

MAMI/MESA: future perspectives

Marc Vanderhaeghen (Univ. Mainz)

Present and future perspectives in Hadron Physics,

LNF (Frascati, Italy), June 17-19, 2024

Outline

- Introduction: QCD 50 years where do we stand, where do we go?
- MAMI and MESA accelerators
- ► Future physics program at MAMI and MESA

1974: QCD asymptotic freedom

Nobel Prize Physics 2004: D.J. Gross, H.D. Politzer, F.Wilczek

50 Years of Quantum Chromodynamics

Franz Gross ^{,1,2}, Eberhard Klempt^{b,3},

Stanley J. Brodsky^{c,4}, ndrzej J. Buras^{c,5}, Volker D. Burkert^{c,1}, Gudrun Heinrich^{c,6}, Karl Jakobs^{c,7}, Curtis . Meyer^{c,8}, Kostas Orginos^{c,1,2}, Michael Strickland^{c,9}, Johanna Stachel^{c,10}, Giulia Zanderighi^{c,11,12},

Nora Brambilla^{5,12,13}, Peter Braun-Munzinger^{10,14}, Daniel Britzger¹¹, Simon Capstick¹⁵, Tom Cohen¹⁶, Volker Crede¹⁵, Martha Constantinou¹⁷, Christine Davies¹⁸, Luigi Del Debbio¹⁹, chim Denig²⁰, Carleton DeTar²¹, lexandre Deur¹, Yuri Dokshitzer^{22,23}, Hans Günter Dosch¹⁰ Jozef Dudek^{1,2}, Monica Dunford²⁴, Evgeny Epelbaum²⁵, Miguel . Escobedo²⁶, Harald Fritzsch^{d,27}, Kenji Fukushima²⁸, Paolo Gambino^{11,29}, Dag Gillberg^{30,31}, Steven Gottlieb³², Per Grafstrom³³, Massimiliano Grazzini³⁴, Boris Grube¹, lexey Guskov³⁵, Toru Iijima³⁶, Xiangdong Ji¹⁶, Frithjof Karsch³⁷, Stefan Kluth¹¹, John B. Kogut^{38,39}, Frank Krauss⁴⁰, Shunzo Kumano^{41,42}, Derek Leinweber⁴³, Heinrich Leutwyler⁴⁴, Hai-Bo Li⁴⁵, Yang Li⁴⁶, Bogdan Malaescu⁴⁷, Chiara Mariotti⁴⁸, Pieter Maris⁴⁹, Simone Marzani⁵⁰, Wally Melnitchouk¹, Johan Messchendorp⁵¹, Harvey Meyer²⁰, Ryan Edward Mitchell⁵², Chandan Mondal⁵³, Frank Nerling^{51,54,55}, Sebastian Neubert³, Marco Pappagallo⁵⁶, Saori Pastore⁵⁷, José R. Peláez⁵⁸, ndrew Puckett⁵⁹, Jianwei Qiu^{1,2}, Klaus Rabbertz⁶⁰, lberto Ramos⁶¹, Patrizia Rossi^{1,62}, nar Rustamov^{51,63}, ndreas Schäfer⁶⁴, Stefan Scherer⁶⁵, Matthias Schindler⁶⁶, Steven Schramm⁶⁷, Mikhail Shifman⁶⁸, Edward Shuryak⁶⁹, Torbjörn Sjöstrand⁷⁰, George Sterman⁷¹, Iain W. Stewart⁷², Joachim Stroth^{51,54,55}, Eric Swanson⁷³, Guy F. de Téramond⁷⁴, Ulrike Thoma³, ntonio Vairo⁷⁵, Danny van Dyk⁴⁰, James Vary⁴⁹, Javier Virto^{76,77}, Marcel Vos⁷⁸, Christian Weiss¹, Markus Wobisch⁷⁹ Sau Lan Wu⁸⁰, Christopher Young⁸¹, Feng Yuan⁸², Xingbo Zhao⁵³, Xiaorong Zhou⁴⁶

arXiv 2212.11107 [hep-ph]

Quo vadis?

High-energy frontier

nuclear physics input needed for long-baseline neutrino facilities

Dark matter could be lighter than previously thought, **MeV - GeV mass range**: ALPs, dark photon, X17, ...

Low-energy frontier

New opportunities: PADME, Belle II, ... MESA, BDX@JLab, ...

arXiv:1901.09966

- Astronomical measurement from gravitational wave (LIGO/Virgo) in neutron star merger and pulse profile (NICER) in pulsar measurements
- Laboratory measurement from neutron skin of nuclei and heavy ion reactions

Low-energy frontier allows to connect the LAB to the astrophysical domain

Are discrepancies hinting at scale-specific phenomena or gaps in our understanding of nuclear matter?

Key physics programs at the low-energy frontier

- ➡ Low-energy high-intensity experiments take center stage in the search for new, beyond SM particles
 - Low-energy precision determination of the weak charge of the electron and proton
 - Muon's (g-2)
 - Search for dark sector and dark matter particles in the MeV GeV mass range
- → Understanding of hadronic processes to high precision drives discoveries in different fields of physics
 - neutrino matter-antimatter symmetry violating phase requires neutrino-nucleus cross sections
 - laser spectroscopy of light muonic atoms: order-of-magnitude improvement in the proton and lightnuclei structure quantities
- Recent developments in multi-messenger astronomy -> need for new precision experiments in lowenergy nuclear physics
 - Precision probes of the **nuclear EOS ->** better understanding of structures in neutron-rich matter
 - Key reaction cross sections relevant to nuclear astrophysics require low-energy high-intensity nuclear physics facilities
 - Precision electron scattering to benchmark state-of-art nuclear effective field theory calculations

