Phenomenology of semi-leptonic B meson decays

Santo Stefano Balbo - Theory group retreat Alexandre Carvunis - 11/11/2023

Testing the Standard Model of particle physics The big picture

- We are certain that there is something beyond the Standard Model (SM) dark matter, matter-antimatter asymmetry, quantum gravity, neutrino mass, etc.
- Yet, no (significant) sign of Beyond the SM physics has been observed in collider experiments, in neither direct and indirect searches.
- We reached maximum c.o.m. energy in the collision of the LHC, higher energies will not be probed (in colliders) before decades...
- High luminosity will allow us to measure rare processes and improve the measurement of most observables, and test the SM with a better sensitivity to potential small New Physics effects
- TH can be the limiting factor for discove enters the picture.

TH can be the limiting factor for discovery, notably when non-perturbative QCD

Confinement scale of QCD

Why B mesons?

- The b quark is the Goldilocks quark for phenomenology, not too light, not too heavy
 - $m_b \gg \Lambda_{QCD}$ allows for perturbative expansion in $1/m_b$ with good results (HQS, HQE, HQET, NRQCD, etc)
 - $m_h \ll m_t$, m_W : the physics can be described by 'simple' EFTs
- Simultaneously B mesons are now measured accurately:
 - $B^0(\bar{b}d)$ and $B^+(\bar{b}u)$ can be produced in B factories $e^+e^- \to \Upsilon(4S) \to B\bar{B}$ (small background, full angular reconstruction), BaBar, Belle, Belle II
 - Higher luminosity of B mesons (and more flavors B_s, B_c) are produced and measured at the LHC thanks to the large energy at the center of mass, measurements by ATLAS, CMS, LHCb. (Large background, forward detection only at LHCb)

Why semi-leptonic decays? **Decay channel Goldilocks**

Rare decay, small TH error

 π^{-} D^+

Leptonic

Semi-leptonic

Hadronic

Charged vs. Neutral currents FCCC vs FCNC

- Tree-level in the SM: Large Branching Fraction
- Heavy to heavy meson decay
- E.g. $B \to D^{(*)}, B_c \to J/\psi$
- Amplitude proportional to V_{cb}
- $b \rightarrow u$ also measured although CKM suppressed w.r.t. $b \rightarrow c$

 $b \rightarrow s\ell\ell$

- Loop only in the SM: small branching fraction
- Sensitive to small BSM contributions
- Heavy to light meson decay
- E.g. $B \to K^{(*)}, B_s \to \phi$

Sketches by Javier Virto

Amplitude of semileptonic B decays in the WET

Amplitude of $B \rightarrow M\ell\ell$ decays

$$\mathcal{M}(B \to M\ell\ell) = \left\langle M\ell\ell \left| H_{b \to s\ell\ell} \right| B \right\rangle = \mathcal{N}$$

Local contributions

$$A_{V}^{\mu} = -\frac{2im_{b}}{q^{2}}C_{7}\left\langle M \left| \bar{s}\sigma^{\mu\nu}q_{\nu}P_{R}b \right| B \right\rangle + C_{9}\left\langle M \left| \bar{s}\gamma^{\mu}P_{L}b \right| \right.$$
$$A_{A}^{\mu} = C_{10}\left\langle M \left| \bar{s}\gamma^{\mu}P_{L}b \right| B \right\rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime}\right)$$
$$A_{S,P} = C_{S,P}\left\langle M \left| \bar{s}P_{R}b \right| B \right\rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime}\right)$$

 $\left(A_V^{\mu} + T^{\mu}\right)\bar{u}_{\ell}\gamma_{\mu}v_{\ell} + A_A^{\mu}\bar{u}_{\ell}\gamma_{\mu}\gamma_5 v_{\ell} + A_S\bar{u}_{\ell}v_{\ell} + A_P\bar{u}_{\ell}\gamma_5 v_{\ell}\right)$

 $\left| B \right\rangle + \left(P_L \leftrightarrow P_R, C_i \to C'_i \right)$ 9,10,S,P... TIM B B Μ

Amplitude of $B \rightarrow M\ell\ell$ decays Local contributions - definition of the form factors

