Stellar evolution and standard solar model

Oscar Straniero Italian National Institute of Astrophysics Stemar Eventuron und Standard Solar Inoder

Oscar Straniero

Italian National Institute of Astrophysics

ESSENA nuclear astrophysics school @Acitrezza, jun 17-21, 2024

OVERVIEW:

- The Sun: what we know and what we do not know.
- Stellar structure equations and a stellar evolution code.
- The virial theorem: pre-main sequence stars.
- Nuclear reactions in main sequence stars (H burning).
- A standard solar model.
- Solar abundances and helioseismology constraints.
- Solar neutrinos.

http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=148 https://link.springer.com/article/10.1140/epjp/i2018-12237-1

An introduction to Stellar Evolution

Oscar Straniero¹ INAF-Osservatorio Astronomivo di Teramo Via Maggini s.n.c., 64100 Teramo, Italy E-mail straniero@oa-teramo.inaf.it

Stellar evolution theory is among the greatest successes of modern astrophysics. It is a powerful tool to interpret many astronomical observations, such as the Colour-Magnitude diagrams of simple and complex stellar systems or the chemical composition of the stars. Stellar models are required to derive important parameters, like the age of various cosmic components or their distances. In addition, stellar models allow us to investigate the behaviour of matter and radiation in the extreme physical conditions taking place in stellar interiors.

In this lecture, I review the main ingredients needed to cook a stellar model. Few examples of the potential of stellar evolution in the interpretation of relevant astronomical observations are illustrated. A final section is devoted to core-He burning stellar models and the interplay between nuclear burning and convection that determines the evolution of many stars.

Home > The European Physical Journal Plus > Article

On the mass of supernova progenitors

Review | Published: 26 September 2018

Volume 133, article number 388, (2018) Cite this article

The European Physical Journal Plus

unveiling the solar interior

What we know

- Age, from radioactive isotopes.
- Mass, from planets orbits
- Composition (relative to H), from spectroscopy/meteorites/solar wind…..
- Luminosity, from photometry
- Radius, from interferometry/photometry/spectroscopy

the interior (from helioseismology & neutrinos telescope)

- Depth of the convective envelope
- Present-day (absolute) He abundance (in the convective envelope)
- Internal rotation velocity

\n- Sound speed profile
$$
c_S = \sqrt{\gamma \frac{P}{\rho}}
$$
\n

• Neutrinos fluxes (at earth)

What we do not know

- Detailed internal structure (temperature/density/composition profiles)
- Past and future evolution
- Neutrinos luminosities

That are the outputs of a Standard Solar Model (SSM)

How to built a SSM

- We start from a rather cool homogeneous stellar structure (1 Mo), in hydrostatic and thermal equilibrium. This is the first hydrostatic structure that forms after the collapse of the pre-solar nebula, when the matter becomes optically tick.
- The initial, homogeneous composition is unknown. We assume that the abundance ratios of the pre-solar nebula were those we get by combining spectroscopic analysis (present day atmospheric composition) and pristine meteorites abundances (original pre-solar composition). • We start from a rather cool homogeneous stellar structure (1 Mo), in
hydrostatic and thermal equilibrium. This is the first hydrostatic structure
that forms after the collapse of the pre-solar nebula, when the matter
be
- NEED E STELLAR EVOLUTION CODE.
- The initial helium mass fraction (Y_{ini}) , the initial metallicity (Z_{ini}) , and the mixing length (α) are FREE PARAMETERs. They are adjusted in order to reproduce the present day L, R and Z/X.

Stellar structure equations and stellar evolution code

(plots and numbers in the following have been obtained by means of the last version of the FuNS, full network stellar evolution code, see. Stellar structure equations
and
stellar evolution code
pors in the following have been obtained by means of
of the FuNS, full network stellar evolution code, see.
eg,. Straniero et al. 2006 Nucl.Phys A) A stellar model may be as complex as you want: rotation, magnetic fields, dynamical and secular instabilities of various nature, ……..

