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Physics

  Calculation of multi-loop virtual amplitudes 

  Factorisation of QCD amplitudes and cross sections in the infrared, structure of infrared 
anomalous dimensions at high orders, resummation of large logarithms (threshold, pT, …) 
for LHC observables

  Subtraction of infrared divergences for general collider observables at NNLO

  Production and decay of vector bosons at LHC

  Codes for phenomenology:   Phantom   -   Recola  -  MadGraph5_aMC@NLO

  Precision determination of the CKM elements, the Vcb puzzle

   Studies of the flavour anomalies (  and ) and EDMs

  Inclusive semileptonic decays on the lattice

b → cτν b → sℓ+ℓ−
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Figure 2: NN/NJet errors for the 2 ! 3 scattering process using a unit integration grid.

Cuts NJet [pb] NN ensemble [pb]
Baseline 4.149 ⇥ 10�6

± 6 ⇥ 10�9 4.19 ⇥ 10�6
± 7 ⇥ 10�8

Baseline + pT,� > 50 GeV 5.283 ⇥ 10�7
± 8 ⇥ 10�10 5.4 ⇥ 10�7

± 2 ⇥ 10�8

Baseline + m�,� > 50 GeV 3.300 ⇥ 10�6
± 5 ⇥ 10�9 3.34 ⇥ 10�6

± 5 ⇥ 10�8

Table 1: Cross-sectional comparison between NJet and the NN ensemble approach using
different cuts. Baseline cuts are those specified at the beginning of Section 4. The NJet re-
sults are quoted with MC errors and the NN ensemble results with precision/optimality
uncertainties calculated as described in Ref. [60].

shows the results of the cross section derived using NJet and the NN ensemble. We see
that these two approaches are in excellent agreement, with the ensemble result overlapping
within one standard deviation of that calculated by NJet. The errors on the NJet values
are the MC errors, and the errors on the ensemble are precision/optimality uncertainties.
The latter are calculated by training multiple ensembles with different random seeds in
the weight initialisation, and in the shuffling of the training and validation datasets. MC
errors are quoted to one standard deviation and the precision/optimality uncertainties to
one standard error on the mean. A more in depth description of this uncertainty analysis
can be found in Section 2.3 of Ref. [60].

The error plot and cross-section calculation provide good evidence for the performance
of the NN ensemble method both in its ability to learn the distribution of phase-space
points on average, as well as its robustness to being integrated into a wider event generation
framework with additional phase-space and PDF weights. To further test the methodology
in a more relevant way to how it would be used in practice, differential distributions can
be used to assess robustness as they more explicitly expose performance on the divergent
and tail events.
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Figure 6. The same as Fig. 4 but for the m(j1j2) observable.
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Figure 7. The same as Fig. 4 but for the |��
��jet

| and |��
j1�j2 | observables in the inclusive phase space

only.

direct-enriched phase space suffer further from reduced statistics due to the additional cuts.

Azimuthal separation between the jets and photon |��
��jet| and |��

j1�j2 |. These are
the last two observables that we discuss in detail. We first focus on the inclusive phase space,
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Abstract: We use the Local Analytic Sector Subtraction scheme to construct a com-
pletely analytic set of expressions implementing a fully local infrared subtraction at NNLO
for generic coloured massless final states. The cancellation of all explicit infrared poles
appearing in the double-virtual contribution, in the real-virtual correction and in the inte-
grated local infrared counterterms is explicitly verified, and all finite contributions arising
from integrated local counterterms are analytically evaluated in terms of ordinary polylog-
arithms up to weight three. The resulting subtraction formula can readily be implemented
in any numerical framework containing the relevant matrix elements up to NNLO.
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Pictorial infrared

A diagram contributing a double-virtual NNLO correction to t-tbar-jet production



Pictorial infrared

A diagram contributing a double-virtual NNLO correction to t-tbar-jet production
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Pictorial infrared

A diagram contributing a real-virtual NNLO correction to t-tbar-jet production



Pictorial infrared

A diagram contributing a real-virtual NNLO correction to t-tbar-jet production
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Pictorial infrared

A diagram contributing a real-virtual NNLO correction to t-tbar-jet production
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Pictorial infrared

A diagram contributing a double-real NNLO correction to t-tbar-jet production



Pictorial infrared

A diagram contributing a double-real NNLO correction to t-tbar-jet production
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The subtraction problem

  Infrared divergences (soft and collinear) cancel between 
     configurations with different numbers of particles

  Collider observables are algorithmically complex and 
     need elaborate phase-space constraints.

  Divergences must be canceled analytically before 
     performing numerical integrations.

  Existing subtraction algorithms beyond NLO are 
     computationally very intensive.

  LHC is now a precision machine: we are interested in 
     subtraction for complicated process at very high orders.

  The factorisation of virtual corrections contains all-order 
     information, not fully exploited.

  The structure of virtual singularities can be used as an
     organising principle for subtraction.



A complex final state at NLO

A. Denner, J.-N. Lang, M. Pellen, S. Uccirati  -  arXiv 1912.08493



HIGH-ACCURACY RESUMMATIONS AT LHC

Fiducial DY cross section at N3LO [NNLOJet+RadISH: Chen, et al., 2203.01565]

for the moderate difference between the fixed-order and the
resummed prediction for the symmetric cuts, which as
previously discussed indicates a sensitivity of the cross
section to the infrared region of small pll

T . This ultimately
worsens further the perturbative convergence of the fixed-
order series thereby challenging the perspectives to reach
percent-accurate theoretical predictions within symmetric
cuts.
A possible solution to this problem [100] is to slightly

modify the definition of the fiducial cuts as in Eq. (2b) in
order to reduce such a sensitivity to infrared physics. We
present for the first time theoretical predictions up to N3LO
and N3LOþ N3LL for this set of cuts, reported in the third
and fourth column of Table I. The relative difference
between the fixed-order and resummed calculations for
the fiducial cross section never exceeds 0.04%, which
indicates that the predictions with product cuts can be
computed accurately with fixed-order perturbation theory.
Nevertheless, we still observe a more reliable estimate of
the theoretical uncertainties when resummation is included.
In order to study the stability of our predictions against

variations of the infrared parameter pcut
T , in Fig. 2 we show

the dependence of the NkLO correction [i.e., theOðαksÞ term
in the expansion of the fiducial cross section] on pcut

T down
to pcut

T ≃ 0.4 GeV. In the case of symmetric cuts Eq. (2a),
we observe that the inclusion of the linear power correc-
tions is essential to reach a plateau at small pcut

T , achieving
the necessary independence of the result on the slicing
parameter. We thus obtain an excellent control over the
estimate of the slicing error quoted in Table I. Furthermore,
Fig. 2 clearly shows that the omission of such linear
corrections leads to an incorrect result for the fiducial
cross section computed with the qT-subtraction method,
unless dσNNLODYþjet can be computed precisely down to
pcut
T ≪ 1 GeV. Conversely, in the case of the product cuts,

we observe a much milder dependence of the NkLO
correction on pcut

T , and the further inclusion of power
corrections does not lead to any visible difference, con-
sistent with the fact that such corrections are quadratic in
most of the phase space [100]. As an additional sanity
check, we have repeated the test of Fig. 2 for each

individual flavour channel contributing to the N3LO
Drell-Yan cross section. The results are collected in
Supplemental Material [103], together with a discussion
on alternative approaches to qT subtraction employing a
fitting procedure [119], and a comparison to the litera-
ture [58,101].
Finally, the computation presented in this Letter allows

us to obtain, for the first time, N3LOþ N3LL predictions

TABLE I. Fiducial cross sections for the symmetric Eq. (2a) and product Eq. (2b) cuts both at fixed perturbative
order and including all-order resummation. We report the theoretical uncertainty in percent and, in parentheses, the
absolute value of the statistical uncertainty. The latter applies to the last significant figures displayed. At N3LO we
also separately indicate the slicing error, in absolute value. See the main text for details.

