

CERN:

Present and Future High-Density QCD Programme

Jan Fiete Grosse-Oetringhaus (CERN)

Present and future perspectives in Hadron Physics

18.06.2024

Content:

- Key Concepts
- QGP Key Properties
- Hadronization
- Short-term future: Run 3 and 4
- Long-term future: Run 5 and 6

Concepts

CERN: Present and Future High-Density QCD Programme - Jah Fiete Grosse-Oetringhaus

QCD Phase Diagram

CERN

Heavy-Ion Collision, conceptually...

Time

CERN: Present and Future High-Density QCD Programme - Jan Fiete Grosse-Oetringhaus

Heavy-Ion Collision, conceptually...

QGP Key Properties

CERN: Present and Future High-Density QCD Programme - Jah Fiete Grosse-Oetringhaus

Jet Quenching

- The QGP alters jet energies
 - Radiative and collisional energy loss due to interactions of traversing parton with quarks and gluons in the medium
- Back-to-back jets significantly altered

Jet Quenching

- For all strongly interacting probes
 - Significant suppression ($R_{AA} \sim 0.14$)
 - Ratio of steeply falling spectra
 - Different dynamics depending on particle
 - Dependence on mass and quark content
- EW probes (γ, Z, W) not suppressed
 - Do not interact with QGP

 \rightarrow Andres (Wednesday 9:30)

- Confirm correct scaling of $\mathsf{R}_{\mathsf{A}\mathsf{A}}$
- Used to constrain QGP properties

J/ψ

- The QGP affects bound-state formation
- Binding potential of quarkonia is modified
- ccbar produced in hard scattering does not hadronize to J/ψ in presence of medium

• Large ccbar density \rightarrow regeneration

A Flowing System

- Collision zone not isotropic (coordinate space)
- Pressure gradient → momentum-space anisotropy
 - Requires reinteractions, strongly-coupled system
- Access to event-by-event fluctuations of nucleon density

Measurable through azimuthal distribution of particles

$$\frac{dN}{d\varphi} = A \left(1 + 2 \sum_{n} v_n \cos n(\varphi - \Psi_n) \right)$$

nucl-ex/0701025, PRC81 (2010) 054905

Higher Orders

- Azimuthal distribution entirely described up to 5th order
- Finer structures can be extracted with high statistics (n = 9, at present)

Compact description of the data Direct link to medium transport coefficients

CERN: Present and Future High-Density QCD Programme - Jan Fiete Grosse-Oetringhaus

Transport Coefficient: Shear Viscosity

- Shear viscosity η /s washes out initial-state anisotropies
 - Large influence on higher-order flow
- Bayesian estimates for QGP medium properties

Transition from QGP to Hadrons

CERN: Present and Future High-Density QCD Programme - Jah Fiete Grosse-Oetringhaus

Hadronization

- Hadronization is a non-perturbative process
 - No first-principle description
 - Λ_{QCD} ... but when does it begin exactly?
 - Understanding is very important, as a fundamental element of QCD
 - Affects all observables which measure hadrons
 - Needed for background estimates, including in searches
 - Experiment guides the way hand-in-hand with theory-inspired phenomenological models
- Initially: Factorized description of hadron production $\sigma_{pp \to hx} = PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{ab \to q\bar{q}} \otimes D_{q \to h}(z, Q^2)$
 - Multiple interactions within collision combined incoherently
- But: Picture fails when multiplicity increases
 - Addition of e.g. colour reconnection needed

Baryon Production

- Baryon production (e.g. Λ) not described by e⁺e⁻ inspired models
 - E.g. in Pythia, need for more than basic color reconnections (e.g. junctions, JHEP 08(2015)003)
- Baryon enhancement not visible for jet constituents
 - Fragmentation remains independent of other activity in the event

Charm Sector

- Charm and beauty produced in hard scattering, rarely in string fragmentation
- Baryon enhancement also in charm sector (including LO CR)
 - Surprise: Λ_c/D significantly larger than e⁺e⁻ expectation
 - Pythia with reconnections beyond leading colour works
- Significant effect on fragmentation fractions
 - Less D⁰ in pp than in e⁺e⁻ and ep
 - More $\Lambda_{\rm c}$ in pp than e^+e^- and ep

Coalescence and Statistical Hadronization

- Coalescence in filled phase space of quarks and gluons
 - Partons close in momentum and position space coalesce to hadrons
 - Probability is p_T dependent
 - Can be successfully applied to large objects
 - Nuclei have small binding energy and are formed late
- Statistical hadronization: Relativistic ideal quantum gas of hadrons in thermal and chemical equilibrium
 - 3 free parameters: V, T, μ_{B}
 - Central Pb-Pb at LHC
 - T = 156 ± 2 MeV
 - $\mu_B = 0.7 \pm 3.8 \text{ MeV}$
 - V ~ 5000 ± 500 fm³

of magnitude

orders

ດ

CERN: Present and Future High-Density QCD Programme - Jan Fiete Grosse-Oetringhaus

