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Past and present

PhD student in Torino (with M. Caselle and M. Panero)

▶ lattice gauge theory at non-zero temperature: SU(2) and SU(3) YM equation of state

▶ effective string theory: testing Nambu-Goto predictions

▶ algorithms: Jarzynski’s equality

Post-doc in DESY Zeuthen (with S. Schaefer and R. Sommer)

▶ algorithms: multilevel for quark correlators

▶ phenomenology: QCD running coupling

▶ algorithms: finite-size scaling of gradient flow

Now: post-doc of the Simons Collaboration on Confinement and QCD Strings (local PI M.
Caselle)

▶ effective string theory: beyond Nambu-Goto picture

▶ algorithms: Stochastic Normalizing Flows for gauge theories (with M. Caselle, M. Panero, A.
Bulgarelli and E. Cellini)
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How to compute the path integral in a lattice simulation?



Computing v.e.v. on the lattice

How do we compute expectation values in a lattice simulation?

After discretizing the theory of interest (in Euclidean spacetime), the path integral becomes

⟨O⟩ =
1

Z

∫ ∏
i

dϕi O(ϕ) exp(−S(ϕ))

⟨O⟩ =
1

Z

∫ ∏
i

dϕi O(ϕ)︸ ︷︷ ︸
compute

exp(−S(ϕ))︸ ︷︷ ︸
sample

▶ use the Boltzmann distribution as a weight to sample numerically configurations of fields ϕ

▶ simply ”measure” the observable by computing it on the configurations

⟨O⟩ =
1

Nconf

Nconf∑
n=1

O(ϕ(n)), ϕ(n) ∼ exp(−S(ϕ(n)))

provided that the ϕ(n) are effectively sampled according to Boltzmann distribution!

How do we sample from exp(−S)/Z?
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Markov Chain Monte Carlo

An elegant and reliable numerical recipe is provided by Markov Chain Monte Carlo [Creutz; 1979]

▶ Generate a (thermalized) Markov chain

ϕ(0) Pp→ ϕ(1) Pp→ . . .
Pp→︸ ︷︷ ︸

thermalization

ϕ(t) Pp→ ϕ(t+1) Pp→ · · · → ϕ(t+Nconf)︸ ︷︷ ︸
equilibrium

(setting exp(−S) as the equilibrium distribution)

▶ Measure O on sampled equilibrium configurations

MCMC algorithm of choice (Metropolis, heatbath, HMC) defined by the transition probability Pp

(details are unimportant for the sake of this presentation)
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Critical slowing down

The configurations sampled sequentially in a Markov Chain are autocorrelated

· · · → ϕ(t) → ϕ(t+1) → . . .︸ ︷︷ ︸
2τint

→ ϕ(t+n)

Number of effectively independent configurations = n/2τint

Critical slowing down: when a critical point is approached τint diverges

E.g. in the continuum limit a → 0
τint ≃ a−z

where z depends on the algorithm and on the observable under study

Topological freezing: topological charge in YM has z ≃ 5 [Schaefer, Sommer, Virotta; 2011]
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Trivializing and Normalizing flows



A different kind of sampling

Idea

Sample each new configuration (almost) independently from the previous one by construction

Trivializing map gθ between a trivial base distribution and the ”difficult” target

g g g g g g

Wilson flow [Lüscher; 2009]: approximate trivializing map in Yang-Mills
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Normalizing flows for lattice field theory

Normalizing Flows are a promising deep generative architecture that can provide a mapping
between the target p(ϕ) with some tractable distribution q0(z)

NFs are a diffeomorphism gθ

gθ(ϕ0) = (gNcl
◦ · · · ◦ g1)(ϕ0) ϕ0 ∼ q0

composed of Ncl transformations → the coupling layers gn

The generated distribution is

qθ(ϕ) = q0(g
−1
θ (ϕ))

∏
n

|det Jn(ϕn)|−1

Training: minimize the Kullback-Leibler divergence, a measure of the “similarity” between two
distributions

D̃KL(qθ∥p) =
∫

dϕ qθ(ϕ) log
qθ(ϕ)

p(ϕ)
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Sampling with Normalizing flows

Sampling

⟨O⟩ =
1

Z

∫
dϕO(ϕ)qθ(ϕ)

p(ϕ)

qθ(ϕ)
=

1

Z

∫
dϕ qθ(ϕ)︸ ︷︷ ︸

sample

O(ϕ)w̃(ϕ)︸ ︷︷ ︸
measure

=
⟨O(ϕ)w̃(ϕ)⟩ϕ∼qθ

⟨w̃(ϕ)⟩ϕ∼qθ

with a weight

w̃(ϕ) =
p

qθ

Get Z directly by sampling from qθ [Nicoli et al.; 2020]

Z =

∫
dϕ p(ϕ) =

∫
dϕ qθ(ϕ)w̃(ϕ) = ⟨w̃(ϕ)⟩ϕ∼qθ
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Issues with NFs

Incomplete list of recent works:

→ successfully applied in LFTs in 2d: ϕ4 scalar field theory [Albergo et al.; 2019], [Kanwar et al.;