Order σ (pb) Symmetric cuts σ (pb) Product cuts

k NkLO NkLOþ NkLL NkLO NkLOþ NkLL

0 721.16þ12.2%
−13.2% $ $ $ 721.16þ12.2%

−13.2% $ $ $
1 742.80ð1Þþ2.7%

−3.9% 748.58ð3Þþ3.1%
−10.2% 832.22ð1Þþ2.7%

−4.5% 831.91ð2Þþ2.7%
−10.4%

2 741.59ð8Þþ0.42%
−0.71% 740.75ð5Þþ1.15%

−2.66% 831.32ð3Þþ0.59%
−0.96% 830.98ð4Þþ0.74%

−2.73%
3 722.9ð1.1Þþ0.68%

−1.09% % 0.9 726.2ð1.1Þþ1.07%
−0.77% 816.8ð1.1Þþ0.45%

−0.73% % 0.8 816.6ð1.1Þþ0.87%
−0.69%

FIG. 2. Dependence of the extracted NkLO corrections to the
fiducial cross sections shown in Table I on the pcut

T infrared
parameter, both for the symmetric and product cuts. In the latter
case, the NLO correction has been rescaled by a factor 1=4. The
dashed vertical line indicates our default value pcut

T ¼ 0.81 GeV.
The blue band is obtained by combining linearly the statistical
and slicing errors.

PHYSICAL REVIEW LETTERS 128, 252001 (2022)
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!e Drell-Yan fiducial cross section at N3LO and N3LO+N3LL
3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66 GeV < m�� < 116 GeV and the lepton rapidi-
ties are confined to |��± | < 2.5. The transverse momen-
tum of the two leptons is constrained as

Symmetric cuts [113]: |�p �±

T | > 27 GeV , (2a)

Product cuts [100]:
�

|�p �+
T | |�p ��

T | > 27 GeV ,

min{|�p �±

T |} > 20 GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
�

m��
2 + p��

T
2

and the cen-

tral resummation scale is set to Q = m��/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2 � µR/µF � 2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p��

T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p��

T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet�
�
d�N3LL

DY

�
O(�3

s)
in Eq. (1) gives a non-

negligible contribution even for p��
T � 15 GeV. The resid-

ual theoretical uncertainty in the intermediate p��
T region

is at the few-percent level, and it increases to about 5%
for p��

T & 50 GeV. A more accurate description of the

large-p��
T region requires the inclusion of EW corrections,

which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcut

T as low as 0.81 GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results to O(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcut

T in the range [0.45, 1.48] GeV and taking the
average di�erence from the result with pcut

T = 0.81 GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.

We observe that the new N3LO corrections decrease
the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di�erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p��

T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.

A possible solution to this problem [100] is to slightly
modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di�erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band 

• More robust estimate of the theory uncertainty when resummation effects are included 

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV 
interval 

qcut
T = 0.8 GeV

650

687.5

725

762.5

800

650
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800

Includes resummation of linear power corrections

LO

NLO NNLO N3LO

NLO+NLL
NNLO+NNLL

N3LO+N3LL

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]
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!e Drell-Yan fiducial cross section at N3LO and N3LO+N3LL
3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66 GeV < m�� < 116 GeV and the lepton rapidi-
ties are confined to |��± | < 2.5. The transverse momen-
tum of the two leptons is constrained as

Symmetric cuts [113]: |�p �±

T | > 27 GeV , (2a)

Product cuts [100]:
�

|�p �+
T | |�p ��

T | > 27 GeV ,

min{|�p �±

T |} > 20 GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
�

m��
2 + p��

T
2

and the cen-

tral resummation scale is set to Q = m��/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2 � µR/µF � 2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p��

T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p��

T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet�
�
d�N3LL

DY

�
O(�3

s)
in Eq. (1) gives a non-

negligible contribution even for p��
T � 15 GeV. The resid-

ual theoretical uncertainty in the intermediate p��
T region

is at the few-percent level, and it increases to about 5%
for p��

T & 50 GeV. A more accurate description of the

large-p��
T region requires the inclusion of EW corrections,

which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcut

T as low as 0.81 GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results to O(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcut

T in the range [0.45, 1.48] GeV and taking the
average di�erence from the result with pcut

T = 0.81 GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.

We observe that the new N3LO corrections decrease
the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di�erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p��

T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.

A possible solution to this problem [100] is to slightly
modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di�erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

• 2.5% negative correction at N3LO in the ATLAS fiducial region. N3LO larger than the 
NNLO correction and outside its error band 

• More robust estimate of the theory uncertainty when resummation effects are included 

• Slicing error computed conservatively by considering the cutoff within the [0.45-1.5] GeV 
interval 

• Central value very similar at NkLO and NkLO+NkLL for product cuts, compatible with the 
absence of linear power corrections

qcut
T = 0.8 GeV

Includes resummation of linear power corrections

LO

NLO
NNLO

N3LO

NLO+NLL
NNLO+NNLL N3LO+N3LL

3

Order � [pb] Symmetric cuts � [pb] Product cuts

k NkLO NkLO+NkLL NkLO NkLO+NkLL

0 721.16+12.2%
�13.2% — 721.16+12.2%

�13.2% —

1 742.80(1)+2.7%
�3.9% 748.58(3)+3.1%

�10.2% 832.22(1)+2.7%
�4.5% 831.91(2)+2.7%

�10.4%

2 741.59(8)+0.42%
�0.71% 740.75(5)+1.15%

�2.66% 831.32(3)+0.59%
�0.96% 830.98(4)+0.74%

�2.73%

3 722.9(1.1)+0.68%
�1.09% ± 0.9 726.2(1.1)+1.07%

�0.77% 816.8(1.1)+0.45%
�0.73% ± 0.8 816.6(1.1)+0.87%

�0.69%

TABLE I. Fiducial cross sections for the symmetric (2a) and product (2b) cuts both at fixed perturbative order and including
all-order resummation.

dow is 66 GeV < m�� < 116 GeV and the lepton rapidi-
ties are confined to |��± | < 2.5. The transverse momen-
tum of the two leptons is constrained as

Symmetric cuts [113]: |�p �±

T | > 27 GeV , (2a)

Product cuts [100]:
�

|�p �+
T | |�p ��

T | > 27 GeV ,

min{|�p �±

T |} > 20 GeV . (2b)

The central factorisation and renormalisation scales

are chosen to be µR = µF =
�

m��
2 + p��

T
2

and the cen-

tral resummation scale is set to Q = m��/2. In the results
presented below, the theoretical uncertainty is estimated
by varying the µR and µF scales by a factor of two about
their central value, while keeping 1/2 � µR/µF � 2. In
addition, for the resummed results, for central µR = µF

scales we vary Q by a factor of two around its central
value. Moreover, a matching-scheme uncertainty is esti-
mated by including the full scale variation of the additive
matching scheme of Ref. [59] (27 variations that comprise
the one of the central matching scale v0 introduced in
Eq. (5.2) of that article). The final uncertainty is ob-
tained as the envelope of all the above variations, corre-
sponding to 7 and 36 curves for the fixed-order and re-
summed computations, respectively. In the fiducial cross
sections quoted below at N3LO and N3LO+N3LL, we do
not consider the uncertainty related to the missing N3LO
parton distributions, which are currently unavailable.

In Fig. 1, we start by showing the transverse-
momentum distribution of the Drell–Yan lepton pair in
the fiducial volume (2a), obtained with Eq. (1), compared
to experimental data [113]. In the figure we label the
distributions by the perturbative accuracy of their inclu-
sive integral over p��

T . Our state-of-the-art N3LO+N3LL
prediction provides an excellent description of the data
across the spectrum, with the exception of the first bin at
small p��

T which is susceptible to non-perturbative correc-
tions not included in our calculation. We point out that
the term d�NNLO

DY+jet�
�
d�N3LL

DY

�
O(�3

s)
in Eq. (1) gives a non-

negligible contribution even for p��
T � 15 GeV. The resid-

ual theoretical uncertainty in the intermediate p��
T region

is at the few-percent level, and it increases to about 5%
for p��

T & 50 GeV. A more accurate description of the

large-p��
T region requires the inclusion of EW corrections,

which we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts (2a). In order to gain control over the slicing
systematic error, we choose pcut

T as low as 0.81 GeV. In
the first column of Tab. I, denoted as NkLO, we show the
fixed-order results to O(↵k

s ). The second column of Tab. I
displays the result obtained including resummation ef-
fects. In the fixed-order case, the theoretical uncertainty
at N3LO, estimated as discussed above, is supplemented
with an estimate of the slicing uncertainty obtained by
varying pcut

T in the range [0.45, 1.48] GeV and taking the
average di�erence from the result with pcut

T = 0.81 GeV.
In the resummed case, we quote the total theoretical un-
certainty including also the matching scheme variation.
In both cases the statistical uncertainty is reported in
parentheses.