Onset of QGP Production

CERN: Present and Future High-Density QCD Programme - Jah Fiete Grosse-Oetringhaus

Strangeness Enhancement

- Hadronization for strange particles density-dependent
- Strange particle production increases with multiplicity
 - K/ π , Λ/π , Ξ/π , Ω/π
 - from pp, over p-Pb, to Pb-Pb

Statistical Hadronization Model in pp and p-Pb

Collective Phenomena

- Two-particle correlations
 - "Probably density" to find second particle

Collective Phenomena

- Two-particle correlations
 - "Probably density" to find second particle
- Striking observation of long-range ridge structures ۲
 - First publication: JHEP 09 (2010) 091 **1200 citations!**
- Initially seen in high-multiplicity in pp and p-Pb ullet
 - Jet subtraction procedure revealed almost symmetric away-side component
- Entire field emerged; paradigm shift
 - What is smallest system for which heavy ion "standard model" remains valid?
 - Can the standard tools for pp physics remain standard?

Intriguing interpretations involving QGP in small systems

CMS pp \s = 13 TeV

0.0002% of MB

Low-Multiplicity pp and e⁺e⁻

- No ridge observed in elementary e⁺e⁻ collisions ullet(archived ALEPH data)
- But in pp at the same multiplicity ullet
 - Not so dense system needed for multi-particle effects

ALICĖ

→ Mazeliauskas (Wednesday 10:00)

op, √*s* = 13 TeV

PLB

829

(2022)

137065

Study of the Strong Interaction

CERN: Present and Future High-Density QCD Programme - Jah Fiete Grosse-Oetringhaus

Study of the Strong Force

• Femtoscopic technique for particle pairs

$$C(k^*) = \frac{N_{same}(k^*)}{N_{mixed}(k^*)} = \int S(r^*) |\Psi(r^*, k^*)|^2 d^3r$$

Correlation Source Wave function $k^* = \frac{p_a^* - p_b^*}{2}$

- Like Hanbury Brown & Twiss interferometry
- Used to extract emitting source size in heavy ions
- If source small (e.g. pp coll.) and known, strong interaction of unstable hyperons be studied
 - pΞ, ΛΛ, pΩ
- Strong force needed to describe correlation
 - Lattice QCD calculations validated
 - HAL QCD: Sasaki K, et al. Nucl. Phys. A 998:121737 (2020)

→ Vazquez Doce (Wednesday 10:30)

Short-term Future: LHC Run 3, 4 Long-term Future: LHC Run 5, 6

CERN: Present and Future High-Density QCD Programme - Jah Fiete Grosse-Oetringhaus

Heavy Quark Hadronization

- Do heavy quarks thermalize?
 → Charm and beauty v₂ down to p_T = 0
- Constrain temperature dep. of diffusion coefficient
- How does charm form in the QGP?
 - Baryon/meson ratios D_s/D, Λ_c /D, Λ_b /B
- Influence of melting and (re)generation
 - Compare states with different binding energy
- Charm cross-section to p_T = 0
 → reduce (re)generation model uncertainties
- Quarkonia evolution within QGP and heavy quark hadronisation, e.g. role of coalescence

pp Programme

- Special software triggers on fully reconstructed events for hyperon correlations
 - $-p-\Xi$, Ω - Ω , Λ -d for precise study of strong interaction

- Energy loss in small systems
 - If v_n caused by final-state interactions, partons should lose energy
 - Energy loss through coincidence measurements \rightarrow h-jet, jet- γ , jet-Z correlations

(Anti-)(hyper-)nuclei

 Λ/p

- Precision era for (anti-)(hyper-)nuclei production ullet
 - Abundant d, ³He, ${}^{3}_{A}$ H; > 1000 ⁴He
 - Significance above 5σ for ${}^{4}{}_{\Lambda}$ H and ${}^{4}{}_{\Lambda}$ He
 - $-v_2$ for loosely-bound objects (e.g. hypertriton)
- Anti-d and anti-³He data inform astrophysical background in dark matter searches (AMS)

- Production mechanism ullet
 - (Advanced) coalescence vs. thermal model

----- ALICE Pb-Pb √s_{NN}=2.76 TeV

10

ALICE-PUBLIC-2020-005

 10^{2}

CERN: Present and Future High-Density QCD Programme - Jan Fiete Grosse-Oetringhaus

 $\langle dN_{ch}/d\eta \rangle_{|\eta|<0.5}$

Oxygen Run

- O-O, p-O collisions in LHC planned for July 2025
 - 3 days p-O: ALICE: p-O: 2 nb⁻¹, \sim 10⁸ events
 - 1 day O-O: ALICE: O-O: 0.5 nb⁻¹, ~7x10⁷ events
- AA geometry but N_{ch} , N_{part} , N_{coll} as p-Pb
 - Centrality shoulder allows geometry selection (N_{coll}, ϵ_2)
- System large enough to exhibit jet quenching
 - Critical test for energy loss for short path lengths
 - If no quenching in O-O
 - \rightarrow also p-Pb has insufficient energy density for quenching
- Cosmic-ray community expressed strong interest in p-O to constrain models for cosmic-ray showers
 - Muon deficit in cosmic-ray simulations mitigated by adding collective effects or strangeness
 (see e.g. arXiv:1902.08124)