2020], [Nicoli et al.; 2020], [Del Debbio et al.; 2021], SU(N) [Boyda et al.; 2020], fermionic theories
[Albergo et al.; 2021], U(1) and SU(N) with fermions [Abbott et al.; 2022], Schwinger model
[Finkenrath et al.; 2022], [Albergo et al.; 2022], first attempts in 4d [Abbott et al.; 2023]

→ strongly related to the idea of trivializing maps [Lüscher; 2009], [Bacchio et al.; 2022], [Albandea
et al.; 2023]

▶ NFs effectively remove critical slowing in low dimensional theories

▶ training generally scales badly with volume and in the continuum limit

▶ quite complicated architectures for gauge theories
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Non-equilibrium stochastic evolutions



The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E −W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F = FB − FA

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually

⟨W ⟩f ≥ ∆F = FB − FA
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Jarzynski’s equality and the Second Law

Jarzynski’s equality [Jarzynski; 1997] is a beautiful result from non-equilibrium statistical mechanics

〈
exp

(
−
W

T

)〉
f

= exp

(
−
∆F

T

)
valid for a given process f

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩ we get

⟨W ⟩f ≥ ∆F

Apart from the real world, it can be proved for several processes

→ most relevantly for us: Markov Chain Monte Carlo for lattice field theory
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Jarzynski’s equality in MCMC

Consider two distributions q0 and p

q0 = exp(−S0)/Z0 → · · · → p = exp(−S)/Z

The ratio of partition functions is computed directly with an average over non-equilibrium
evolutions

Z

Z0
= ⟨exp (−W )⟩f

Over a single evolution:

▶ update the system using regular MC updates over nstep

▶ but the transition probability changes along the evolution according to a protocol ηn that
interpolates q0 and p

q0 ≃ e−Sη0 → e−Sη1 → · · · → p ≃ e−S

▶ along the process we compute the work

W =

nstep−1∑
n=0

{
Sηn+1 [ϕn]− Sηn [ϕn]

}
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A new paradigm: out-of-equilibrium stochastic evolutions

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

nrelax

nstep

compute v.e.v. with

⟨O⟩ =
⟨O(ϕ) exp(−W (ϕ0 → ϕ))⟩f

⟨exp(−W (ϕ0 → ϕ))⟩f
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Jarzynski’s equality for lattice field theory

Several applications, spearheaded by the Torino group over the last few years

Compute ratios of partition functions:

▶ interface free-energy in the Z2 gauge theory [Caselle et al.; 2016]

▶ SU(3) equation of state [Caselle, Nada and Panero; 2018]

▶ running coupling for SU(N) [Francesconi, Panero and Preti; 2020]

▶ entanglement entropy for Ising model in 2d and 3d [Bulgarelli and Panero; 2023]

But also just to sample difficult distributions:

▶ sampling topological observables on periodic boundary conditions [Bonanno, Nada and

Vadacchino; 2023]
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SU(3) e.o.s. with Jarzynski’s equality

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log⟨e−WSU(Nc ) ⟩f
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Large volumes (up to 1603 × 10) and very fine lattice spacings β ≃ 7
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A common framework: Stochastic Normalizing Flows

Jarzynski’s equality is the same formula used to extract Z in NFs

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼q = ⟨exp(−W )⟩f

Normalizing Flows

ϕ0 → ϕ1 = g1(ϕ0) → · · · → ϕ

− log w̃ = S(ϕ)− S0(ϕ0)− log |det J|

stochastic non-equilibrium evolutions

ϕ0

Pη1→ ϕ1

Pη2→ . . .
Pηnstep→ ϕ

W = S(ϕ)− S0(ϕ0)− Q

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

ϕ0 → g1(ϕ0)
Pη1→ ϕ1 → g2(ϕ1)

Pη2→ . . .
Pηnstep→ ϕ

W = S(ϕ)− S0(ϕ0)− Q − log |det J|
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A common framework: Stochastic Normalizing Flows

The proper loss we use for training is

D̃KL(q0Pf∥pPr) =

∫ nstep∏
i=0

dϕi q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕ] log
q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕ]

p(ϕ)Pr[ϕ, ϕN−1, . . . , ϕ0]

→ measure of how reversible the process is!

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
≥ 0︸ ︷︷ ︸

Second Law
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Efficiency test on the 2d ϕ4 scalar field theory
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stochastic evolutions vs SNFs on a Ns × Nt = 16× 8 lattice
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SNFs for lattice field theory

▶ Theoretical common framework between Jarzynski’s equality and NFs is now explicit

▶ SNFs can be trained!

▶ improvement over non-equilibrium evolutions: less MCMC updates used

▶ improvement over normalizing flows: limited training times, good scaling with volume

▶ perhaps non-equilibrium statistical mechanics can give us even more insights
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What next?