We observe that the new N3LO corrections decrease
the fiducial cross section by about 2.5%, and the final
prediction at N3LO has larger theoretical errors than
the NNLO counterpart, whose uncertainty band does not
capture the N3LO central value. This indicates a poor
convergence of the fixed-order perturbative series for this
process, which is consistent with what has been observed
in the inclusive case in Refs. [10–12]. In the resummed
case, the theoretical uncertainty is more reliable and
within errors the convergence of the perturbative series
is improved. The presence of linear power corrections is
also responsible for the moderate di�erence between the
fixed-order and the resummed prediction for the symmet-
ric cuts (2a), which in turn indicates a sensitivity of the
cross section to the infrared region of small p��

T . This ul-
timately worsens further the perturbative convergence of
the fixed-order series thereby challenging the perspectives
to reach percent-accurate theoretical predictions within
symmetric cuts.

A possible solution to this problem [100] is to slightly
modify the definition of the fiducial cuts as in Eq. (2b)
in order to reduce such a sensitivity to infrared physics.
We present for the first time theoretical predictions up
to N3LO and N3LO+N3LL for this set of cuts, reported
in the third and fourth column of Tab. I. The relative
di�erence between the fixed-order and resummed calcu-
lations for the fiducial cross section never exceeds the

[Chen, Gehrmann, Glover, Huss, Monni, Re, LR, Torrielli ’22]

resummation of linear power corrections
ptcut=0.8GeV

I Negative N3LO correction (– 2.5%) in ATLAS setup, outside of the NNLO error band.

I Nk LO+Nk LL ⌘ including recoil effects in resummation (i.e. resumming linear power
corrections). More robust uncertainty estimate.

I Nk LO closer to Nk LO+Nk LL with product cuts (no linear power corrections).
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for the kinematical distributions of the final-state leptons.
A particularly relevant distribution is the leptonic trans-
verse momentum, which plays a central role in the precise
extraction of the W-boson mass at the LHC [2,6]. Figure 3
shows the differential distribution of the negatively charged
lepton at three different orders, for our default value
pcut
T ¼ 0.81 GeV. Unlike for the fiducial cross section,

the inclusion of pll
T resummation in this observable is

crucial to cure local (integrable) divergences in the spec-
trum due to the presence of a Sudakov shoulder [120] at
pl−
T ∼mll=2. The figure shows an excellent convergence

of the perturbative prediction, with residual uncertainties at
N3LOþ N3LL of the order of a few percent across the
entire range.
Conclusions.—In this Letter, we have presented state-of-

the-art predictions for the fiducial cross section and differ-
ential distributions in the Drell-Yan process at the LHC,
through both N3LO and N3LOþ N3LL in QCD. These new
predictions are obtained through the combination of an
accurate NNLO calculation for the production of a Drell-
Yan pair in association with one jet, and the N3LL
resummation of logarithmic corrections arising at small
pll
T . The high quality of these results allowed us to carry

out a thorough study of the performance of the computa-
tional method adopted, reaching an excellent control over
all systematic uncertainties involved. We presented pre-
dictions for two different definitions of the fiducial vol-
umes, relying either on symmetric cuts Eq. (2a) on the
transverse momentum of the leptons, or on a recently
proposed product cuts Eq. (2b) which is shown to improve
the stability of the perturbative series. Our results display
residual theoretical uncertainties at the Oð1%Þ level in the

fiducial cross section, and at the few-percent level in
differential distributions. These predictions will play an
important role in the comparison of experimental data with
an accurate theoretical description of the Drell-Yan process
at the LHC.
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FIG. 3. Lepton transverse momentum distribution up to
N3LOþ N3LL order in the fiducial phase space Eq. (2a). The
labels indicate the order in the fiducial cross section.
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theoretical prediction for the cross section, as well as on the
performance of the computational approach adopted here.
Results.—We consider proton-proton collisions at a

center-of-mass energy
ffiffiffi
s

p
¼ 13 TeV. We adopt the

NNPDF4.0 parton densities [115] at NNLO with
αsðMZÞ ¼ 0.118, whose scale evolution is performed with
LHAPDF [116] and HOPPET [117], correctly accounting
for heavy quark thresholds. We adopt the Gμ scheme with
the following EW parameters taken from the particle data
group [118]: MZ ¼ 91.1876 GeV, MW ¼ 80.379 GeV,
ΓZ ¼ 2.4952 GeV, ΓW ¼ 2.085 GeV, and GF ¼
1.1663787 × 10−5 GeV−2. We consider two fiducial vol-
umes, in both of which the leptonic invariant-mass window
is 66 GeV < mll < 116 GeV and the lepton rapidities are
confined to jηl$ j < 2.5. The transverse momentum of the
two leptons is constrained as

Symmetric cuts ½113&∶ jp⃗l$
T j > 27 GeV; ð2aÞ

Product cuts ½100&∶
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp⃗lþ

T jjp⃗l−

T j
q

> 27 GeV;

minfjp⃗l$

T jg > 20 GeV: ð2bÞ

The central factorization and renormalization scales are

chosen to be μR ¼ μF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mll

2 þ pll2
T

q
and the central

resummation scale is set to Q ¼ mll=2. In the results
presented below, the theoretical uncertainty is estimated by
varying the μR and μF scales by a factor of 2 about their
central value, while keeping 1=2 ≤ μR=μF ≤ 2. In addition,
for the resummed results, for central μR ¼ μF scales we
varyQ by a factor of 2 around its central value. Moreover, a

matching-scheme uncertainty is estimated by including the
full scale variation of the additive matching scheme of
Ref. [59] [ [27] variations that comprise the one of the
central matching scale v0 introduced in Eq. (5.2) of that
article]. The final uncertainty is obtained as the envelope of
all the above variations, corresponding to 7 and 36 curves
for the fixed-order and resummed computations, respec-
tively. We present results for the central member of the
NNPDF4.0 set. In the fiducial cross sections quoted below at
N3LO and N3LOþ N3LL, we do not consider the uncer-
tainty related to the missing N3LO parton distributions,
which are currently unavailable.
In Fig. 1, we start by showing the transverse-momentum

distribution of the Drell-Yan lepton pair in the fiducial
volume Eq. (2a), obtained with Eq. (1), compared to
experimental data [113]. In the figure we label the dis-
tributions by the perturbative accuracy of their inclusive
integral over pll

T . Our state-of-the-art N3LOþ N3LL pre-
diction provides an excellent description of the data across
the spectrum, with the exception of the first bin at small pll

T
which is susceptible to nonperturbative corrections not
included in our calculation. We point out that the term
dσNNLODYþjet − ½dσN

3LL
DY &Oðα3sÞ in Eq. (1) gives a non-negligible

contribution even for pll
T ≤ 15 GeV. The residual theo-

retical uncertainty in the intermediate pll
T region is at the

few-percent level, and it increases to about 5% for
pll
T ≳ 50 GeV. A more accurate description of the large-

pll
T region requires the inclusion of EW corrections, which

we neglect in our calculation.
We now consider the fiducial cross section with sym-

metric cuts. In order to gain control over the slicing
systematic error, we choose pcut

T as low as 0.81 GeV. In
the first column of Table I, denoted as NkLO, we show the
fixed-order results to OðαksÞ. The second column of Table I
displays the result obtained including resummation effects.
In the fixed-order case, the theoretical uncertainty at N3LO,
estimated as discussed above, is supplemented with an
estimate of the slicing uncertainty obtained by varying pcut

T
in the range [0.45,1.48] GeV and taking the average
difference from the result with pcut

