
0.2

0.25

0.3

0.35

0.4

0.45

)
-1

 (r
ad

ϕ
Δ

/d
N

 d
tri

g
N

1/

 = 13 TeV, minimum biassppALICE
KΞ
 | < 1yΔ|

0 2 4
 (rad)ϕΔ

0

0.05

0.1

0.15SS−
O

S



Correlations of opposing strangeness quantum numbers
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• Opposite sign: carried away in the same direction
• Same sign: carried away somewhat more significantly in the away side

• Not reproduced at all by event generators 
• Event generators predict same-sign peak in near side: absent in data
• Overall strength of correlation not correct also in away side

Points towards incorrect strangeness number dynamics in the 
generators → more work needed!
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Perspectives for the future:

Connecting elementary and complex QCD processes 

Strangeness measurements at the LHC 16

Is there a QGP in small systems?   → an outdated question

Is there more in small systems than we originally thought?    → Yes! Can we define the QGP more precisely?

Emergent phenomena of QCD: ‘more is different’ [1] 

[1] More Is Different. P. W. Anderson. Science, New Series, Vol. 177, No. 4047. (Aug. 4, 1972) 

QGP physics: the ‘solid state’ study of QCD matter

https://www.science.org/doi/10.1126/science.177.4047.393
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Is there a QGP in small systems?   → an outdated question

Is there more in small systems than we originally thought?    → Yes! Can we define the QGP more precisely?

Emergent phenomena of QCD: ‘more is different’ [1] 

[1] More Is Different. P. W. Anderson. Science, New Series, Vol. 177, No. 4047. (Aug. 4, 1972) 

QGP physics: the ‘solid state’ study of QCD matter

+ =
• What is the most elementary experimental scenario in which 

we can study changes in strangeness production dynamics? 
• Could we characterise strangeness hadronization further? 
• What is the role of the initial state / strange sea quarks? 

colour flux tube

colour flux tube

https://www.science.org/doi/10.1126/science.177.4047.393


Pushing QGP signatures towards the elementary
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Near-side ridge found in pp! 
(see Jan Fiete’s talk)
Similarly to strangeness 
enhancement: found in pp!
→	 When does this “switch off”? 
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Collective expansion

Pb-Pb

• In Pb-Pb collisions, particles are 
emitted with a modulation in 
azimuth due to collective expansion 
of an elliptic initial condition

https://agenda.infn.it/event/38467/contributions/229270/


Pushing QGP signatures towards the elementary
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§ Ultra-peripheral collisions: photonuclear processes
§ High-multiplicity events selected for analysis
§ Non-zero v2, even if lower

§ Caveat: v2 coeff. vulnerable to (residual) non-flow
§ Begs the question: can we characterize these collisions? 

§ What about other QGP signatures?
§ Strangeness enhancement → news soon

Pb-Pb 
Ultraperipheral

pp

p-Pb

ATLAS, Phys. Rev. C 104, 014903
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v2: second component of fourier expansion 
of particle emission in phase space

Near-side ridge found in pp! 
(see Jan Fiete’s talk)
Similarly to strangenes 
enhancement: found in pp!
→	 When does this “switch off”? 

https://agenda.infn.it/event/38467/contributions/229270/


Pushing to elementary: 𝑒!𝑒" and eA collisions

Strangeness measurements at the LHC 18

Phys. Rev. Lett. 123, 212002 (2019) 

• Minimum-bias 𝑒$𝑒% collisions: exhibit no near-side ridge 
• However: 𝑒$𝑒%	provides access to various processes
–High-multiplicity 𝑒$𝑒% enriched with 𝑒$𝑒% 	→ 𝑊$𝑊%: a 

two-string system



Pushing to elementary: 𝑒!𝑒" and eA collisions

Strangeness measurements at the LHC 18

Phys. Rev. Lett. 123, 212002 (2019) 

• Minimum-bias 𝑒$𝑒% collisions: exhibit no near-side ridge 
• However: 𝑒$𝑒%	provides access to various processes
–High-multiplicity 𝑒$𝑒% enriched with 𝑒$𝑒% 	→ 𝑊$𝑊%: a 

two-string system
–Results at high multiplicity similar to pp collisions!



Further constraint, further knowledge: electron-ion collisions
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In-medium 
hadronization

Out-of-medium 
hadronization• Probing hadronization in-medium and out-of-medium: 

• can be done cleanly at the Electron-Ion Collider (EIC)!
• Why EIC? Electron-ion collisions: 

• single initial scattering process, products travel through nucleus 
• Unique control: initial parton energy can be inferred by kinematics
• Produced parton flavour inferred from particle identification 

• …To answer: 
• Does a parton hadronize inside the nucleus? 
• How do quarks of different flavours hadronise? Strange, charm, beauty! 
• How does that depend on energy? Traveled path? System size?
→ fundamental ‘microscopic’ knowledge of 
 hadronization in vacuum or cold matter

• Dramatically improve our understanding of nuclei



Summary and outlook
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?
• There was remarkable progress in the strangeness sector in the past decade! 