However, most of our knowledge concerning stellar evolution is based on relatively simple models: Selfgravitating, spherical symmetric stars in thermal and hydrostatic equilibrium.

STELLAR STRUCTURE EQUATIONS:

Chemical evolution=Nuclear reactions + turbulent convection

The overall problem: 4+N differential Hydrostatic equilibrium equations, in 4+N dependent variables:

- r (radius),
- L_r (luminosity),
- P (pressure),
-
- Y_i (chemical composition: abundances)

coordinate: all depending on the lagrangian mass

- **The overall problem:** 4+N differential

equations, in 4+N dependent variables:

 r (radius),

 L_r (luminosity),

 P (pressure),

 T (temperature),

 Y_i (chemical composition: abundances)

all depending on the la • $m_r = \int_0^r 4\pi \rho r^2 dr$ (mass within r) $\int_{0}^{r}4\pi\rho r^{2}dr$ (mass within r) and ical composition: abundances)

g on the lagrangian mass
 $\int_0^r 4\pi \rho r^2 dr$ (mass within r)

)

. $\leq M$
 $\leq t \leq$ stellar-lifetime all depending on the lagrangian mass

coordinate:

• $m_r = \int_0^r 4\pi \rho r^2 dr$ (mass within r)

and

• t (time)

ions needed.

al resolution:

ssh points: $0 \le m_r \le M$

stellar models: $0 \le t \le$ stellar-lifetime
	- t (time)

*Appropriate boundary conditions needed.

1 stellar model contains about 1000 mesh points: $0 \le m_r \le M$

1 evolutionary track contains up to 10^6 stellar models: $0 \le t \le$ stellar-lifetime

4+n differential equations, in 4+n dependent variables:

- r (radius),
- L (luminosity),
- P (pressure),
- T (temperature),
- X_i i=1... n (abundancies)

4+n differential equations, in 4+n dependent variables:

• r (radius),

• L (luminosity),

• P (pressure),

• X_i i=1...n (abundancies)

all function of the lagrangian mass coordinate:

• $m_r = \int_0^r 4\pi \rho r^2 dr$

•
$$
m_r = \int_0^r 4\pi \rho r^2 dr
$$

*Appropriate boundary conditions needed

a STAR evolves because:

2.

1. Energy loss, as due to photons and neutrinos

emission. emission.

2. Chemical composition changes, as due to the
composition changes, as due to the
concurrent action of nuclear burning and
mising concurrent action of nuclear burning and mixing.

Nevertheless, thermal and hydrostatic equilibrium are maintained, until the lost energy can be replaced by:

1. Conversion of gravitational potential energy and/or equilibrium are maintained, untenergy can be replaced by:
1. Conversion of gravitational poten
and/or
2. Nuclear power.

hydrostatic equilibrium equation

Let consider a small gas element, whose mass is dm, located at distance r from the **hydrostatic equilibrium equellity of the consider a small gas element, whose**
Let consider a small gas element, whose
mass is dm, located at distance r from the
stellar centre, dr its width and A its
surface. Then, the pr surface. Then, the pressure difference between the internal and the external boundaries is:

$$
dP = P(r + dr) - P(r)
$$

which corresponds to a force:

$$
F_P = AdP
$$

On the other hand, gravity contrasts this pressure force. From the Newton law:

In the other hand, gravity contrasts this pressure force. From the Newton law:
\n
$$
F_g = -\frac{Gm(r)dm}{r^2} = -\frac{Gm(r)\rho(r)Adr}{r^2}
$$
\nBeing $dm = \rho Adr$, the mass of the gas element, Adr its volume and $m(r)$ the mass within the radius *r*, *i.e.*:

within the radius r , *i.e.:*

$$
m(r) = m_r = \int_0^r 4\pi r'^2 \rho dr'
$$

At the equilibrium, the total force acting on the gas element should be 0:

At the equilibrium, the total force acting on the gas element should be 0:
\nHydrostatic equilibrium
\n
$$
\frac{dP}{dr} = -\frac{Gm_r \rho_r}{r^2}
$$
\n-1-
\nIn addition, the mass within a shell of width dr is:
\n
$$
dm = 4\pi r^2 \rho(r) dr
$$

Mass continuity equation

$$
dm = 4\pi r^2 \rho(r) dr
$$

$$
\frac{dm}{dr} = 4\pi r^2 \rho(r)
$$

-2-

For a non-relativistic \overline{F} gas

 \bigcap

$$
P = \frac{2}{3}E
$$

$$
U = \int E dV
$$
 2U + $\Omega_g = 0$

More in general, the relation between pressure and energy density is:

$$
P = (\gamma - 1) E
$$
\nWhere γ is the specific
\nheat ratio $\gamma = c_p/c_v$

\n7

\nInternal energy:

\n
$$
U = \int E dV = \int_0^M \frac{1}{\gamma - 1} \frac{P}{\rho} dm
$$
\n6

\nArea

 E heat ratio $\gamma = c_p/c_v$ $\gamma = \frac{5}{2}$

Where γ is the specific η *non-rel.*

 $\gamma = \frac{3}{2}$

$$
\frac{dm = \rho dV = 4\pi r^2 \rho dr}{\sqrt{g^2 + r^2}}.
$$

 \rightarrow relativistic

ସ

ଷ

 $5 \qquad \qquad \ldots \qquad \qquad 4$

 $\frac{3}{3}$ and $\frac{1}{3}$

Gravitational energy: $\qquad \Omega_g = - \int_0^M \frac{Gm}{r} \, dm$

also
$$
\Delta\Omega_g = \Omega_g(\infty) - \Omega_g(R) = -\Omega_g(R)
$$

Some consequence of the Virial Theorem

The star is bound if if the total energy W<0:
\n
$$
W = E_i + \Omega_g = -\frac{\Omega_g}{3(\gamma - 1)} + \Omega_g = \frac{(3\gamma - 4)}{(3\gamma - 3)}\Omega_g
$$

γ >4/3, W<0 \rightarrow bound,

γ <4/3, W>0 \rightarrow unbound

 γ >4/3, W<0 \rightarrow bound,
 γ <4/3, W>0 \rightarrow unbound

not a massive star ends, when a density above a few 10⁹ g/cm³ dev

density, the fermi energy of the electrons is $\epsilon_F \gg mc^2$, and $\gamma = \frac{4}{3}$.

dition. Then, elec the evolution of a massive star ends, when a density above a few 10º g/cm 3 develops in its Fe-core. At such a high density, the fermi energy of the electrons is $\epsilon_F \gg mc^2$, and $\gamma=\frac{4}{3}.$ This is a marginal $\frac{4}{3}$. This is a marginal stability condition. Then, electron captures start, causing the drop of the pressure and, in turn, the core collapse.

Note:
$$
\Omega_q < 0
$$
, hence W < 0 imp;ies:

$$
\frac{(3\gamma-4)}{(3\gamma-3)}>0
$$

A proto-star is too cool for nuclear reactions. As photons are emitted from the stellar surface, the star contracts extracting energy from its own gravitational potential pool: stellar surface, the star contracts extracting energy from its own gravitational potential pool:

$$
L = -\frac{dW}{dt} = -\frac{(3\gamma - 4)}{(3\gamma - 3)}\frac{d\Omega_g}{dt}
$$

Since
$$
\gamma = 5/3
$$

$$
L = -\frac{1}{2} \frac{d\Omega_g}{dt}
$$

In practice, only the 50% of the released gravitational energy is spent to replace the energy loss, while the rest goes into internal energy.