T ¼ 0.81 GeV. In the
resummed case, we quote the total theoretical uncertainty
including also the matching scheme variation. In both cases
the statistical uncertainty is reported in parentheses.
We observe that the new N3LO corrections decrease the

fiducial cross section by about 2.5%, and the final pre-
diction at N3LO has larger theoretical errors than the NNLO
counterpart, whose uncertainty band does not capture the
N3LO central value. This indicates a poor convergence of
the fixed-order perturbative series for this process, which is
consistent with what has been observed in the inclusive
case in Refs. [10–12]. In the resummed case, the theoretical
uncertainty is more reliable and within errors the con-
vergence of the perturbative series is improved. The
presence of linear power corrections is also responsible

FIG. 1. Fiducial pll
T distribution at N3LOþ N3LL (blue,

solid) and NNLO þ NNLL (red, dotted) compared to ATLAS
data from Ref. [113]. The binning is linear up to 30 GeV and
logarithmic above.
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• Calculation of cross section within experimental cuts up to 
N3LO in QCD using resummation ingredients
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• Differential predictions reliable where fixed-order QCD pert. 
theory is spoiled by multiple IR radiation

• Sum contribution from arbitrary number of 
soft/collinear (= IR) QCD partons

• Applications to Higgs physics, W-mass extraction, PDF 
determination, …
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PRECISION FLAVOUR PHYSICS
Tests of the flavour structure of the SM:  3 generations of up and down quarks
with different masses, mixing with each other via charged current.
The unitary 3x3 Cabibbo-Kobayashi-Maskawa (CKM) parametrises the mixing 
and leads to CP violation in the SM.

The rich flavour structure of the Standard Model (SM) and its CP violation
both follow from the matrices of Yukawa couplings between the fermions
(down and up quarks and charged leptons) and the Higgs boson. The diag-
onalisation of these matrices determines the fermion masses and brings us to
the flavour basis, where the charged weak current is no longer diagonal: as
first understood in the hadronic sector by Cabibbo [?] and extended to three
generations by Kobayashi and Maskawa [?], charged currents mix the quarks
of di↵erent generations in a way parameterised by the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix. Interestingly, its elements display
a remarkable hierarchy, possibly indicative of the unknown mechanism of
flavour breaking [1]:

V̂CKM =

0

@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

A (1)

=

0

@
1� �

2
/2 � A�

3(⇢�i⌘)
�� 1��

2
/2 A�

2

A�
3(1�⇢�i⌘) �A�

2 1

1

A+O(�4)

where � = sin ✓c ' 0.22 is a small expansion parameter and A ' 0.8,
⇢ ' 0.16, ⌘ ' 0.36. As a unitary matrix, V̂CKM has in principle nine free
parameters but some of them can be absorbed by phase redefinitions. In the
end, V̂CKM has only four independent real parameters: three Euler angles
and a phase, or equivalently �, A, ⇢ and ⌘. The presence of a nonvanishing
phase, i.e. of an imaginary part, implies CP violation. Since unitarity is
specific to the three generations of the SM and to the absence of additional
flavour violation, testing V̂

†
CKM

V̂CKM = 1 is an important step in the veri-
fication of the SM and represents the modern equivalent of the tests of the
universality of the charged currents. Any of the o↵-diagonal relations can
be represented by a triangle in the complex plane whose area is a measure
of CP violation. In particular, the triangle

1 +
VudV

⇤
ub

VcdV
⇤
cb

+
VtdV

⇤
tb

VcdV
⇤
cb

= 0 (2)

is frequently considered because it has sides of comparable length, see Fig.1,
and its parameters can all be well determined in B decays. The angles �

and � at the basis of this triangle correspond to the phases of the elements
Vub and Vtd: Vub = |Vub|e�i� , Vtd = |Vtd|e�i� . Various observables constrain
the apex of this triangle. The results of a global fit are shown in Fig. 1,
where one can see that di↵erent constraints agree well, verifying unitarity
and determining the apex of the triangle with high accuracy. As we will see
below, there are tests of the unitarity of V̂CKM that cannot be represented
in this plot.

The role of QCD in the determination of the CKM elements and in
testing the CKM mechanism is crucial, with important perturbative and

1

̂V†
CKM

̂VCKM = 1

|Vud |2 + |Vus |2 + |Vub |2 = 1

|Vcd |2 + |Vcs |2 + |Vcb |2 = 1 etc.

first row

second row

New Physics could manifest itself as violation of unitarity, or shift Flavour Changing 
Neutral Currents (loop induced in the SM) like , B and K mixing, etc 
Hierarchical structure of CKM matrix  can probe  

b → sγ
⇒ ΛNP ≫ ΛEW
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FIG. 4. ⇢̄-⌘̄ planes with the SM global fit results in various configurations. The black contours display the 68% and 95%
probability regions selected by the given global fit. The 95% probability regions selected are also shown for each constraint
considered. Top-Left: full SM fit; Top-Right: fit using as inputs the “tree-only” constraints; Bottom-Left: fit using as inputs
only the angle measurements; Bottom-Right: fit using as inputs only the side measurements and the mixing parameter "K in
the kaon system.

fit configuration ⇢̄ ⌘̄

full SM fit 0.161(10) 0.347(10)

tree-only fit ±0.158(26) ±0.362(27)

angle-only fit 0.156(17) 0.334(12)

no-angles fit 0.157(17) 0.337(12)

TABLE IX. Results for the ⇢̄ and ⌘̄ values as extracted from the various fit configurations. The Universal Unitarity Triangle
(UUT) fit includes the three angles inputs and the semileptonic ratio |Vub/Vcb| [91].

1. By fitting the “tree-only” constraints, i.e. processes for which a contribution from new physics is with the
highest probability absent, we test the possibility that all the sources of CP violation come from physics beyond
the SM. The results shown in the top-right panel, which have a two-fold sign ambiguity in the ⇢̄-⌘̄ values, show
that the SM alone contributes to the largest part of the observed CP violation at low energy;

2. We analysed the results that can be obtained by using only the information coming from the measured angles,
“angle-only” fit, bottom-left panel;

3. We analysed the results that can be obtained from the triangle sides fit and ", “sides+ "K” fit, bottom-right
panel.

The importance of |Vcb|
An important CKM unitarity test is the 
Unitarity Triangle (UT) formed by

Vcb plays an important role in UT

and in the prediction of FCNC:
⇥ |VtbVts|2 � |Vcb|2

h
1 +O(�2)

i

"K ⇡ x|Vcb|4 + ...

where it often dominates the 
theoretical uncertainty.
Vub/Vcb constrains directly the UT

Our ability to determine precisely Vcb is crucial for indirect NP searches

1 +
VudV*ub

VcdV*cb
+

VtdV*tb
VcdV*cb

= 0
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Figure 66: Combined average on |Vub| and |Vcb| including the LHCb measurement of |Vub|/|Vcb|,
the exclusive |Vub| measurement from B ! ⇡`⌫, and the |Vcb| average from B ! D`⌫, B !

D⇤`⌫ and Bs ! D(⇤)
s µ⌫ measurements. The dashed ellipse corresponds to a 1� two-dimensional

contour (68% of CL). The point with the error bars corresponds to the inclusive |Vcb| from the
kinetic scheme (Sec. 7.2.2), and the inclusive |Vub| from GGOU calculation (Sec. 7.4.3).

access to many observables besides the branching fraction, such as D(⇤) momentum, q2 distri-3123

butions, and measurements of the D⇤ and ⌧ polarisations (see Ref. [599] and references therein3124

for recent calculations).3125

Experiments have measured two ratios of branching fractions defined as3126

R(D) =
B(B ! D⌧⌫⌧ )

B(B ! D`⌫`)
, (233)

R(D⇤) =
B(B ! D⇤⌧⌫⌧ )

B(B ! D⇤`⌫`)
(234)

where ` refers either to electron or µ. These ratios are independent of |Vcb| and to a large extent,3127

also of the B ! D(⇤) form factors. As a consequence, the SM predictions for these ratios are3128

quite precise:3129

• R(D) = 0.298±0.003: which is an average of the predictions from Refs. [600,601]. These3130

predictions use as input the latest results on the B ! D`⌫ form factors from BABAR and3131

Belle, and the most recent lattice calculations [502,510].3132

• R(D⇤) = 0.252±0.005: where the central value and the uncertainty are obtained from an3133

arithmetic average of the predictions from Refs. [601,602]. These calculations are in good3134
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Figure 2: Constraints on right-handed currents from inclusive and exclusive decays, assuming
LFU.

postulating new physics in right-handed currents. What is new is that even B ! D⇤`⌫ alone
cannot be brought into perfect agreement with B ! Xc`⌫ for any value of CVR .