From the discovery of strangeness enhancement in small systems (~2015)…
… to the experimental characterisation of its properties: ongoing!

• Fundamental building blocks of high-density QCD: under which conditions 
do complex phenomena (strangeness enhancement, v2, …) emerge? 

 + Heavy flavour studies: interesting avenue to probe system evolution
 + investigated by a cutting edge device @LHC : ALICE 3 (see Triloki’s talk)

• Further fascinating facets of strangeness measurements not discussed here: 
• Femtoscopy (See Oton’s talk) 
• Hadron spectroscopy (hypernuclei, etc)

• General HI Physics: see Jan Fiete’s talk

Thank you!

https://agenda.infn.it/event/38467/contributions/234444/
https://agenda.infn.it/event/38467/contributions/229288/
https://agenda.infn.it/event/38467/contributions/229270/
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Long-range near-side particle correlations from pp to Pb-Pb

Strangeness measurements at the LHC 7
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Collective expansion

• In Pb-Pb collisions, particles are emitted with a modulation in 
azimuth due to collective expansion of an elliptic initial condition

Pb-Pb
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Collective expansion

• In Pb-Pb collisions, particles are emitted with a modulation in 
azimuth due to collective expansion of an elliptic initial condition

• Also observed in p-Pb and pp 
• Initial condition not necessarily elliptic
• Collective expansion also at play?
• Under which conditions does this not happen?

Pb-Pb p-Pb pp



Long-range near-side particle correlations from pp to Pb-Pb

Strangeness measurements at the LHC 7

Ph
ys

. L
et

t. 
B 

72
4 

(2
01

3)
 2

13

Collective expansion

• In Pb-Pb collisions, particles are emitted with a modulation in 
azimuth due to collective expansion of an elliptic initial condition

• Also observed in p-Pb and pp 
• Initial condition not necessarily elliptic
• Collective expansion also at play?
• Under which conditions does this not happen?

Pb-Pb p-Pb

e-p collisions with Q2 > 20 GeV2/c2

How can this be explained?



String shoving leads to collective motion

Strangeness measurements at the LHC 8

High multiplicity → many partonic interactions
Many partonic interactions → many colour strings

Many closely-packed colour strings → shoving!

• Can now be reproduced using PYTHIA
• Explains presence in high-multiplicity hadron-hadron collisions
• Explains absence in electron-proton interactions

• Example of emergent QCD phenomenon 
• Should also explain Pb-Pb collectivity
• see https://arxiv.org/abs/2010.07595

arXiv:2108.09686
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https://arxiv.org/abs/2010.07595


Beyond charged particles: identified particle v2 
coefficients

Strangeness measurements at the LHC 9

ALI-PREL-503282

p-Pb collisions

§ Systematic search for identified particle flow
§ collective behaviour present: π, K, p 
§ Consistent with mass ordering, particle type grouping
§ Even beyond: heavy flavour flow verified in small 

systems as well - except charmonia and bottom

Remaining puzzle: 
v2 >0 implies energy loss …

…but no jet quenching? To be solved!



Observation of non-zero flow in photo-nuclear events

Collective dynamics: experimental overview | Quark Matter 2023 41

Pb-Pb 
Ultraperipheral

pp

p-Pb

ATLAS, Phys. Rev. C 104, 014903

§ Ultra-peripheral collisions: photonuclear processes
§ High-multiplicity events selected for analysis
§ Non-zero v2, 
        …but lower than hadron-hadron collisions!

§ Similar to result by CMS [2] in 𝛾p interactions (in p-Pb)

§ Can be explained using CGC predictions [1]
§ Caveat: v2 coefficients vulnerable to (residual) non-flow

§ Begs the question: can we characterize these collisions? 
§ What about other QGP signatures? 

[1] Phys. Rev. D 103, 054017
[2] https://arxiv.org/abs/2204.13486 

✓ Specific processes
→  see talk by Sruthy Das

https://arxiv.org/abs/2204.13486
https://indico.cern.ch/event/1139644/contributions/5541476/attachments/2709307/4704679/QM23_090623_sruthydas.pdf


Collective dynamics: experimental overview | Quark Matter 2023 42

→  see talk by Sruthy Das

• Indications of radial flow in UPC collisions
• In backward pseudorapidity region
• Excess not described well by AMPT 

→ radial flow?

Search for QGP signatures in photo-nuclear events

https://indico.cern.ch/event/1139644/contributions/5541476/attachments/2709307/4704679/QM23_090623_sruthydas.pdf


Collective dynamics: experimental overview | Quark Matter 2023

Search for QGP signatures in photo-nuclear events

43

• Indications of radial flow in UPC collisions
• In backward pseudorapidity region
• Excess not described well by AMPT 

• Backward η 𝑝&  matches p-Pb at the same 
multiplicities

→ radial flow?