Kelvin-Helmholtz time-scale

$$
Q_g = G \int_0^M \frac{mdm}{r} = q \frac{GM^2}{R}
$$

\n
$$
q = \int_0^1 \frac{m}{r} \frac{R}{M} d \frac{m}{M} \approx 1
$$

\nWhat would be the lifetime of a star, If there are no other energy sources,
\nexcept for the gravitational potential pool?
\nThe Kelvin-Helmhotz time-scale for a star whose luminosity is L, is:
\n
$$
GM^2
$$
 For the Sun: $\tau_{\text{min}} \approx 10^8 \text{ yr}$

e-scale
q is a "form factor" order
of ~1 for a proto-star. of ~1 for a proto-star.

What wold be the lifetime of a star, If there are no other energy sources, except for the gravitational potential pool?

$$
\tau_{\rm KH} = \frac{G\mathcal{M}^2}{R\mathcal{L}}
$$

For the Sun: $\tau_{\rm\scriptstyle KH} {\sim} 10^8$ yr Since $L \propto M^{3.5} \rightarrow \tau_{KH} \propto M^{-1.5}$ -1.5

- Star formation begins with the collapse of a cold molecular cloud (Jeans
instability). instability).
- Star formation begins with the collapse of a cold molecular cloud (Jeans
instability).
When the density increases enough, the matter becomes optically thick, the
thermodynamic equilibrium is reached, the collapse ceases thermodynamic equilibrium is reached, the collapse ceases and gives way to hydrostatic equilibrium. • Star formation begins with the collapse of a cold molecular cloud (Jeans
instability).
• When the density increases enough, the matter becomes optically thick, the
thermodynamic equilibrium is reached, the collapse cease • Star formation begins with the collapse of a cold molecular cloud (Jean instability).

• When the density increases enough, the matter becomes optically thick

thermodynamic equilibrium is reached, the collapse ceases an • When the density increases enough, the matter becomes optically thick, the thermodynamic equilibrium is reached, the collapse ceases and gives way to hydrostatic equilibrium.
• The star continues to lose energy, but more
-
-
- starts:

Predeictions vs observation: an example

Predeictions vs observation: an example
Consider the energy balance:

$$
\frac{dL}{dr} = (\epsilon_N + \epsilon_g - \epsilon_\nu) 4\pi r^2 \rho \qquad L = \int_0^R \frac{dL}{dr} dr
$$

To be compared to:

The «epsilons» are the energy production rates (erg/gr/s): $\epsilon_N \rightarrow$ nuclear $\epsilon_g = -T \frac{dS}{dt} \rightarrow$ gravity All depend on T , ρ and composition ϵ_{ν} \rightarrow thermal neutrinos

Effective temperature, solar spectrum and HR diagram

T_e is the temperature of the «equivalent» blackbody: is the temperature, solar spectrum and HR diagram
is the temperature of the «equivalent» blackbody:
 $L = 4\pi R^2 \sigma T_e^4$ **ar spectrum and HR diagram

1e «equivalent» blackbody:
** $4\pi R^2 \sigma T_e^4$ **

• Below the photosphere, the Sun behave as an almost

perfect blackbody (T=5770 K).

• Then, the outcoming radiation is partially absorbed and ar spectrum and HR diagram**
 1e «equivalent» blackbody:
 $4\pi R^2 \sigma T_e^4$

• Below the photosphere, the Sun behave as an almost

perfect blackbody (T=5770 K).

• Then, the outcoming radiation is partially absorbed and

r • Absorption lines reveal the chemical composition of the chemical composition of the chemical composition of the photosphere.

• Below the photosphere, the Sun behave as an almost perfect blackbody (T=5770 K).

• Then, t

- perfect blackbody (T=5770 K).
- re-emitted when passing through the photosphere.
- photosphere.