NA60+ @ SPS

- $\sqrt{s_{NN}} = 6-17 \text{ GeV } @ >100 \text{ kHz} \rightarrow \text{QGP}$ at high μ_B
- T through thermal dimuons \rightarrow caloric curve
- Chiral symmetry restoration through ρ -a₁ mixing
- Charm hadronization

Run 4 and 5

- QGP transport coefficients through open charm
- J/ψ suppression
 beyond CNM effects

(Mev 200

Run 4 and 5

NA60+ @ SPS

- Significant R&D ongoing
 - Silicon detector: based on MOSAIX from ALICE ITS3 (MAPS and stitching)
 - Muon detector: prototype beam tests for design choice: GEM or MWPC
 - Toroidal magnet: 1:5 prototype built and tested
 - Trigger and reconstruction software ongoing
- Low \sqrt{s} p beams require secondary p from SPS
- Status & Plan
 - Lol submitted in 2022. Positive assessment by SPSC
 - Technical proposal to be submitted this year
 - Installation in LS3 (2026-2028)
 - Data taking in Run 4 and 5 (2029-2038)

Run 5 and 6

ALICE 3 @ LHC

- Detector for LHC Run 5 and 6 (2035-41)
- $\sqrt{s_{NN}} = 5-6$ TeV (PbPb, XeXe, InIn?, KrKr?)
 - Species driven by detector design and physics (no scan!)
- Thermal leptons
 - Precise medium temperature, chiral symmetry restoration
- Multiple charm ($\Xi_{cc}, \Omega_{cc}, \ldots$) production $\mathbf{\mathcal{Z}}_{cc}^{++} \rightarrow \mathbf{\mathcal{Z}}_{c}^{+}\pi^{+} \rightarrow \mathbf{\mathcal{Z}}^{-}\pi^{+}\pi^{+}\pi^{+} \qquad \mathbf{\Omega}_{cc}^{+} \rightarrow \mathbf{\Omega}_{c}^{0}\pi^{+} \rightarrow \mathbf{\Omega}^{-}\pi^{+}\pi^{+}$
 - Hadronization models; coalescence on quark level
- Heavy-quark correlations: D⁰-D⁰ for QGP scattering
- Quarkonia beyond S-wave: χ_c and χ_b
 - Dynamics of bound-state interactions within QGP
- Hadronic interactions and bound-state formation
 - For example: D-D* and c-deuteron
- Ultra-soft photons

→ Triloki (Monday 18:30)

Run 5 and 6

ALICE 3 @ LHC

- Retractable vertex detector 5 mm from beam
 - Pointing resolution 3-4 μm @ 1 GeV
 - $X/X_0 \sim 0.1\%$ per layer
- All-silicon tracker (p_T resolution 1% @ 1 GeV)
- ECAL, RICH and muon detectors
- Continuous readout and online processing Pb-Pb: 35 nb⁻¹ | pp 18 fb⁻¹
- Strangeness tracking: a MHz bubble chamber
- Status & Plan
 - Lol submitted in 2022. Positive assessment by LHCC
 - Scoping document to be submitted this year
 - Installation in LHC LS4 (2033-2034)
 - Data taking in LHC Run 5 and 6 (2035-2041)
 - → Triloki (Monday 18:30)

Silicon R&D

- ALICE ITS2 demonstrated: large scale (~10 m²) use of monolithic active pixel sensors (MAPS), 50 μ m thin
- Ongoing R&D for ALICE ITS3
 - Wafer-scale sensors using stitching + bending
 - "Zero-mass" detector: 0.02-0.04% X/X $_0$ per layer
 - Carbon foam + air cooling (power consumption < 20 mW/cm²)

• ALICE 3 R&D for picosecond timing and radiation hardness

More details, see <u>seminar</u> by Magnus Mager

Bending an ITS3 Sensor

r = 18 mm !

CERN: Present and Future High-Density QCD Programme - Jan Fiete Grosse-Oetringhaus

Schedule

Summary

- Quark-Gluon Plasma produced in ultrarelativistic heavy-ion collisions
 - Legacy of measurements, significant precision in particular in light-flavour section
 - Detailed understanding of QGP medium properties
- Small-system observations ("collectivity") challenge two paradigms at once
 - What is smallest system for which heavy ion "standard model" remains valid?
 - Can the standard tools for pp physics remain standard?
- Challenge to find *universal* hadronization model for these phenomena
- Future programme until end of LHC (in 2041)
 - Measure QGP dynamics with charm states
 - Study multi-charm production and temperature evolution of QGP