• 3 independent f.f. for B to pseudoscalar meson:

$$\left\langle P(k) \left| \bar{q}_{1} \gamma^{\mu} b \right| B(p) \right\rangle = \left[(p+k)^{\mu} - \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}} q^{\mu} \right] f_{+}^{B \to P} + \frac{m_{B}^{2} - m_{P}^{2}}{q^{2}} q^{\mu} f_{0}^{B - P} \right]$$

$$P(k) \left| \bar{q}_{1} \sigma^{\mu\nu} q_{\nu} b \right| B(p) \right\rangle = \frac{i f_{T}^{B \to P}}{m_{B} + m_{P}} \left[q^{2} (p+k)^{\mu} - \left(m_{B}^{2} - m_{P}^{2} \right) q^{\mu} \right]$$

• 7 independent f.f. for B to vector meson:

$$A_3^{B \to V} \equiv \frac{m_B + m_V}{2m_V} A_1^{B \to V} - \frac{m_B - m_V}{2m_V} A_2^{B \to V}.$$

$$\left\langle V(k,\eta) \left| \bar{q}_{1} \gamma^{\mu} b \right| B(p) \right\rangle = \epsilon^{\mu\nu\rho\sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} \frac{2V^{B \to V}}{m_{B} + m_{V}} \left\langle V(k,\eta) \left| \bar{q}_{1} \gamma^{\mu} \gamma_{5} b \right| B(p) \right\rangle = i \eta_{\nu}^{*} [g^{\mu\nu} \left(m_{B} + m_{V} \right) A_{1}^{B \to V} - \frac{(p+k)^{\mu} q^{\nu}}{m_{B} + m_{V}} A_{2}^{B \to V} - q^{\mu} q^{\nu} \frac{2m_{V}}{q^{2}} \left(A_{3} - A_{0} \right) \right] \left\langle V(k,\eta) \left| \bar{q}_{1} i \sigma^{\mu\nu} q_{\nu} b \right| B(p) \right\rangle = \epsilon^{\mu\nu\rho\sigma} \eta_{\nu}^{*} p_{\rho} k_{\sigma} 2T_{1}^{B \to V} \left\langle V(k,\eta) \left| \bar{q}_{1} i \sigma^{\mu\nu} q_{\nu} \gamma_{5} b \right| B(p) \right\rangle = i \eta_{\nu}^{*} [\left(g^{\mu\nu} \left(m_{B}^{2} - m_{V}^{2} \right) - (p+k)^{\mu} q^{\nu} \right) T_{2}^{B \to V} + q^{\nu} \left(q^{\mu} - \frac{q^{2}}{m_{B}^{2} - m_{V}^{2}} (p+k)^{\mu} \right) \right)$$

Amplitude of $B \rightarrow M\ell\ell$ decays

$$\mathscr{M}(B \to M\ell\ell) = \left\langle M\ell\ell \left| H_{\text{eff}} \right| B \right\rangle = \mathscr{N}\left[\left(A \right)^{2} \right]$$

Local contributions

$$A_{V}^{\mu} = -\frac{2im_{b}}{q^{2}}C_{7}\left\langle M \left| \bar{s}\sigma^{\mu\nu}q_{\nu}P_{R}b \right| B \right\rangle + C_{9}\left\langle M \left| \bar{s}\gamma^{\mu}P_{L}b \right| \right.$$
$$A_{A}^{\mu} = C_{10}\left\langle M \left| \bar{s}\gamma^{\mu}P_{L}b \right| B \right\rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime}\right)$$
$$A_{S,P} = C_{S,P}\left\langle M \left| \bar{s}P_{R}b \right| B \right\rangle + \left(P_{L} \leftrightarrow P_{R}, C_{i} \rightarrow C_{i}^{\prime}\right)$$

Non-Local contributions

$$T^{\mu} = \frac{-16i\pi^2}{q^2} \sum_{i=1,...,6,8} C_i \int dx^4 e^{iq \cdot x} \left\langle M \right| T \left\{ j_{\text{em}}^{\mu}(x), O_i \right\}$$
$$j_{\text{em}}^{\mu} = \sum_{q} Q_q \bar{q} \gamma^{\mu} q$$