Evolution of the Sun in the HR diagram **un in the HR diagram**
A. 10 Myr: onset of the deuterium burning
B. 28 Myr: ³He equilibrium **un in the HR diagram**
A. 10 Myr: onset of the deuterium burning
B. 28 Myr: ³He equilibrium
C. 42 Myr: onset of the H burning

-
-
-

Nuclear Reaction Rate

Nuclear Reaction Rate
Monocromatic rate (n. of reactions/time/volume):

$$
\int_{\sigma}^{\sqrt{2}} \text{reaction rate} = n_{jk}\sigma v = \frac{n_j n_k}{1 + \delta_{jk}} \sigma v
$$

Nuclear Reaction Rate

Monocromatic rate (n. of reactions/time/volume):
 $\int_{\sigma}^{\sqrt{2}}$ reaction rate = $n_{jk} \sigma v = \frac{n_j n_k}{1 + \delta_{jk}} \sigma v$

Wher n_{jk} is the jk pair density (δ_k =1 in case of identical

particles) and σv particles) and σv is the volume crossed during 1 s by a particle whose cross section and velocity are σ and v, respectively.

Total rate:
\n
$$
R_{jk} = \frac{1}{1 + \delta_{jk}} n_j n_k \int_0^{\infty} \sigma(E) \left(\frac{2E}{\mu}\right)^{\frac{1}{2}} f(E) dE
$$
\n
$$
< \sigma v >_{jk} = \left(\frac{8}{\pi \mu}\right)^{1/2} \left(\frac{1}{KT}\right)^{3/2} \int_0^{3/2} \sigma(E) E e^{-\frac{E}{KT}} dE
$$
\n
$$
n_j = \frac{\rho N_A X_j}{A_j} \qquad X_j, \text{ mass fraction; } \rho, \text{ mass density}
$$
\n
$$
R_{jk} = \frac{1}{1 + \delta_{jk}} \frac{X_j X_k}{A_j A_k} \rho^2 N_A^2 < \sigma v >_{jk}
$$

Reaction Rate = n. of reaction/time/volume

CROSS SECTION

The penetrability of the Coulomb barrier:

• The Coulomb barrier is too high, but quantum mechanics allows its penetrability.

The tunnel probability is (George Gamow 1928):

$$
P_{Coul} = \exp\left(-\frac{2\pi Z_j Z_k e^2}{\hbar v}\right) = \exp\left(-\frac{\sqrt{2}\pi Z_j Z_k e^2}{\hbar}\left(\frac{\mu}{E}\right)^{1/2}\right)
$$

$$
P_{Coul} = \exp\left(-\frac{b}{\sqrt{E}}\right)
$$

• For non-resonant reactions, $P_{nuc}(E)$ is a slowly decreasing function of E:

$$
P_{nuc}(E) \approx \pi \lambda^2 \propto \left(\frac{1}{p}\right)^2 \propto \frac{1}{E} \qquad \lambda = \frac{h}{p}
$$

• So, introducing the *astrophysical factor S(E)*

$$
P_{nuc}(E) = \frac{S(E)}{E}
$$

For non-resonant reactions, S(E) is a slowly varying function of E.

• The cross section is the product of the tunnel probability and a nuclear probability:

$$
\sigma(E) = \frac{1}{E} S(E) \exp\left(-\frac{b}{E^{1/2}}\right)
$$

$$
b = \frac{\sqrt{2}\pi Z_j Z_k e^2 \mu^{1/2}}{\hbar} = 0.99 Z_j Z_k \mu^{1/2} \text{ MeV}^{1/2}
$$

So providing X (E), whatever it may be, is not rapidly varying with energy $\sigma(E) \propto \frac{e^{-2\pi n}}{E}$ which motivates the definition of an 'S-factor"

> $S = \sigma(E) \in e^{2\pi \eta}$ $\eta = 0.1575$ $\frac{2}{3}$ $\frac{2}{3}$ $\sqrt{\frac{R}{E}}$ $\hat{A} = \frac{A_x A_y}{A_x + A_y}$

FIGURE 4.4. Energy dependence of the cross section $\sigma(E)$ and the factor $S(E)$ for the ³He(x, 7)⁷Be reaction (Krä82). The line through the data points represents a theoretical description of the cross section in terms of the direct-capture model. This theory is used to extrapolate the data to zero energy.

