
Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

The dark side of the Universe

Francesco Pace

Physics Department, Unito & INFN

11th November 2023, Theory Retreat



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation

The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant

Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity

Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations

EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations

Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Outline

1 Introduction and motivation
The cosmological constant
Why and how modify gravity

2 Modified gravity
Horndeski models

3 Linear perturbations
EFT

4 Nonlinear perturbations
Spherical collapse model

5 Conclusions



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

The three pillars of cosmology

Background: no perturbations, very simple

Linear perturbations: small amplitudes, important for large scales

Nonlinear perturbations: very difficult to treat analytically, mainly done with
approximate methods or N-body simulations. It’s the “holy grail” of
theoretical cosmology
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The cosmological constant

What do different probes tell us? ΛCDM
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The cosmological constant

What’s the Universe made of?
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Why and how modify gravity

But there are problems

Naturalness: why is the value
of Λ so small?

Coincidence: why is it
important now?

Tensions between low- and
high-z probes (H0, σ8, Alens)
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Why and how modify gravity

Solutions

1 It is the cosmological constant (anthropic principle, string landscape) - it
agrees with data, but unsatisfactory

2 Supernova data are wrong (distance-duality relation) - unlikely
3 Violation of the Copernican principle (LTB models) or problems with GR

(backreaction) - unlikely
4 Scalar field evolving (dark energy)
5 GR is wrong (modified gravity)
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Why and how modify gravity

What do dark energy and modified gravity do?

Determine structure formation and evolution

Change background evolution

Modify linear perturbations

Strongly affect nonlinear perturbations

May help to resolve cosmological anomalies?

Most importantly, they help us to better understand gravity
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Some examples of modified gravity

Modified Gravity

Add new field content
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Modified gravity in 2008 . . .

Courtesy of Claudia de Rham
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. . . and now

Courtesy of Claudia de Rham
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Horndeski models

Horndeski models

Most general theory with 2nd order e.o.m.

It encompasses many models studied in the literature

Perturbations described by H plus 4 free functions of time, αK, αB, αM, αT

Linear combinations of Gi and their derivatives

Physical meaning, possibility of constraining them with observations

GW constraint implies αT ≈ 0. This rules out a large number of Horndeski
models [G5 ≈ constant and G4 = G4(φ)]
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EFT
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EFT

Effective Field Theory (EFT) of dark energy (DE)

Similar approach to particle physics

Valid only on the scales of interest

Ignores degrees of freedom on smaller scales

It requires a separation of scales

There are different, but equivalent approaches

Use 3+1 split (uniform scalar field hypersurfaces)

Geometry described by 3Rµν, extrinsic curvature Kµν, g00 or lapse N
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EFT

EFT d.o.f.

H(t) [wds(t)]: background evolution

αK(t): “kineticity” - kinetic energy, large αK → small c2
s

αB(t): “braiding” - mixing of kinetic terms and metric, contributes to DE
clustering

αM(t): “running rate of the Planck mass” M2(t) - HαM = d ln M2/dt ,
contributes to anisotropic stress

αT(t): “tensor speed excess” - c2
gw/c

2 = 1 + αT, contributes to anisotropic
stress

αH(t): “beyond Horndeski” - higher order term that cancels in e.o.m.

Stability conditions: c2
s > 0, c2

T > 0, α = αK + 6α2
B > 0

Bellini & Sawicki, 2014; Gleyzes et al., 2014, 2015
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EFT

CMB spectra for αK and αM non zero

101 102 103

`

10−11

10−10

10−9

`(
`

+
1)
C

T
T

`
/2
π

Model 4

α
K,0

= 1, α
B,0

= 0, α
M,0

= 0, α
T

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 1, α
T

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 2, α
T

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 3, α
T

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 4, α
T

= 0

101 102 103

`

10−9

10−8

10−7

10−6

[`
(`

+
1)

]2
C

φ
φ

`
/2
π

Model 4

α
K,0

= 1, α
B,0

= 0, α
M,0

= 0, α
T,0

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 1, α
T,0

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 2, α
T,0

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 3, α
T,0

= 0

α
K,0

= 1, α
B,0

= 0, α
M,0

= 4, α
T,0

= 0

FP et al., 2019, with EoS_class



Introduction and motivation Modified gravity Linear perturbations Nonlinear perturbations Conclusions

Spherical collapse model
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Spherical collapse model

The Universe today
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Spherical collapse model

Spherical collapse model (SCM)

Describes the evolution of perturbations on non-linear scales

Based on the fluid approach
Main assumptions

1 Sphericity
2 Isolated perturbations
3 Top-hat density profile

Easy to use for DE, more complications for MG

Provides physical quantities related to the halo mass function
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Spherical collapse model
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Spherical collapse model
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Spherical collapse model
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Spherical collapse model

Physics of the SCM

1 Initial perturbation expands following the Hubble flow
2 Overdense regions slow down and reach a maximum size
3 Perturbation recollapses to a (mathematical) point
4 Virialization not native in the formalism
5 Physical quantities returned: zta, ζ = 1 + δNL(zta), zvir, Rvir/Rta, ∆V
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Spherical collapse model

Theoretical results and comparison with simulations
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Spherical collapse model

Theoretical results and comparison with simulations
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Conclusions and future directions

Current data compatible with ΛCDM, but future ones can constrain DE and
MG models

Discrepancies between early and late time (large and small scales)

SCM in good agreement with simulations

Long-term goal: Self-consistent numerical library to be used in cosmology
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