5.3. Lepton flavour universality violation

In view of the observed tensions with SM expectations in b ! c⌧⌫ and b ! s`` transitions,
investigating e-µ universality in b ! c`⌫ with light leptons is important. Specific new physics
models suggested as solutions to the b ! c⌧⌫ anomalies actually predict such violation. Some
of the experimental analyses assume LFU to hold. These analyses cannot be used in a model-
independent fit allowing for LFU violation. This is because the measurements are not simply
averages of the respective electron and muon observables, but linear combinations with weights
depending on the experimental e�ciencies that can di↵er between electrons and muons even
as a function of kinematical variables. Thus it is of paramount importance that experimental
collaborations present their results separately for electrons and muons.

In the meantime, the existing analyses that already include separate results for electrons
and muons (see table 1) can be used to perform a fit with a non-universal modification of the
SM operator, i.e. Ce

VL
6= Cµ

VL
. The fit result in terms of the lepton-flavour-dependent e↵ective

CKM elements Ṽ `

cb
is shown in figure 3. Both for B ! D`⌫ and B ! D⇤`⌫ the fit not only

shows perfect agreement with LFU, but also implies a stringent constraint on departures from
the LFU limit. Given the good agrement of the constraints from B ! D`⌫ and B ! D⇤`⌫, we
have also performed a combined Bayesian fit of the scenario to both decay modes, marginalizing
over all nuisance parameters. We find

1

2

⇣
Ṽ e

cb
+ Ṽ µ

cb

⌘
= (3.87 ± 0.09)% , (23)

1

2

⇣
Ṽ e

cb
� Ṽ µ

cb

⌘
= (0.022 ± 0.023)% , (24)
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Figure 7: Left: Prediction for the transverse di↵erential B ! D⇤µ⌫ branching ratio in the
SM (blue band) and a scenario with new physics in Cµ

T
(orange band) vs. the Belle

measurement, demonstrating the di↵erent endpoint behaviour at maximum recoil
(q2 = 0). Both scenarios predict the same total B ! D⇤µ⌫ branching ratio. Right:
Comparison of the constraint on the tensor coe�cient C̃µ

T
vs. Ṽ µ

cb
from the total

B ! D⇤µ⌫ branching ratio measurements only (dashed) and using all B ! D⇤µ⌫
measurements (solid).

Neglecting the lepton masses and allowing for NP in CT and CVL , one finds

FH(q2) ⇡ 18q2f2

T
(q2)

m2

B
f2
+(q2)

|CT |2
|1 + CVL |2 . (31)

Figure 8 shows the constraints on the tensor and left-handed scalar operators, which always
appear together in models with a tree-level mediator, see Table 2, specifically in leptoquark
models. The displayed constraints from B ! D`⌫ and B ! D⇤`⌫, shown separately for
electrons and muons, demonstrate clearly the strong sensitivity of B ! D⇤`⌫ to tensor con-
tributions. While the individual modes B ! D⇤e⌫, B ! Dµ⌫, and B ! D⇤µ⌫ show a slight
preference for non-zero NP contributions in either C`

SL
or C`

T
, the combination of B ! D`⌫

and B ! D⇤`⌫ constraints allows neither of these solutions and leads to a strong constraint
on both operators.

6. Conclusions

Semi-leptonic charged-current transitions b ! c`⌫ with ` = e or µ are traditionally used to
measure the CKM element Vcb. In principle, this transition could be a↵ected by new physics
with vector, scalar, or tensor interactions, possibly violating lepton flavour universality. This
is motivated by the long-standing tensions between inclusive and exclusive determinations of
Vcb, but also by hints of a violation of lepton-flavour universality in b ! c⌧⌫ and b ! s``
transitions. We have conducted a comprehensive analysis of general new-physics e↵ects in
b ! c`⌫ transitions, considering for the first time the full operator basis and employing for the
first time in a new physics analysis measurements of B ! D⇤`⌫ angular observables.
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EXCLUSIVE DECAYS

There are 1(2) and 3(4) FFs for D and D*  for light (heavy) leptons, for instance

Information on FFs from LQCD (at high q2), LCSR (at low q2), HQE, exp, 
extrapolation, unitarity constraints, … 

3

factors arises from the following definitions: For B̄ ! D, one commonly defines

hD(k)| c̄�µb |B̄(p)i =


(p+ k)µ �

M2
B �M2

D

q2
qµ

�
fB!D
+ (q2) +

M2
B �M2

D

q2
qµfB!D

0 (q2) , (1)

hD(k)| c̄�µ⌫b |B̄(p)i =
2i

MB +MD
(kµp⌫ � pµk⌫)fT (q

2, µ) , (2)

with �µ⌫ = i
2 [�

µ, �⌫ ]. In the above, f+ is the vector form factor, fT is the scale-dependent tensor form factor arising
only in NP scenarios (its definition corresponds to the one in Ref. [21]), and f0 doubles as the scalar form factor:

hD(k)| c̄b |B̄(p)i =
M2

B �M2
D

mb �mc
fB!D
0 (q2) . (3)

The matrix elements of the remaining axial and pseudoscalar currents are zero by virtue of QCD conserving parity.

For B̄ ! D⇤, one commonly defines

hD⇤(k, ⌘)| c̄�µb |B̄(p)i = �✏µ⌫⇢�⌘⇤⌫(k) p⇢ k�
2V (q2)

MB +MD⇤
, (4)

hD⇤(k, ⌘)| c̄�µ�5b |B̄(p)i = i⌘⇤⌫

⇢
2MD⇤A0(q

2)
qµq⌫

q2
+ 16

MBM2
D⇤

�
A12


2pµq⌫ �

M2
B �M2

D⇤ + q2

q2
qµq⌫

�
(5)

+ (MB +MD⇤)A1(q
2)


gµ⌫ +

2(M2
B +M2

D⇤ � q2)

�
qµq⌫ �

2(M2
B �M2

D⇤ � q2)

�
pµq⌫

��
,

hD⇤(k, ⌘)| c̄�µ⌫b |B̄(p)i = i⌘⇤↵✏
µ⌫

⇢�

⇢
�

✓
(p+ k)⇢ �

M2
B �M2

D⇤

q2
q⇢
◆
g↵� +

2

q2
p↵p⇢k�

�
T1(q

2) (6)

�

✓
2

q2
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M2
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◆
T2(q

2) +
2

M2
B �M2
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p↵p⇢k�T3(q

2)

�
.

where ⌘ denotes the D⇤ polarization vector, V the vector form factor, and A1,12 are the axial form factors. Note
that the relative sign between our eq. (4) and the decomposition in ref. [22] arises from the di↵erent definition of
the Levi-Civita tensor: we use "0123 = +1. Moreover, in the decomposition above A12 correspond to longitudinal
polarizations of the emitted virtual W , which is more convenient (e.g. when inferring form factors from lattice QCD)
than parametrizations involving the form factor A2, see e.g. [22]. The function A0 doubles as the pseudo-scalar form
factor,

hD⇤(k, ⌘)| c̄�5b |B̄(p)i = �2iMD⇤
⌘⇤ · q

mb +mc
A0 , (7)

whereas the matrix element of the scalar current vanishes by virtue of QCD conserving parity.

Exact relations at q2 = 0 between some of the form factors ensure the absence of unphysical singularities in eq. (1)
and eq. (5). These relations read:

f+(q
2 = 0) = f0(q

2 = 0) ,

A0(q
2 = 0) =

MB +MD⇤

2MD⇤
A1(q

2 = 0)�
MB �MD⇤

2MD⇤
A2(q

2 = 0) .
(8)

A further exact relation arises due to algebraic identities involving the Lorentz structures �µ⌫ and �µ⌫�5 [22]:

T1(0) = T2(0) . (9)

Further approximate relations arise from the HQE of the hadronic matrix elements. These relations, the parametric
models involved, and theoretical inputs needed for the subsequent statistical analyses are the subject of the remainder
of this section.

A. Heavy-Quark Expansion and models

The combination of heavy-quark spin symmetry and heavy-quark flavour symmetry permits to relate B̄(⇤)(v) !