The Gamow's peak

• After substitutions:

The maximum probability occurs at:

3 2 2 3 1/ 2 1/ 2 2 0 2 1 exp exp * bKT ^E E b E KT b KT E E b KT E dE d ^o GAMOW's Peak

Gamow's peak energy in different nucleosynthesis environments:

Resonance contribution to σ (Breit-Wigner):

 $A + p1$

Breit-Wigner):
 $(E) = \pi \lambda^2 \quad \omega \quad \frac{\Gamma_1 \Gamma_2}{(E - E_r)^2 + (\frac{\Gamma}{2})^2}$

∴
 $(\overline{E}-E_r)^2 + (\frac{\Gamma}{2})^2$

∴ Partial width for decay of resonance $A+p1\rightarrow C^*$ $\Gamma_1\Gamma_2$ 2 ω 1^12 $\sigma(E) = \pi \lambda^2$ ω $=$ 2 $\left(\Gamma \right)$ \sum 2 $E - E_r$ $(E_r)^2 +$ \vert $\overline{}$ $B+p2$ 2 \setminus \int Usual geometric factor $=\frac{0.656}{\hat{\lambda}}\frac{1}{\hat{\lambda}}$ barn by emission of particle 1 = Rate for formation of Compund nucleus state $\propto \Gamma_2$ Partial width for decay of resonance Spin factor: by emission of particle 2 = Rate for decay of Compund nucleus $\omega = \frac{2J_r + 1}{(2J_1 + 1)(2J_2 + 1)}$ into the right exit channel Γ = Total width is in the denominator as Eugene Wigner a large total width reduces the maximum probabilities (on resonance) for $(1902 - 95)$ decay into specific channels. Nobel Prize 1963

An example of "resonce contribuition" to
the cross section:
 $\begin{array}{ccc} \Big(8\Big)^{1/2} \Big(1\Big)^{3/2} & \Big(1\Big)^{7/2} & \Big(1\Big)^{7/2$ the cross section:

$$
\langle \sigma v \rangle_{jk} = \left(\frac{8}{\pi\mu}\right)^{1/2} \left(\frac{1}{KT}\right)^{3/2} \int_{0}^{\infty} \sigma(E) E e^{-\frac{E}{KT}} dE
$$

+

• Low-energy tail of a higher-energy "broad resonance"

A couple of questions:

- How this scheme change in case of neutron captures?
- What about the plasma screening (not only electrons)?

Rate x unit mass
\n
$$
\Re_{jk} = \frac{R_{jk}}{\rho} = \frac{X_j X_k}{A_j A_k (1 + \delta_{jk})} N_a^2 \rho < \sigma v >_{jk}
$$

Energy transport by radiation and/or convective instabilities

$$
\frac{dP}{dm_r} = -\frac{Gm_r}{4\pi r^4}
$$
\n
$$
\frac{dr}{dm_r} = \frac{1}{4\pi r^2 \rho}
$$
\n
$$
\frac{dL_r}{dm_r} = \varepsilon_{nucl} - \varepsilon_{\nu} + \varepsilon_{grav}
$$
\n
$$
\frac{dT}{dm_r} = -\nabla \frac{Gm_r}{4\pi r^4} \frac{T}{P}
$$
\n
$$
\frac{dY_i}{dt} = \left(\frac{dX_i}{dt}\right)_{nucl} + \left(\frac{dX_i}{dt}\right)_{mix}, \quad i = 1, \dots, n
$$

Energy transport

$$
\nabla = \frac{d \ln T}{d \ln P}
$$

\n
$$
\nabla_{rad} = \frac{3\kappa r^2 P}{4ac G m_r T^4} F = \frac{3\kappa r^2 P}{4ac G m_r T^4} \frac{L_r}{4\pi r^2}
$$

\n
$$
\nabla_{ad} = \frac{\gamma - 1}{\gamma \chi_T} \qquad \gamma = \frac{C_P}{C_V} \qquad \chi_T = \left(\frac{d \ln P}{d \ln T}\right)_{\rho, Yi}
$$

