| Introduction and motivation | Modified gravity       | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------------|----------------------|-------------------------|------------------|
|                             |                        |                      |                         |                  |
| CARGO CONSTRUCTION OF       | ALCON AND A STATISTICS | Martin Martin School | A STATISTICS STATISTICS |                  |

# The dark side of the Universe

#### Francesco Pace

Physics Department, Unito & INFN

11th November 2023, Theory Retreat



| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |







| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |



• The cosmological constant





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |



- The cosmological constant
- Why and how modify gravity





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

# 2 Modified gravity





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| 0                           |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

## 2 Modified gravity





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| 0                           |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

## 2 Modified gravity

- Horndeski models
- 3 Linear perturbations





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| 0                           |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

## 2 Modified gravity







| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

## 2 Modified gravity









| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

## 2 Modified gravity









| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Outline                     |                  |                      |                         |                  |

- The cosmological constant
- Why and how modify gravity

## 2 Modified gravity









| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| The three pillars of        | cosmology        |                      |                         |                  |

• Background: no perturbations, very simple

'yy

- Linear perturbations: small amplitudes, important for large scales
- Nonlinear perturbations: very difficult to treat analytically, mainly done with approximate methods or *N*-body simulations. It's the "holy grail" of theoretical cosmology





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| The cosmological constant   |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |



• Why and how modify gravity

Modified gravity

 Horndeski models









| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| The cosmological constant   |                  |                      |                         |                  |
| 3.8.00                      |                  | 0.10011              |                         |                  |

#### What do different probes tell us? ACDM



Courtesy of https://www.cosmos.esa.int, Planck2018 results





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |  |
|-----------------------------|------------------|----------------------|-------------------------|------------------|--|
| The cosmological constant   |                  |                      |                         |                  |  |
|                             |                  |                      |                         |                  |  |

#### What's the Universe made of?





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Why and how modify gravity  |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |



Why and how modify gravity

Modified gravity
 Horndeski models









| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions |
|-----------------------------|------------------|----------------------|-------------------------|-------------|
| 00000000                    | 00000            | 0000                 | 0000000                 |             |
| Why and how modify gravity  |                  |                      |                         |             |
| But there are pro           | oblems           |                      |                         |             |
|                             |                  |                      |                         |             |

- Naturalness: why is the value of Λ so small?
- Coincidence: why is it important now?
- Tensions between low- and high-z probes (H<sub>0</sub>, σ<sub>8</sub>, A<sub>lens</sub>)





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Why and how modify gravity  |                  |                      |                         |                  |
| Solutions                   |                  |                      |                         |                  |

- It is the cosmological constant (anthropic principle, string landscape) it agrees with data, but unsatisfactory
- Supernova data are wrong (distance-duality relation) unlikely
- Violation of the Copernican principle (LTB models) or problems with GR (backreaction) - unlikely
- Scalar field evolving (dark energy)
- GR is wrong (modified gravity)





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Why and how modify gravity  |                  |                      |                         |                  |
| What do dark en             | ergy and modi    | fied gravity do?     |                         |                  |

- Determine structure formation and evolution
- Change background evolution
- Modify linear perturbations
- Strongly affect nonlinear perturbations
- May help to resolve cosmological anomalies?
- Most importantly, they help us to better understand gravity





| Modified gravity | Linear perturbations | Nonlinear perturbations |  |
|------------------|----------------------|-------------------------|--|
| ••••             |                      |                         |  |
|                  |                      |                         |  |

## Some examples of modified gravity







| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
|                             |                  |                      |                         |                  |

## Modified gravity in 2008 ....





Courtesy of Claudia de Rham



| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| and now                     |                  |                      |                         |                  |





Courtesy of Claudia de Rham



| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Horndeski models            |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |



- The cosmological constant
- Why and how modify gravity

Modified gravity
 Horndeski models









| Introduction and motivation | Modified gravity<br>○○○○● | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|---------------------------|----------------------|-------------------------|------------------|
| Horndeski models            |                           |                      |                         |                  |
| Horndeski mode              | ls                        |                      |                         |                  |

$$\begin{split} \mathcal{L}_2 &= G_2(\phi, X) \\ \mathcal{L}_3 &= G_3(\phi, X) \Box \phi \\ \mathcal{L}_4 &= G_4(\phi, X) R + G_{4,X} \left[ (\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right] \\ \mathcal{L}_5 &= G_5(\phi, X) R (\nabla^\mu \nabla^\nu \phi) - \frac{1}{6} G_{5,X} \left[ (\Box \phi)^3 - 3 \Box \phi (\nabla_\mu \nabla_\nu \phi) (\nabla^\mu \nabla^\nu \phi) \right. \\ &\left. + 2 (\nabla^\mu \nabla_\alpha \phi) (\nabla^\alpha \nabla_\beta \phi) (\nabla^\beta \nabla_\mu \phi) \right] \end{split}$$