D(⇤)(v0) matrix elements with each other in a simultaneous expansion in the strong coupling ↵s and the inverse pole

b

d, u

c

l

v

X
d,u

B Vcb	
= D, D*, …

A model independent parametrization is necessary



LATTICE FORM FACTORS AT NONZERO RECOILComparison with new lattice calculations

Major improvement: B(s) ! D⇤
(s) FFs@w > 1! (Bs : [Harrison+’22] )
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FERMILAB/MILC
JLQCD
HPQCD 
HQE 
(LCSR+SR+lat<2019)

M.Jung

BGL fits with weak unitarity. Relatively good agreement, but not in ratios! 

Comparison with new lattice calculations

Major improvement: B(s) ! D⇤
(s) FFs@w > 1! (Bs : [Harrison+’22] )

• FNAL/MILC’21

• HQE@1/m2
c

• Exp (BGL)

• JLQCD prel

• HPQCD’23

Compatible

• HPQCD and BGJvD compatible

• Slope HPQCD-FNAL/MILC?

• JLQCD “diplomatic”

5 / 14

different
slopes?

different
slopes?

2105.14019, 2112.13775, 2304.03137



OUR BGL FITS

FNAL/MILC
 |Vcb|= ( ) using only total rate |Vcb|=  39.4(9) 10−3 χ2

min = 50 42.2+2.8
−1.7 10−3

JLQCD
  |Vcb|=  ( ) using only total rate |Vcb|=40.7(9) 10−3 χ2

min = 33 40.8+1.8
−2.3 10−3

  HPQCD
  |Vcb|=  ( ) using only total rate |Vcb|=40.4(8) 10−3 χ2

min = 50 44.4 ± 1.6 10−3

Jung, Schacht, PG in progress

HPQCD and FNAL are not well compatible: adding 16 points increases  by 35 χ2

Global BGL fit to Belle18+FNAL+JLQCD+HPQCD data:
  |Vcb|= ( ) using only total rate |Vcb|=40.3(7) 10−3 χ2

min = 91 42.4(1.0) 10−3

With Belle 2018 only



Overview over predictions for R(D⇤)

Lattice B ! D⇤: hA1
(w = 1) [FNAL/MILC’14,HPQCD’17] , [FNAL/MILC’21]

Other lattice: f B!D
+,0 (q2) [FNAL/MILC,HPQCD’15]

QCDSR: [Ligeti/Neubert/Nir’93,’94] , LCSR: [Gubernari/Kokulu/vDyk’18]

Overall consistent SM predictions!
“Explaining” R(D⇤) by FM/HPQCD ! NP in B ! D⇤(e, µ)⌫!

9 / 14

FNAL/MILC

Predictions based only on Fermilab & HPQCD lead to larger R(D*), in better 
agreement with exp, mostly because of the suppression at high w of the denominator.  
No reason not to use experimental data for a SM test, especially in presence of 
tensions in lattice data. 

M.Jung

major impact 
of new lattice
calculations



INCLUSIVE DECAYS: BASICS

Simple idea: inclusive decays do not depend on final state, long distance dynamics 
of the B meson factorizes. An OPE allows us to express it in terms of B meson 
matrix elements of local operators.

The Wilson coefficients are perturbative, matrix elements of local ops 
parameterize non-pert physics: double series in 

Lowest order: decay of a free b,  linear  absent. Depends on  , two 
parameters at , 2 more at  ...  Many higher order effects have 
been computed.

αs, Λ /mb

Λ/mb mb,c
O(Λ2/m2

b) O(Λ3/m3
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A GLOBAL FIT
Finauri, PG 2310.20324

m
kin

b mc(2GeV) µ
2
⇡ µ

2

G(mb) ⇢
3

D(mb) ⇢
3

LS BRc`⌫ 103|Vcb|
4.573 1.090 0.454 0.288 0.176 �0.113 10.63 41.97
0.012 0.010 0.043 0.049 0.019 0.090 0.15 0.48

1 0.380 -0.219 0.557 -0.013 -0.172 -0.063 -0.428
1 0.005 -0.235 -0.051 0.083 0.030 0.071

1 -0.083 0.537 0.241 0.140 0.335
1 -0.247 0.010 0.007 -0.253

1 -0.023 0.023 0.140
1 -0.011 0.060

1 0.696
1

Table 4: Results of the updated fit in our default scenario (µc = 2 GeV, µs = mb/2). All
parameters are in GeV at the appropriate power and all, except mc, in the kinetic scheme at µk = 1
GeV. The first and second rows give central values and uncertainties, the correlation matrix follows.
�
2
min = 40.4 and �

2
min/dof = 0.546.

data [18] in the case of the second and third central moments. As a matter of fact, the
Belle and Belle II for those moments differ by about 2�.

The inclusion of the q
2-moments in the global fit confirms the above picture. The q

2-
moments lower slightly the value of ⇢3D(mb) by half a � and that of |Vcb| by a fraction of a �,
decreasing the final uncertainty on them from 0.031 to 0.018GeV3 and from 0.51⇥10�3 to
0.48 ⇥10�3, respectively. Because of its correlation with ⇢

3

D, the determination of µ2
⇡ also

benefit from the new data, with the uncertainty going down from 0.056 to 0.042 GeV2. We
have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [38]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.23%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.97± 0.27exp ± 0.31th ± 0.25�)⇥ 10�3 = (41.97± 0.48)⇥ 10�3
. (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D

⇤
`⌫ [41–47], but agrees well with the very recent Belle and Belle

II results [48, 49] and with analyses of B ! D`⌫ [50, 51]. Interestingly, we also find that
a global fit to moments measured at a single cut on E` and q

2, which minimally depends
on the correlations among theory errors, gives very similar results. This corroborates our
study of the dependence on the modelling of theory correlations.

Further improvements of the inclusive determination of |Vcb| may come from new and
more precise measurements of the leptonic and hadronic moments at Belle II, which could
also measure the Forward-Backward asymmetry and related observables for the first time,
bringing a new sensitivity to µ

2

G to the fits [52, 53]. The new measurements should be able
to improve the treatment of QED corrections using the results of [38]. It will be useful
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have also included the results of the new calculation of QED and electroweak effects on the
lepton energy spectrum and moments [38]. Applying them to the BaBar data only, they
lower the values of the branching fraction and of |Vcb| by about 0.23%. Our final result for
|Vcb|, obtained updating the input charm and bottom masses and increasing the uncertainty
on the hadronic moments, is

|Vcb| = (41.97± 0.27exp ± 0.31th ± 0.25�)⇥ 10�3 = (41.97± 0.48)⇥ 10�3
. (4.1)

This is still in tension with most estimates based on the Belle and BaBar measurements
of exclusive decay B ! D

⇤
`⌫ [41–47], but agrees well with the very recent Belle and Belle

II results [48, 49] and with analyses of B ! D`⌫ [50, 51]. Interestingly, we also find that
a global fit to moments measured at a single cut on E` and q

2, which minimally depends
on the correlations among theory errors, gives very similar results. This corroborates our
study of the dependence on the modelling of theory correlations.

Further improvements of the inclusive determination of |Vcb| may come from new and
more precise measurements of the leptonic and hadronic moments at Belle II, which could
also measure the Forward-Backward asymmetry and related observables for the first time,
bringing a new sensitivity to µ
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G to the fits [52, 53]. The new measurements should be able
to improve the treatment of QED corrections using the results of [38]. It will be useful
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Figure 7: Regions of ��
2  1 in the 2D planes (µ2

⇡, ⇢
3
D) (left) and (⇢3D, |Vcb|) (right). The dots

stand for the points at ��
2 = 0.

our ⇠ 15% uncertainty falls short of an O(↵3
s) contribution exceeding 25%. We therefore

increase the theoretical uncertainty of the third hadronic moments for the values of Ecut

where it is lower than 30%. This affects mostly the third hadronic moment measured by
Delphi [4], which has an experimental uncertainty of about 20% and favours a low ⇢

3

D, and
results in an increase of ⇠ 0.008 GeV3 of the central value of ⇢3D in the fit.