Convective inStability

 $= 0$ for homogeneous layers ln ln $=$ 1 for a perfet gas ln $=$ 1 for a perfet gas ln : where , P,T $\nabla_{\mu} = \frac{a \ln \mu}{\mu} =$ $\vert \cdot \vert =$ \int \setminus \vert \setminus $\sqrt{2}$ ∂' ∂ $=$ $\Big\}$ = $\int_{\mathbb{I}}$ \setminus $\vert \hspace{0.5cm} \vert$ \setminus $\sqrt{2}$ \widehat{O}_{I} ∂ $=$ $\nabla_{rad} > \nabla_{ad} + \frac{\varphi}{\delta} \nabla_{\mu}$ $d \ln P$ $d \ln \mu$ $T\;\; \int_{P_{\beta}}$ ρ δ μ ρ ϕ ϕ μ μ μ **Convective inStability**
Schwarzschild/Ledoux
convection switch on convective instability

n Stability
Schwarzschild/Ledoux criteria for
convective instability convective instability

conv. dominated $\nabla_{ad} \leq \nabla \leq \nabla_{rad}$ rad. dominated

A standard solar model

How to built a SSM

- We start from a rather cool homogeneous stellar structure (1 Mo), in hydrostatic and thermal equilibrium. This is the first hydrostatic structure that forms after the collapse of the pre-solar nebula, when the matter becomes optically tick. b. in the same to the same the total metallicity:
 $\frac{d}{dt}$ a. is about the total metallicity of the total metallicity of the first hydrostatic and thermal equilibrium. This is the first hydrostatic

at forms after the c DW to built a SSM

Ve start from a rather cool homogeneor

ydrostatic and thermal equilibrium. This

iat forms after the collapse of the pre-s

ecomes optically tick.

Dombining spectroscopic and meteoritic

(cept H and He Ve start from a rather cool homogeneover

ydrostatic and thermal equilibrium. This

iat forms after the collapse of the pre-s

ecomes optically tick.

Dombining spectroscopic and meteoritic

(cept H and He, we have:

a. i Le start from a rather coor homogeneor

dependent of the presention of the pre-s

a. Its abundance relative to the total metallic

ccept H and He, we have:

a. Its abundance relative to the total metallic

b. the isotopi Frequence that thermal equilibrium. Thus is the mixing length parameter of the pre-solar nebula, when the matter
ecomes optically tick.
ombining spectroscopic and meteoritic abundances*, for each element,
ccept H and He,
- Combining spectroscopic and meteoritic abundances*, for each element, except H and He, we have:
	- $Z \sim 1$
	-
- Unknown inputs of the model are:
	-
	-
	- convective energy transport:

conv. dominated
$$
\nabla_{ad} \leq \nabla \leq \nabla_{rad}
$$
 rad. dominated
 $\alpha \uparrow$

How to built a SSM

-
- *How to built a SSM*
• The initial structure is evolved up to 4.5 Gyr since the start.
• The calculation is iterated by adjusting $Y_{\text{ini}}Z_{\text{ini}}\alpha$, until the present-day L, R and Z/X
are reproduced. • The calculation is iterated by adjusting $Y_{\text{ini}}Z_{\text{ini}}\alpha$, until the present-day L, R and Z/X are reproduced.

Solar abundances and helioseismology constraints

Changing the solar abundances and the nuclear reaction rates. Changing the solar abur

nuclear reaction rates.

• Higher C,N,O abundances from

Lodders 2009 to Magg+ 2022.