 $A_V^{\mu} + T^{\mu}) \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + A_A^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_5 v_{\ell} + A_S \bar{u}_{\ell} v_{\ell} + A_P \bar{u}_{\ell} \gamma_5 v_{\ell}$

 $\left| B \right\rangle + \left(P_L \leftrightarrow P_R, C_i \to C'_i \right)$ 9,10,S,P... TIM B B Μ В Μ

Calculation of the matrix elements

$$\mathcal{M}(B \to M\ell\ell) = \left\langle M\ell\ell \left| H_{\text{eff}} \right| B \right\rangle = \mathcal{N}\left[\left(A \right) \right]$$

Local contributions

- At high-q2, computed on the lattice
- At low-q2:
 - Lattice available only for certain processes
 - Analytic approach: e.g. Light-Cone Sum Rule (LCSR)

Non-Local contributions

- At low-q2 from QCD factorization (QCDF)
- On the entire kinematic range, we only know 'dispersive bounds' GRvDV 22, which are conservative upper bounds

 $A_V^{\mu} + T^{\mu}) \bar{u}_{\ell} \gamma_{\mu} v_{\ell} + A_A^{\mu} \bar{u}_{\ell} \gamma_{\mu} \gamma_5 v_{\ell} + A_S \bar{u}_{\ell} v_{\ell} + A_P \bar{u}_{\ell} \gamma_5 v_{\ell}$

 $q^{2} = (p_{\ell} + p_{\ell'})^{2}$

Optimized observables Ratio and angular observables

$$\begin{split} R_{K^{(*)}} &= \frac{BR(B \to K^{(*)}\mu\mu)}{BR(B \to K^{(*)}ee)} & \qquad \text{Golden of } \\ R_{D^{(*)}} &= \frac{BR(B \to D^{(*)}\tau\nu)}{BR(B \to D^{(*)}\ell\nu)} & \qquad \sim 1~\% \text{ TH} \end{split}$$

 d^4 $dq^2 d\cos\theta_K$

$$= \frac{BR(B \to D^{(*)}\ell\nu)}{BR(B \to D^{(*)}\ell\nu)} / F_{L} \cos^{2}\theta_{K} + \frac{3}{4}F_{T}(1 - \cos^{2}\theta_{K}) - F_{L}\cos^{2}\theta_{K}(2\cos^{2}\theta_{\ell} - 1) + \frac{1}{2}P_{1}F_{T}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\cos 2\hat{\phi} + 2P_{2}F_{T}(1 - \cos^{2}\theta_{K})\cos\theta_{\ell} - P_{3}F_{T}(1 - \cos^{2}\theta_{K})(1 - \cos^{2}\theta_{\ell})\sin 2\hat{\phi}] \frac{d\Gamma}{dq^{2}}, \quad (4)$$
From 1207 2753 Deceder Graph Metics, Parame Visto

From 1207.2753 Descotes-Genon, Matias, Ramon, Virto

bservables, robust to TH uncertainties FU, deviations is a smoking gun for NP

uncertaintv

Status of the B-anomalies

 $BR(b \rightarrow s\ell\ell)$

 $B \rightarrow Kee$ obtained from $B \rightarrow K\mu\mu$ and R_K Pull very TH dependent

Leptonic B decays, TH clean, tension gone after LHCb 2021 Exp upper bound only for $B^0 \rightarrow \mu\mu$

Optimized angular observables

 $P'_5(B \rightarrow K^* \mu \mu)$ (LHCb 2021) also P_2 and Q_5 (Belle 2017) still standing

Ratio observables for $b \rightarrow s\ell\ell$ at low q2, TH clean, no more anomalie after LHCb 2022

Ratio observables for $b \rightarrow c\ell\nu$, TH clean, Anomalies in $R(D^{(*)})$ remain after many measurements

 $q^2 = (p_{\ell} + p_{\ell'})^2$

Global fits for $b \rightarrow c \tau \bar{\nu}$ observables

State-of-the-art global fit of $b \rightarrow c \tau \bar{\nu}$ observables **EFT** assuming NP in the tau sector only

$$\mathscr{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[(1 + C_{V_L}) O_{V_L}^{\tau} + C_{V_R} O_{V_R}^{\tau} + C_{S_R} O_{S_R}^{\tau} + C_{S_L} O_{S_L}^{\tau} + C_T O_T^{\tau} \right],$$