Our final results are summarised in Table 4, where we present a global fit to hadronic,
leptonic and q

2-moments that employs the updated heavy quark masses, an enlarged theory
uncertainty for the third hadronic moment, and includes, for the BaBar measurements, the
QED effects computed in [38]. The changes with respect to the global fit (last row) of
Table 3 are minor and mostly concern the determination of the branching fraction and a
�0.1% shift of |Vcb|. In Fig. 7 we show the regions of ��

2
< 1 in the 2D planes (µ2

⇡, ⇢
3

D)

and (⇢3D, |Vcb|), for the sets of data B-F of Fig. 6 after the various updates discussed in this
section.

4 Summary and outlook

The recent measurements of the q
2-moments by Belle and Belle II [18, 19] has opened

new opportunities for the study of inclusive semileptonic B decays. In this paper we have
presented the results of a new calculation of the moments of the q

2 spectrum in inclusive
semileptonic B decays that includes contributions up to O(↵2

s�0) and O(↵s⇤3

QCD
/m

3

b). In
particular, we have reproduced many of the results presented in Refs. [15, 30] and computed
for the first time the BLM corrections O(↵2

s�0) to the q
2-moments. If we employ the results

of the default fit of [12] as inputs, our predictions for the central moments of the q2 spectrum
are in excellent agreement with Belle II data [19], while there is a mild tension with Belle
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INCLUSIVE DECAYS ON THE LATTICE
Inclusive processes impractical to treat directly on the lattice.  Vacuum current 
correlators computed in euclidean space-time are related to hadrons or  
decay via analyticity. In our case the correlators have to be computed in the B meson, 
but analytic continuation more complicated: two cuts, decay occurs only on a portion 
of the cut associated to B semileptonic decays.

While the lattice calculation of the spectral density of hadronic correlators is an ill-
posed problem, the spectral density is accessible after smearing                        
Hansen, Meyer, Robaina, Hansen, Lupo, Tantalo, Bailas, Hashimoto, Ishikawa

e+e− → τ

• What about hadronic tensor W(%, q)?
• Elastic channel:
• Inelastic thesholds:

Quantum Mechanics in a Box
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A NEW APPROACH
4-point functions on the lattice are related to the hadronic tensor in euclidean

Hashimoto, PG 2005.13730 

tsrc t1 t2 tsnk

J†
µ Jν

BB

Fig. 4 Valence quark propagators and their truncations. The thin line connecting the

source tsrc and sink tsnk time slices represents the spectator strange quark propagator. A

smearing is introduced for the initial B meson interpolating operator at tsrc and tsnk. The

solid thick lines are the initial b and dashed line denotes the final c quark. The currents J†
µ

and Jν are inserted at t1 and t2, respectively.

see [24–26] for instance.) So far, in the literature, the moments of hadron energy and invari-

ant mass as well as the lepton energy have been considered; our proposal is to analyze the

inverse moments (12) and (13) at sufficiently small ω, instead, to extract |Vcb| or |Vub|. To
actually extract the moments from the experimental data is beyond the scope of this work.

The structure functions Ti have been calculated within the heavy quark expansion

approach. At the tree-level, the explicit form is given in the appendix of [23]. One-loop

or even two-loop calculations have also been carried out [27–29], but they only concern the

differential decay rates (or the imaginary part of the structure functions), and one needs to

perform the contour integral to relate them to the unphysical kinematical region.

4 Lattice calculation strategy

In this section, we describe the method to extract Ti’s from a four-point function calcu-

lated on the lattice. Although we take the B → D(∗)"ν channel to be specific, the extension

to other related channels is straightforward.

We consider the four-point function of the form

CSJJS
µν (tsnk, t1, t2, tsrc) =

∑

x

〈

P S(x, tsnk)J̃
†
µ(q, t1)J̃ν(q, t2)P

S†(0, tsrc)
〉

, (14)

where P S is a smeared pseudo-scalar density operator to create/annihilate the initial B

meson at rest. The inserted currents J̃µ are either vector or axial-vector b → c current

and assumed to carry the spatial momentum projection
∑

x1
eiq·x1J(x1, t1). Thus, the mass

dimension of J̃µ is zero. The quark-line diagram representing (14) is shown in Figure 4.

10

∼ ⟨B |J†
μ(x, t)Jν(0,0) |B⟩

The necessary smearing is provided by phase space integration over the hadronic energy, which is 
cut by a  with a sharp hedge: sigmoid  can be used to replace kinematic  for .   
Larger number of polynomials needed for small 

θ 1/(1 + ex/σ) θ(x) σ → 0
σ

3

are defined in the range 0  x  1. Their first
few terms are T ⇤

0 (x) = 1, T ⇤
1 (x) = 2x � 1, T ⇤

2 (x) =
8x2 � 8x + 1, and others can be obtained recursively
by T ⇤

j+1(x) = (4x � 2)T ⇤
j
(x) � T ⇤

j�1(x). Each term

of h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i can be constructed from

CJJ

µ⌫
(t + 2t0)/CJJ

µ⌫
(2t0) = h µ|e�Ĥt| ⌫i/h µ| ⌫i.

The coe�cients c⇤
j

in (12) are obtained by an integral

c⇤
j

=
2

⇡

Z
⇡

0
d✓K

✓
� ln

1 + cos ✓

2

◆
cos(j✓), (13)

according to the general formula of the Chebyshev ap-
proximation. The Chebyshev approximation is the best
in the sense that its maximum deviation in x 2 [0, 1] is
minimized among all possible polynomials of order N .

The integral kernel K(!, q) is chosen as

K(l)
�

(!) = e2!t0(�
p

q2)2�l(mBs � !)l

⇥✓�(mBs �
p

q2 � !) (14)

for l = 0, 1, or 2 corresponding to X(l), (5)–(7). An ap-
proximate Heaviside step function ✓�(x) is introduced to
realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function in a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Figure 1 demonstrates how well K(l)

� (!) is approxi-
mated with certain orders of the polynomials, i.e. N = 5,
10 and 20. An example for l = 0 is shown. Here we take
three representative values of �: � = 0.2, 0.1 and 0.05 in
the lattice unit. The comparison is made for parameters
that roughly correspond to our lattice simulation setup:
the inverse lattice spacing 1/a ' 3.61 GeV, amBs ' 1.0,
t0/a = 1. The momentum insertion q is assumed to be
zero. The kernel function is well approximated with rel-
atively low orders of the polynomials, such as N = 10,
when su�ciently smeared, e.g. � = 0.2. For smaller �’s,
the function exhibits a sharp change near the thresh-
old ! = 1.0, and the Chebyshev approximation becomes
poorer. For better approximation, one needs higher or-
der polynomials, like N = 20. Eventually we have to
take the limit of � ! 0, and the error due to finite order
of polynomials has to be estimated. For the other cases,
l = 1 and 2, the polynomial approximations are better
than those for l = 0.

We perform a pilot study of the method described
above using a lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [17], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks only in the valence
sector, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
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FIG. 1. Approximation of the weight function K(l=0)
� (!) with

the Chebyshev polynomials of e�!. For each value of the
smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
�m2

Ds
)/2mBs ' 1.1 GeV. The

lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calculate
the forward-scattering matrix elements with spatial mo-
menta q at (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units of
2⇡/La. The number of lattice configurations averaged is
100, and the measurement is performed with four di↵er-
ent source time-slices.

For a fixed spatial momentum q, we compute a four-

3
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FIG. 1. Approximation of the weight function K
(l=0)
� (!) with

the Chebyshev polynomials of e
�!. For each value of the

smearing width � (= 0.2 (top), 0.1 (middle), 0.05 (bottom)),
the approximations with the polynomial order N = 5 (dot-
ted), 10 (dot-dashed), 20 (dashed) are plotted as well as the
true curve (solid curve).

realize the upper limit of the !-integral. In order to sta-
bilize the Chebyshev approximation, we smear the step
function over a small width �. For an explicit form, we
chose ✓�(x) = 1/(1+exp(�x/�)). The extra factor e2!t0

in (14) cancels the short time evolution e�Ĥt0 in | µ(q)i.
Fig. 1 demonstrates how well K(l)

� (!) is approximated
with certain orders of the polynomials, i.e. N = 5, 10
and 20. An example for l = 0 is shown. Here we take
three representative values of �: 0.2, 0.1 and 0.05 in lat-
tice units. The comparison is made for parameters that

roughly correspond to our lattice setup: the inverse lat-
tice spacing 1/a ' 3.61 GeV, amBs ' 1.0, t0/a = 1.
The momentum insertion q is set to zero. The kernel
function is well approximated with relatively low orders
of the polynomials, such as N = 10, when su�ciently
smeared, e.g. � = 0.2. For smaller �’s, the function ex-
hibits a more rapid change near the threshold ! = 1.0,
and one needs higher orders, like N = 20. Eventually we
have to take the limit � ! 0, and the error due to finite
N has to be estimated. For l = 1 and 2 the polynomial
approximations are better than those for l = 0.