• It implies higher opacity and, in

• turn a deeper convective

• Also the final He abundance in the

- Higher C,N,O abundances from
- turn a deeper convective envelope.
- Also the final He abundance in the convective envelope higher.
- Both in good agreement, now,
- implication for galactic chemical evolution

Solar neutrinos

As a by-product of a SSM, we can get the neutrinos flux from the Sun

- As a by-product of a SSM, we can get the
neutrinos flux from the Sun
• The story starts with the Homestake mine experiments (by R. Davis).
It was a radiochemical detector: $v_e + {}^{37}Cl \rightarrow {}^{37}Ar + e^-$ (threshold@0.814
MeV). Onl It was a radiochemical detector: $v_e+{}^{37}$ Cl \rightarrow 37 Ar+e⁻ (threshold@0.814 MeV). Only neutrinos from ⁸B decay (PPIII). Results: 1/3 of the expected neutrinos
- Other radiochemical experiments, e.g. GALLEX and SAGE, based on v_e +⁷¹Ga \rightarrow ⁷¹Ge+e⁻ (threshold@0.251 MeV), and those based on the Cherenkov radiation emitted by the scattering of neutrinos with electrons v_x+ e⁻→ v_x+ e⁻ (e.g., SNO, Kamiokande, super-Kamiokande, Borexino) confirmed the neutrino deficit at earth. • Other radiochemical experiments, e.g. G,
 $v_e+^{71}Ga \rightarrow ^{71}Ge+e^-$ (threshold@0.251 Me

Cherenkov radiation emitted by the scatt

electrons $v_x + e \rightarrow v_x + e^-$ (e.g., SNO, Kami

Borexino) confirmed the neutrino deficit

Homestak

3 possible solutions:
• The neutrino experiments are wrong
• The SSM predictions are wrong

- The neutrino experiments are wrong
- The SSM predictions are wrong
- NEW PHYSICS.

Massive neutrinos change flavor. In practice,
electron neutrinos emitted in the solar interior
by nuclear reactions are in part converted into u by nuclear reactions are in part converted into μ and λ (τ) neutrinos, when crossing the solar radius. ino experiments are wrong

predictions are wrong

SICS.

utrinos change flavor. In practice,

utrinos emitted in the solar interior

eactions are in part converted into μ

s, when crossing the solar radius.

KamLAND me

produced by a reactor, independently confirming the solar neutrinos claim

A test of the SSM predictions (the first case of multi-messenger astronomy)

In principle, we may reverse the method, using neutrino fluxes to test the predictions of an SSM. Once the neutrinos parameters (Δm and θ) are known, the neutrino suppression probability can be computed. It depends on the density profile within the Sun, while the neutrino production rates depend on the core temperature. So, by comparing the expected and measured neutrino fluxes at earth we may check the accuracy of a SSM and test the adopted nuclear reaction rates. Composition and test the adopted nuclear reaction of the predictions of an Street the metrinos parameters $(\Delta m \text{ and } \theta)$ are known, the neutrino suppression probability
uted. It depends on the density profile within the Su CONTRESS TO THE SSUM DISTURIMENT (THE TITST

ulti-messenger astronomy)

netple, we may reverse the method, using neutrino fluxes to test the predictions of an SS

the neutrinos parameters (Δm and θ) are known, the n **SEXEMPLE SEXEMPLE SALEL SURFACE SALEL SALEL SURFA PEP 1.47E+08 1.42E+08 HEI-MESSENGEF ASTFONOMY)**

inciple, we may reverse the method, using neutrino fluxes to test the predictions of an SS

the neutrinos parameters (Δ*m* and θ) are known, the neutrino suppression probability to

outed. It **PERENT ACCORDING THE CONSULTS OF A CONSULTS AND THE PRESENT OF A CONSULTS ARE CONSULTS AND A CONSULTS ARE CONSULTS AND A CONSULTS ARE CONSULTS AND CONSULTS ARE CONSULTS AND RESENT A CONSULTS ARE CONSULTS AND A CONSULTS A** Represention and the state of the sta 13N 11816-08 2.15E+08 2 nciple, we may reverse the method, using neutrino fluxes to test the predictions of an SSI

the neutrinos parameters $(\Delta m \text{ and } \theta)$ are known, the neutrino suppression probability

oured. It depends on the density profile 17F

18F 3.24E+06 1.32E+06 4.08E+77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.07E-77 1

18F 3.24

18F 3.08 - 107F-10

18F 4.03E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 4.06E-77 $\frac{$