- Most general theory with 2<sup>nd</sup> order e.o.m.
- It encompasses many models studied in the literature
- Perturbations described by H plus 4 free functions of time,  $\alpha_{\rm K}$ ,  $\alpha_{\rm B}$ ,  $\alpha_{\rm M}$ ,  $\alpha_{\rm T}$
- Linear combinations of G<sub>i</sub> and their derivatives
- Physical meaning, possibility of constraining them with observations
- GW constraint implies α<sub>T</sub> ≈ 0. This rules out a large number of Horndeski models [G<sub>5</sub> ≈ constant and G<sub>4</sub> = G<sub>4</sub>(φ)]





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| EFT                         |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |



- The cosmological constant
- Why and how modify gravity

# Modified gravity Horndeski models









| Introduction and motivation | Modified gravity | Linear perturbations<br>0000 | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|------------------------------|-------------------------|------------------|
| EFT                         |                  |                              |                         |                  |
| Effective Field The         | ory (EFT) of da  | rk energy (DE)               |                         |                  |

- Similar approach to particle physics
- Valid only on the scales of interest
- Ignores degrees of freedom on smaller scales
- It requires a separation of scales
- There are different, but equivalent approaches
- Use 3+1 split (uniform scalar field hypersurfaces)
- Geometry described by  ${}^{3}R_{\mu\nu}$ , extrinsic curvature  $K_{\mu\nu}$ ,  $g^{00}$  or lapse N





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| EFT                         |                  |                      |                         |                  |
| EFT d.o.f.                  |                  |                      |                         |                  |

- $H(t) [w_{ds}(t)]$ : background evolution
- $\alpha_{\rm K}(t)$ : "kineticity" kinetic energy, large  $\alpha_{\rm K} \rightarrow$  small  $c_{\rm s}^2$
- *α*<sub>B</sub>(*t*): "braiding" mixing of kinetic terms and metric, contributes to DE clustering
- α<sub>M</sub>(t): "running rate of the Planck mass" M<sup>2</sup>(t) Hα<sub>M</sub> = d ln M<sup>2</sup>/dt, contributes to anisotropic stress
- $\alpha_{\rm T}(t)$ : "tensor speed excess"  $c_{\rm gw}^2/c^2 = 1 + \alpha_{\rm T}$ , contributes to anisotropic stress
- $\alpha_{\rm H}(t)$ : "beyond Horndeski" higher order term that cancels in e.o.m.
- Stability conditions:  $c_s^2 > 0$ ,  $c_T^2 > 0$ ,  $\alpha = \alpha_K + 6\alpha_B^2 > 0$

Bellini & Sawicki, 2014; Gleyzes et al., 2014, 2015





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| EFT                         |                  |                      |                         |                  |

## CMB spectra for $\alpha_{\rm K}$ and $\alpha_{\rm M}$ non zero







| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Spherical collapse model    |                  |                      |                         |                  |
| Outline                     |                  |                      |                         |                  |



- The cosmological constant
- Why and how modify gravity











| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Spherical collapse model    |                  |                      |                         |                  |
| The Universe tod            | ay               |                      |                         |                  |







| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Spherical collapse model    |                  |                      |                         |                  |
| Spherical collap            | se model (SCN    | ()                   |                         |                  |

- Describes the evolution of perturbations on non-linear scales
- Based on the fluid approach
- Main assumptions
  - Sphericity
  - Isolated perturbations
  - Top-hat density profile
- Easy to use for DE, more complications for MG
- Provides physical quantities related to the halo mass function











| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Spherical collapse model    |                  |                      |                         |                  |
| Physics of the S            | СМ               |                      |                         |                  |

- Initial perturbation expands following the Hubble flow
- Overdense regions slow down and reach a maximum size
- Perturbation recollapses to a (mathematical) point
- Virialization not native in the formalism
- Solution Physical quantities returned:  $z_{ta}$ ,  $\zeta = 1 + \delta^{NL}(z_{ta})$ ,  $z_{vir}$ ,  $R_{vir}/R_{ta}$ ,  $\Delta_V$





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations<br>0000000● | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------------------|------------------|
| Spherical collapse model    |                  |                      |                                     |                  |

## Theoretical results and comparison with simulations







| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions<br>O |
|-----------------------------|------------------|----------------------|-------------------------|------------------|
| Spherical collapse model    |                  |                      |                         |                  |

# Theoretical results and comparison with simulations



FP et al., 2014





| Introduction and motivation | Modified gravity | Linear perturbations | Nonlinear perturbations | Conclusions |
|-----------------------------|------------------|----------------------|-------------------------|-------------|
| 0                           |                  |                      |                         |             |

#### Conclusions and future directions

- Current data compatible with ACDM, but future ones can constrain DE and MG models
- Discrepancies between early and late time (large and small scales)
- SCM in good agreement with simulations
- Long-term goal: Self-consistent numerical library to be used in cosmology