SNFs already applied to sample directly the Nambu-Goto string on a lattice [Caselle, Cellini and

Nada; 2023]

▶ main project of E. Cellini

▶ unfeasible to do numerically with a MCMC, SNFs best approach (and still challenging)

▶ allows to test NG and Effective String Theories directly, when analytic results are not
available (string width)

New approach to sample lattice gauge theories

▶ SNFs for SU(3) gauge theory under development (with A. Bulgarelli and E. Cellini)

▶ final aim: mitigating (if not removing) topological freezing from lattice gauge theory
simulations

▶ proof of concept in the CPN−1 model [Bonanno, Nada and Vadacchino; 2023]

▶ much less risky program! instead of building a trivializing map from the ground up, we
systematically improve something that already works (non-equilibrium MC)
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Thank you for your attention!
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Out-of-equilibrium stochastic evolutions

Closer look at the average on the processes in the equality:

Z

Z0
= ⟨exp (−W )⟩f =

∫
dϕ0 dϕ1 . . . dϕN q0(ϕ0)Pf[ϕ0, ϕ1, . . . , ϕN ] exp(−W )

with

Pf[ϕ0, ϕ1, . . . , ϕN ] =

N−1∏
n=0

Pηn (ϕn → ϕn+1)

▶ the actual probability distribution at each step is NOT the equilibrium distribution
∼ exp(−Sηn ): it’s a non-equilibrium process!

▶ the ⟨. . . ⟩f average is taken over as many evolutions as possible (all independent from each
other!)
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SNFs for the ϕ4 2d model

Typical toy model for tests: ϕ4 field theory in 2 dimensions in the unbroken symmetry phase

S(ϕ) =
∑
x∈Λ

−2κ
∑
µ=0,1

ϕ(x)ϕ(x + µ̂) + (1− 2λ)ϕ(x)2 + λϕ(x)4

Protocol

ηn interpolates between the prior (normal distribution is recovered with κ = λ = 0) and target
parameters κ = 0.2 and λ = 0.022

▶ linear protocol ηn
▶ heatbath algorithm for the stochastic updates
▶ nsb = # of stochastic updates

Coupling layer

▶ using affine layers with CNNs
▶ nab = # of affine blocks

Metric

Effective Sample Size as metric to evaluate architectures

ESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f
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Training length: 104 epochs for all volumes. Slowly-improving regime reached fast

0 100 200 300 400 500
nsb

0.0

0.2

0.4

0.6

0.8

1.0
E

S
S

Ns = 16, nab = 0

Ns = 32, nab = 0

Ns = 48, nab = 0

Ns = 64, nab = 0

Ns = 16, nab = 24, CNN

Ns = 32, nab = 24, CNN

Ns = 48, nab = 24, CNN

Ns = 64, nab = 24, CNN
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SNFs with nsb = nab as a possible recipe for efficient scaling
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More results in the unbroken phase
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Stochastic evolutions/SNF/NF wrap-up

normalizing flows stochastic evolutions SNFs

preparation training setting the protocol ηn both

forward prob. Pf Pf =
∏

n Pn(ϕn → ϕn+1)

transition prob. Pn δ(ϕn+1 − gn(ϕn)) Pηn (ϕn → ϕn+1) uses both

KL divergence D̃KL(qθ∥p) D̃KL(q0Pf∥pPr)

“work” W = S − S0 − Q = − log w̃

“heat” Q
N−1∑
n=0

log |det Jn(ϕn)|
N−1∑
n=0

Sηn+1 (ϕn+1)− Sηn+1 (ϕn) both

e.v. ⟨O⟩
⟨O(ϕN )w̃(ϕN )⟩ϕN∼qθ

⟨w̃(ϕN )⟩ϕN∼qθ

⟨O(ϕN ) exp(−W (ϕ0→ϕN ))⟩f
⟨exp(−W (ϕ0→ϕN ))⟩f
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Crooks fluctuation theorem

Crooks theorem [Crooks; 1998]: another relation deeply connected with Jarzynski’s equality

PF (W )

PR(−W )
= eW−∆F

The PF ,R indicate the probability distribution of the work performed in the forward and reverse
realizations of the transformation.

JE is easily recovered by moving the exp(−W ) and PR factors and integrating in W on both
sides.

Wd = W −∆F is the dissipated work.
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Normalizing flows: affine layers

Transformations gn must be invertible + the Jacobian has to be efficiently computable

A class of coupling layers called affine layers meets this criteria

▶ The variables ϕ are divided into two partitions A and B

▶ For each layer, one is kept “frozen” while the other is transformed following

gn :

{
ϕn+1

A = ϕn
A

ϕn+1
B = e−s(ϕn

A)ϕn
B + t(ϕn

A)

▶ s and t are the neural networks where the trainable parameters θ are

▶ RealNVP architecture [Dinh et al.; 2016]

Natural choice for lattice variables: checkerboard (i.e. even-odd) partitioning

Affine block = even c. layer + odd c. layer
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Some possible issues with NFs

▶ multi-modal distributions
in the presence of multiple vacua the training procedure “picks” only one

“mode-collapse”: only one mode of the distribution is sampled by the flow

see [Hackett et al.; 2021]

▶ scalability
measurements of v.e.v. are statistically independent (no autocorrelation)

not clear however how the training times scale when approaching the continuum limit

comprehensive discussion in [Del Debbio et al.; 2021] and [Abbott et al.; 2022]
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