Observables can conveniently be expressed in polynomials of WCs

$$\begin{aligned} R_{\mathcal{D}} &= R_{\mathcal{D}}^{\rm SM} \left\{ |C_{V_L}^{\rm SM} + C_{V_L} + C_{V_R}|^2 \\ &+ 1. \quad |C_{S_L} + C_{S_R}|^2 \\ &+ 0. \quad |C_T|^2 \\ &+ 0. \quad \operatorname{Re} \left[(C_{V_L}^{\rm SM} + C_{V_L} + C_{V_R}) C_T^* \right] \\ &+ 1. \quad \operatorname{Re} \left[(C_{V_L}^{\rm SM} + C_{V_L} + C_{V_R}) (C_{S_L}^* + C_{S_R}^*) \right] \right\} \end{aligned}$$

$$\begin{split} O_{V_{L,R}}^{\tau} &= (\bar{c}\gamma^{\mu}P_{L,R}b)(\bar{\tau}\gamma_{\mu}P_{L}\nu_{\tau})\\ O_{S_{L,R}}^{\tau} &= (\bar{c}P_{L,R}b)(\bar{\tau}P_{L}\nu_{\tau}),\\ O_{T}^{\tau} &= (\bar{c}\sigma^{\mu\nu}P_{L}b)(\bar{\tau}\sigma_{\mu\nu}P_{L}\nu_{\tau}) \,. \end{split}$$

$$\begin{aligned} R_{\mathcal{D}^*} &= R_{\mathcal{D}^*}^{\text{SM}} \left\{ (|C_{V_L}^{\text{SM}} + C_{V_L}|^2 + |C_{V_R}|^2) \\ &+ 0. \quad |C_{S_R} - C_{S_L}|^2 \\ &+ 16. \quad |C_T|^2 \\ &- 1. \quad \text{Re} \left[(C_{V_L}^{\text{SM}} + C_{V_L}) C_{V_R}^* \right] \\ &+ 6. \quad \text{Re} \left[(C_{V_L}^{\text{SM}} + C_{V_L}) C_T^* \right] \\ &+ 6. \quad \text{Re} \left[(C_{V_L}^{\text{SM}} + C_{V_L}) C_T^* \right] \\ &+ 0. \quad \text{Re} \left[(C_{V_L}^{\text{SM}} + C_{V_L} - C_{V_R}) (C_{S_R}^* - C_{S_L}^*) \right] \right\} \end{aligned}$$

State-of-the-art global fit of $b \to c \tau \bar{\nu}$ observables Available data

Observable	Measurement	
R_D	BaBar [403], Belle [183,404]	
R_{D^*}	BaBar [403], Belle [183, 404, 405], LHC	
$F_L(B_0 o D^* au ar u)$	Belle [408]	
${ m BR}(B_c o au u)$	LEP [409]	
$\frac{1}{\Gamma} \frac{d\Gamma}{dq^2} (B o D^{(*)} \tau \bar{\nu})$	BaBar [403], Belle [183]	
$R_{J/\psi}$	LHCb [195]	
R_{Λ_c}	LHCb [197]	

+ 2023 data: CMS R(J/Psi), Belle II R(Xc), R(D*)

SM prediction

J. High Energy Phys. 11, 7 (2022)

State-of-the-art global fit of $b \rightarrow c \tau \bar{\nu}$ observables Preliminary results (not up to date) - using flavio + smelli

LQ	WC	SM pull	$\chi^2/N_{\rm dof}$
S_{3}, U_{3}	$C_{VL} = 0.088$	4.90σ	53.8/64
U_1	$C_{VL} = 0.097$ $C_{SR} = -0.035$	4.54σ	53.6/63
<i>S</i> ₁	$C_{VL} = 0.111$ $C_{SL} = -8.2C_T$ $= -0.058$	4.57σ	53.3/6.