Key physics programs at the low-energy frontier

- ➡ Low-energy high-intensity experiments take center stage in the search for new, beyond SM particles
 - Low-energy precision determination of the weak charge of the electron and proton
 - Muon's (g-2)
 - Search for dark sector and dark matter particles in the MeV GeV mass range
- → Understanding of hadronic processes to high precision drives discoveries in different fields of physics
 - neutrino matter-antimatter symmetry violating phase requires neutrino-nucleus cross sections
 - laser spectroscopy of light muonic atoms: order-of-magnitude improvement in the proton and lightnuclei structure quantities
- Recent developments in multi-messenger astronomy -> need for new precision experiments in lowenergy nuclear physics
 - Precision probes of the **nuclear EOS ->** better understanding of structures in neutron-rich matter
 - Key reaction cross sections relevant to nuclear astrophysics require low-energy high-intensity nuclear physics facilities
 - Precision electron scattering to benchmark state-of-art nuclear effective field theory calculations

MAMI in combination with new accelerator MESA: tailored to address these physics questions

The Mainz Microtron MAMI

The Mainz Microtron MAMI

Mainz Energy-Recovering Superconducting Accelerator MESA

The MESA accelerator

The MESA accelerator

Installation ongoing, commissioning foreseen in 2025

3.5 meter

MESA-main component: SRF-Cryomudule

Both MESA Cryo-Modules fulfill specifications: 25MV Acceleration voltage at <40 Watt thermal loss at 2Kelvin

Physics program at MAMI and MESA embedded in newly established Collaborative Research Center CRC1660

- Strong discovery potential for new physics phenomena
- Powerful tools to sharpen our understanding of strongly interacting systems

CRC1660: Hadrons and Nuclei as Discovery Tools

- 13 projects: 26 PIs (24 JGU Mainz + PI Uni-Frankfurt + PI Uni-Münster)
- Interdisciplinary: atomic, nuclear and hadron physics
- Close collaboration between theory and experiment
- 2 main infrastructures: MAMI and MESA
- Integrated Graduate school
- DFG funding: ca 10 MEuro (2024 2028), 12 year funding perspective
- 28 PhD + 6.5 PD positions

Spokespersons: C. Sfienti & M. Vdh

P2: Parity violating electron scattering at MESA

- P2@MESA measurement of proton weak mixing angle sin² θ_w at low scale to precision of 0.14%
- Precision test of Standard Model
- Complementary to LHC measurements at Z-boson mass
- dedicated theory radiative corrections
- Sensitive to BSM physics at scales \sim 50 TeV
- Extension to nuclear targets planned

Electrons for neutrino program at MAMI

- Neutrino oscillations

 neutrinos are massive
- Next generation of long-baseline neutrino experiments (DUNE, T2HK): oscillation parameters at 1% level
- Interpretation requires precise neutrinonucleus cross sections as input
- e⁻ scattering off medium-mass nuclei at MAMI to reduce uncertainties from nuclear structure
- Complemented by lattice QCD program to determine nucleon axial form factors

Credit: JLAB/Neutrino-nucleus interaction

Source: www.dunescience.org

Precision nucleon structure from muonic atoms and e-scattering

- Muonic atom spectroscopy: allowed for 10-fold improvement in proton radius determination, benchmark for nucleon/nuclear structure theory
- Next generation of μ -atom experiments @PSI
- First measurement of 1S hyperfine splitting in μH to two orders of magnitude better than theory
- → Improvement of Lamb shift in μ H by factor 5
- X-ray spectroscopy precision nuclear radii
- Dedicated theory to improve hadronic corrections to muonic atom spectroscopy using EFTs and dispersive techniques: two-photon exchange
- Framework for interpretation of electron and Compton scattering experiments
- Dedicated precision e⁻ scattering program to measure proton form factors at MAGIX@MESA
- Compton scattering program at MAMI will yield world's best determination of neutron polarizabilities

Electron scattering program with MAGIX @ MESA

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
 → a novel technique in nuclear and particle physics

NIM A1013 (2021)

Supersonic crygenic gas jet target

- Windowless environment
- Commissioned at A1/MAMI
- Design density 10¹⁹/cm²

Two identical spectrometers

- Two dipoles each
- One quadrupole each

TPC-based focal plane detector

- 10⁻⁴ momentum resolution
- Requires spatial resolution of O(100 μm)
- Open field cage
- GEM readout

Electron scattering program with MAGIX @ MESA

Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
 → a novel technique in nuclear and particle physics

Neutron skin and surface thickness of ²⁰⁸Pb

- Multi-messenger astronomy: new window onto neutron-rich matter under extreme conditions
 - Detection of neutron star mergers by gravitational wave experiments
 - X-ray observations at ISS
- Need for precision experiments to constrain nuclear equation of state
- Clarify by world's best measurement of neutron skin thickness in ²⁰⁸Pb using parity-violating e⁻ scattering with P2@MESA

Reaction cross sections of astrophysical interest at MAGIX

- Nuclear physics input also impacts our understanding of stellar nucleosynthesis
- Radiative capture cross sections through measurement of (γ, α) and (γ,n) inverse reactions

 $3\alpha \longrightarrow {}^{12}C + 2\gamma$ ${}^{4}He$ ${}^{8}Be$ ${}^{8}He$ ${}^{7}He$ ${}^{16}O$ ${}^{16}O$ ${}^{12}C + \alpha \longrightarrow {}^{16}O + \gamma$

- MAGIX@MESA will allow measurement to unprecedented low energy
- Theoretical analysis using effective field theory

Summary

- QCD is 50 years of age, but precision physics at femtoscale just started
- Interactions with precision and high-energy frontiers:
 MAMI and MESA tailored to address these questions
- CRC1660: rich 12 year physics program

Close synergy theory <-> experiment will move field forward