✓ Specific processes/extremes

→  see talk by Sruthy Das

https://indico.cern.ch/event/1139644/contributions/5541476/attachments/2709307/4704679/QM23_090623_sruthydas.pdf
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§ Behavior known from Pb-Pb collisions

§ Interpreted as radial flow: p are pushed 
to a higher momentum
§ p are pushed to higher momenta 

by a common velocity field
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§ Behavior known from Pb-Pb collisions

§ Interpreted as radial flow: p are pushed 
to a higher momentum
§ p are pushed to higher momenta 

by a common velocity field
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§ Interpreted as radial flow: p are pushed 
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by a common velocity field
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` p-Pbpp
Pb-Pb

§ Behavior known from Pb-Pb collisions

§ Interpreted as radial flow: p are pushed 
to a higher momentum
§ p are pushed to higher momenta 

by a common velocity field

§ Remarkable consistency across systems 
as a function of multiplicity

§ high pT: recovery of universal behavior?
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§ Color Reconnection:
- Implemented in PYTHIA8 Monash; hadronizing 

strings may be rearranged prior to fragmentation 
in a multiplicity-dependent way 

- Qualitative agreement with the behavior of the 
data

§ Collective Radial Expansion:
- Present in EPOS LHC
- Includes a QGP droplet
- viable explanation but effect is overestimated

PYTHIA8 – T. Sjöstrand et al., Comput. Phys. Commun. 178 (2008) 852-867
EPOS LHC – T. Pierog et al., arXiv:1306.0121
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Now up to the theorists to explain via a 
universal mechanism 
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§ Similarities also seen in strangeness measurements
§ behavior in Λ/K0S ratio for all systems a function of 

Nch only 
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§ Also present in the charm sector 
§ Universality remains a theoretical challenge

Λ/K0S

`p-Pbpp
Pb-Pb

Λc/D0
pp ` p-Pb

Baryon to meson ratios: strangeness + charm 
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Emergent QCD phenomena versus effective descriptions
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Phenomenon Process-based, QCD-inspired explanation Statistical mechanics-based or effective description

Strangeness enhancement Color rope formation Canonical suppression

Long-range correlations, baryon-to-meson 
ratios String shoving Hydrodynamical evolution / expansion

• These do not exclude each other → the ideal scenario would be a ‘grand unification’

Is there a QGP in small systems?   → an outdated question

Is there more in small systems than we originally thought?    → Yes! Can we define the QGP more precisely?

• Emergent phenomena of QCD: ‘more is different’ [1] 

  What about the synergy between the LHC and EIC? 
• A hadron-hadron collider is required → effects will appear
• An electron-hadron collider is required → clean way to learn about baseline

[1] More Is Different. P. W. Anderson. Science, New Series, Vol. 177, No. 4047. (Aug. 4, 1972) 

THAT’S
Why we 
are here

https://www.science.org/doi/10.1126/science.177.4047.393


Particle production in the Lund model
• Hadronization can be described as the breakup of 

color flux tubes (“strings”) with constant energy 
density / tension

• Standard PYTHIA with MPI: no increase of 
strangeness production

Strangeness measurements at the LHC 4

QCD 
perspective
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• Common reconstruction: decay-daughter based
• We can do much better with ALICE 3

𝜋 ← Λ

𝜋 ← Ξ

𝑝 ← Λ

𝜋 ← 𝑐

2𝜋 ← 2𝑐

Towards strangeness tracking



𝜋 ← Λ

𝑝 ← Λ
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• Common reconstruction: decay-daughter based
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Towards strangeness tracking

• Common reconstruction: decay-daughter based
• We can do much better with ALICE 3
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Towards strangeness tracking

• Common reconstruction: decay-daughter based
• We can do much better with ALICE 3

11-layer option (not to scale)
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ALICE 3 is the ideal 
strangeness tracker
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Strangeness tracking in practice: the effect
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Strangeness tracking

transverse impact parameter to primary vertex

Primary Ξ%
(→ Λ + π%)

• Reconstruction algorithm:
1. Direct detection of decay products 

determines decay point, momenta
2. Backward propagation determines hits to 

attach to trajectory

• Added hits greatly increase the primary vertex 
pointing accuracy: primary-like resolution!

• In practice, the best of both worlds: 
• momentum precision with (long) daughters, 
• spatial precision with primary particle hits

• Effectively also a particle identification method 
over a very large momentum range via invariant 
mass selection → improved combinatoricsΞ% DCAxy to PV (μm)
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Towards multi-charm: strangeness tracking the Ξ# from Ξ$$%%

• Improves separation power between primary and 
secondary Ξ%
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Towards multi-charm: strangeness tracking the Ξ# from Ξ$$%%

• Improves separation power between primary and 
secondary Ξ%
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Decay products only

Strangeness Tracking

• Enormous improvement in the entire decay chain 
precision: Ξ''$$ points towards primary vertex! 