We perform a pilot study of the method described
above using lattice data computed on an ensemble with
2+1 flavors of Möbius domain-wall fermions (the ensem-
ble “M-ud3-sa” in [21], which has 1/a = 3.610(9) GeV).
For the charm and bottom quarks in the valence sec-
tor, the same lattice formulation is used. The charm
quark mass mc is tuned to its physical value and the
Ds and D⇤

s
meson masses are 1.98 and 2.12 GeV, respec-

tively. The bottom quark mass is taken as 2.44mc, which
is substantially smaller than the physical b quark mass.
The corresponding Bs meson mass is 3.45 GeV. In this
setup, the maximum possible spatial momentum in the
Bs ! Ds`⌫̄ decay is (m2

Bs
� m2

Ds
)/2mBs ' 1.16 GeV.

The lattice volume is L3 ⇥ Lt = 483 ⇥ 96, and we calcu-
late the forward-scattering matrix elements with spatial
momenta q of (0,0,0), (0,0,1), (0,0,2) and (0,0,3) in units
of 2⇡/La. The number of lattice configurations averaged
is 100, and the measurement is performed with four dif-
ferent source time-slices.

For a fixed spatial momentum q, we compute a four-
point function to extract CJJ

µ⌫
(t; q) (more details of the

lattice calculation are presented in [9]). We perform the
!-integral (4) using the representation (12). Matrix ele-
ments of the shifted Chebyshev polynomials are obtained
from CJJ

µ⌫
(t+2t0; q)/CJJ

µ⌫
(2t0; q) at various t’s (and t0 =

1) by a fit with constraints |h µ|T ⇤
j
(e�Ĥ)| ⌫i/h µ| ⌫i| <

1, which is a necessary condition for the Chebyshev poly-
nomials.

First, we inspect how well the Chebyshev approxima-
tion works by comparing the results for X̄(2) obtained
with the polynomial order N = 5, 10, 15 at various val-
ues of �, the width of the smearing. Fig. 2 shows that the
dependence on � is mild and the limit of � = 0 is already
reached at around � = 0.05. The dependence on N is
not significant, which indicates that the approximation
is already saturated at N ' 10. This is crucial because
the error of the lattice data is too large to constrain the
matrix elements h µ|T ⇤

j
(e�Ĥ)| ⌫i/h µ| ⌫i at j ' 10 or

larger. The results for X̄(0) and X̄(1) show the similar
tendency. We take � = 0.05 in the following analysis; the
results are within statistical error even if we extrapolate
to � = 0.

The lattice results for X̄ =
P2

l=0 X̄(l) are compared
with the OPE predictions in Fig. 3 as a function of q2.
Here, the results for di↵erent polarizations, i.e. longi-
tudinal (k: µ, ⌫ = 0 and 3) and perpendicular (?: µ,

lim
σ→0

lim
V→∞

Xσ

Two methods based on
Chebyshev polynomials and 
Backus-Gilbert. Important:

∫ d3x
eiq⋅x

2MB
⟨B |J†

μ(x, t)Jν(0,0) |B⟩ ∼ ∫
∞

0
dωWμνe−tω

dΓ ∼ LμνWμν, Wμν ∼ ∑
X

⟨B |J†
μ |X⟩⟨X |Jν |B⟩

smearing kernel  f(ω) = ∑
n

ane−naω



LATTICE VS OPE mkin

b
(JLQCD) 2.70 ± 0.04

mc(2 GeV) (JLQCD) 1.10 ± 0.02

mkin

b
(ETMC) 2.39 ± 0.08

mc(2 GeV) (ETMC) 1.19 ± 0.04

µ2
⇡ 0.57 ± 0.15

⇢3
D

0.22 ± 0.06

µ2
G
(mb) 0.37 ± 0.10

⇢3
LS

�0.13 ± 0.10

↵(4)
s (2 GeV) 0.301 ± 0.006

Table 1. Inputs for our OPE calculation. All parameters are in GeV at the appropriate power and
all, except mc, in the kinetic scheme at µ = 1 GeV. The heavy-quark masses for the ETMC setup
are 100% correlated. As a remnant of the semileptonic fit, we include a 50% correlation between
µ2
⇡ and ⇢3D.

0.1–0.2 GeV3, they could shift µ2
⇡ and µ2

G
by 0.02–0.1 GeV in going from the physical value

of mb to mb ⇠ 2.5 GeV, which amounts to a 5–25% shift. We show the inputs of our
calculation in table 1. While the heavy-quark masses are slightly different between the two
setups, we adopt the same expectation values in both cases. Their central values take into
account the shift related to the strange spectator, while the uncertainties follow from the
uncertainty of the fit of ref. [68], the SU(3) symmetry breaking, and the lower b mass.

Beside the parametric uncertainty of the inputs, our results are subject to an uncer-
tainty due the truncation of the expansion in eq. (4.1) and to possible violations of quark-
hadron duality. We estimate the former by varying the OPE parameters, the heavy-quark
masses, and ↵s in an uncorrelated way and adding the relative uncertainties in quadrature.
In particular, we shift mb,c by 6 MeV, µ2

⇡,G
by 15%, and ⇢3

D,LS
by 25%. These corrections

should mimic the effect of higher-power corrections. Since in the case of the q2 spectrum
and differential moments we restrict ourselves to O(↵s) corrections, we include the relative
uncertainty in the same way, shifting ↵s by 0.15, which corresponds to a 50% uncertainty.
In the case of the total width and total moments, higher-order perturbative corrections are
known and the perturbative uncertainty can be reduced, as discussed below.

4.2 Comparison with lattice results

4.2.1 q2 spectrum and differential moments

We start our comparison of lattice and OPE results with the q2 spectrum and the differential
moments introduced in eq. (2.39) and in eq. (2.40). Only the O(↵s) perturbative corrections
are included in this case. Figure 14 shows the q2 spectrum in the SM, namely with a V �A

current. Despite the large uncertainty of the OPE prediction, about 30% in the JLQCD
case and 50% in the ETMC case, the overall agreement is good. The OPE uncertainty is
dominated by the power corrections. We also stress that close to the partonic endpoint,
corresponding to 1.27 GeV2 and 0.82 GeV2 in the two cases, we do not expect the OPE
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Figure 14. Differential q2 spectrum, divided by |q|, in the SM. Comparison of OPE with JLQCD
(top panel) and ETMC (bottom panel) data are shown.

calculation to be reliable, as discussed above. The corresponding hadronic endpoints are
1.35 GeV2 and 0.75 GeV2, respectively.

The uncertainties affecting both calculations can be greatly reduced by considering
the differential moments. In particular, the OPE uncertainty becomes smaller because of
the cancellations between power corrections to the numerator and to the denominator. To
expose the cancellations we expand the ratios in powers of ↵s and 1/mb. In figure 15 we
show the first differential lepton energy moment, L1(q2), in the SM, comparing the OPE
with ETMC data. As expected, the relative uncertainty of both the OPE calculation and
of the lattice data is much smaller than in the bottom panel of figure 14 and we observe
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Twisted boundary conditions allow
for any value of  
Smaller statistical uncertainties

⃗q2

OPE inputs from fits to exp data (physical 
mb), HQE of meson masses on lattice
             1704.06105, J.Phys.Conf.Ser. 1137 (2019) 1, 012005

We include  and  terms

Hard scale 
We do not expect OPE to work at high

O(1/m3
b) O(αs)

m2
c + q2 ∼ 1−1.5 GeV

|q |

ETMC twisted mass

JLQCD domain wall fermions
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