Running and matching from $M_{LQ} = 1.5 TeV$ to $\mu = m_b$ Other bounds are available from e.g. EW precision obs.

$B \rightarrow K$ local form factor from lightcone sum rules with B-meson LC distribution amplitude

$B^+ \rightarrow K^+ \mu \mu \text{ in } 2023$

LCSR vs Lattice QCD $B \rightarrow K$ form factor

- Low-q2 range has long been out of reach of lattice, HPQCD's result has not been reproduced yet
- HPQCD generally agrees with LCSR predictions (e.g. Khodjamirian 2017) and comes with smaller uncertainty
- LCSR with B-meson DA's has been computed including DA expansion up to twist-5 and $\mathcal{O}(\alpha_s)$ corrections in SCET by CHSWW, they find significantly smaller FFs. -0.3

Goal: expand CHSWW's result to HQET

Procedure for Light Cone Sum Rules $J_{weak}^{\nu} = \bar{s}\gamma^{\mu}b$ b $0) \ \bar{B}(P_B = q + k) >$ S $J_{int}^{\nu} = \bar{d}\gamma^{\nu}\gamma_5 s$ heavy m_b limit Integral dominated by contributions on the light cone $x^2 \ll 1/\Lambda_{QCD}^2$ $d^4x T(x) \Phi(x)$ $\Pi^{\mu\nu} =$ Perturbative piece Non local matrix element Near the LC: Φ expandable in twists (Twist = dimension - spin) Using LC B-meson distribution amplitudes $I_n(s)$ $f_B m_B$ as $\sum_{n=1}^{\infty} \overline{(s-k^2)^n}$

Then, quark hadron duality...

NLO correction to LCSR with B-meson DA's $\Pi_{\mu\nu} = \Pi^{0}_{\mu\nu} + \frac{\alpha_{s}}{\Delta \pi} \Pi^{1}_{\mu\nu} + \dots \quad \Pi^{\mu\nu}(q,k) = i \int d^{4}x e^{ik.x} < 0 \quad TJ^{\nu}_{int}(x) J^{\mu}_{weak}(0) \quad \bar{B}(P_{B} = q + k) > 0$

 $\Pi^{0}_{\mu\nu} = T^{0}_{\mu\nu} \otimes \Phi^{0}$ See e.g. GKvD 1811.00983

Trick: T^{i} is independent of the long distance physics, to compute them we can go to the limit where the external states are partonic where Π is directly computable, and replace Φ with $\Phi \equiv$ light cone wave function at tree-level

Summary and prospects

- Deviations in charged current B decays subsists in $R(D^{(*)})$
 - Global fits of EFTs provide precious information about the nature of the putative NP
 - Theory papers used need to be cited properly when using public codes (not always easy!)
- Deviations in neutral current B decays subsist in BR's and angular observables
 - In BR, TH uncertainty is as large or larger than EXP and is dominated by local form factor uncertainties
 - For $B \to K$, LQCD and LCSR with B-meson DA's in SCET with NLO give incompatible FFs, we are computing these FFs in HQET
 - Using B-meson DA's lets us compute many different FF: $B \to K^{(*)}, \pi, \rho, D^{(*)}, \dots$

Backup

HPQCD Collaboration - 2207.13371

Procedure for Light Cone Sum Rules

$$\Pi^{\mu\nu}(q,k) = i \int d^4x e^{ik.x} < 0 \ TJ^{\nu}_{int}(x) J^{\mu}_{weak}(0)$$

Correlation function of B to vacuum (also possible with final meson to vacuum)

- 1) Express Π in function of the non-perturbative quantities that we want to calculate
- 2) Compute Π perturbatively
- 3) 1) = 2) + use of quark-hadron duality

$$\pi(x) J_{\text{weak}}^{\mu}(0) \ \bar{B}(P_{B} = q + k) >$$

$$\text{HQET - heavy } m_{b} \text{ limit}$$

$$\Pi^{\mu\nu} = \int d^{4}x \int \frac{d^{4}p'}{(2\pi)^{4}} e^{i(k-p').x} \left[\Gamma_{2}^{\nu} \frac{p' + m_{1}}{m_{1}^{2} - p'^{2}} \Gamma_{1}^{\mu} \right]_{\alpha\beta} < 0 \ \bar{q}_{2}^{\alpha}(x) h_{\nu}^{\beta}(0)$$

HQET - heavy m_b limit $\Pi^{\mu\nu}(q^{2},k^{2}) = \frac{\langle 0 \ j_{\nu} \ M(k) \rangle \langle M(k) \ j_{\mu} \ B \rangle}{m_{\nu}^{2} - k^{2}} + \frac{1}{2\pi} \int_{-\infty}^{\infty} ds \frac{\rho^{\mu\nu}}{s - k^{2}} \qquad \Pi^{\mu\nu} = \int d^{4}x \int \frac{d^{4}p'}{(2\pi)^{4}} e^{i(k-p').x} \left[\Gamma_{2}^{\nu} \frac{p' + m_{1}}{m_{1}^{2} - p'^{2}} \Gamma_{1}^{\mu} \right] \qquad < 0 \ \bar{q}_{2}^{\alpha}(x) h_{\nu}^{\beta}(0) \ \bar{B}(v) > 0$ Integral dominated by terms on the light cone $x^2 \ll 1/\Lambda_{QCD}^2$ $= f_B m_B \int_0^{+\infty} ds \sum_{n=1}^{+\infty} \frac{I_n(s)}{(s-k^2)^n}$ Near the LC: Expansion in twists (Twist = dimension - spin) In terms of **LC B-meson** distribution amplitudes $k^2 \ll \Lambda_{\text{had}}^2$ $\tilde{q} \le m_b^2 + m_b k^2 / \Lambda_{\text{had}}$ 32

Quark-Hadron Duality at leading order in twist

$$K^{(F)}\frac{F(q^{2})}{m^{2}-k^{2}} + \frac{1}{2\pi}\int_{s_{0}^{h}}^{+\infty} ds \frac{\rho(s)}{s-k^{2}} = \Pi = f_{B}m_{B}\int_{0}^{+\infty} ds \frac{I_{1}(s)}{s-k^{2}}$$

Borel transform
$$K^{(F)}F(q^{2}) e^{-m^{2}/M^{2}} + \frac{1}{2\pi}\int_{s_{0}^{h}}^{+\infty} ds\rho(s) e^{-s/M^{2}} = \Pi = f_{B}m_{B}\int_{0}^{+\infty} ds I_{1}(s)e^{-s/M^{2}}$$

Semi-global quark hadron duality: there is a
$$s_0$$
 such that

$$\frac{1}{2\pi} \int_{s_0^h}^{+\infty} ds \,\rho(s) \, e^{-s/M^2} \simeq \int_{s_0}^{+\infty} ds \, \mathrm{Im} \,\Pi^{\mathrm{pert}}(\mathbf{q}^2, \mathbf{s}) \, e^{-s/M^2} \simeq \mathrm{f_Bm_B} \int_{s_0}^{+\infty} ds \, I_1(s) e^{-s/M^2}$$

$$F(q^{2}) = \frac{f_{B}m_{B}}{K^{(F)}} \int_{0}^{s_{0}} ds I_{1}(s) e^{\frac{-s+m^{2}}{M^{2}}}$$

$$\mathscr{B}_{M^{2}}f(k^{2}) = \lim_{\substack{-k^{2}, n \to \infty \\ \frac{-k^{2}}{n} = M^{2}}} \frac{(-q^{2})^{n+1}}{n!} \left(\frac{d}{dk^{2}}\right)^{n}$$

 M^2 : Borel parameter s_0 : Duality threshold

unknown systematic error

How to determine the threshold parameter s_0

$$F(q^{2}) = \frac{f_{B}m_{B}}{K^{(F)}} \int_{0}^{s_{0}} ds I_{1}(s) e^{\frac{-s+m^{2}}{M^{2}}}$$

Threshold s_0 can be determined by looking for independence wrt M^2

Daughter sum rule: -

$$\frac{d}{dM^2}F(q^2) = 0$$

Alexandre Carvunis - Moriond QCD 2023

Range of the Borel parameter E.g. for $B \rightarrow K$: $M^2 \in [0.5, 1.5] \text{ GeV}^2$

