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TRYING TO SOLVE  
“SOLVABLE” GAUGE THEORIES



Why integrable systems: some of the reasons
Exact study of non-perturbative phenomena

Validate physical models and understand their mathematical workings

Starting point to solve more general models

e.g., solution of Ising 2D showed us how statistical mechanics can “do” phase transitions

Experimental observation only in 2006!

e.g., perturbation theory around integrable systems, 
Truncated Conformal Space Approach, …

 Holon  Spinon

  gap

Example: new phases of solids due to electronic interactions (Mott insulators), and 
their counterintuitive properties such as spin-charge separation



Solitons in the KdV equation Spin waves in the Heisenberg quantum ferromagnet

the magic of integrability (i.e. some 
powerful mathematical structures) looks 

tightly related to low dimensional 
dynamics



.. but there are 2D structures also in higher-D gauge theories

e.g. flux tube (effective string)…

… or we can have an exact duality with strings for 

some gauge theories at Nc → ∞ [Maldacena ’97]

Integrability seems to play some role, but 
is only approximate

Works by M. Caselle, F. Gliozzi, R. Tateo & Dubovsky et al
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Integrability in D >1+1

.. n pt 

Planar Feynman diagrams / string worldsheets 

Integrable structures in 1+1 d!

=4 Super Yang-Mills theory (SYM) in D=4  

In the planar limit 

𝒩

Nc → ∞

…

[Maldacena ’97]

[Minahan,Zarembo ’02]

’t Hooft coupling  λ = g2
YMNc



At the crossroads

N=4 SYM 

                   QCD 

String Theory on Curved Space

Conformal Field Theory  
(CFT) It is a critical theory. 

Important benchmark for
conformal bootstrap
(more on this below)

How can gauge theory do gravity?
What do we learn about one or the other?

AdS/CFT
Rare opportunity to solve it

Similarities (formal and sometimes phenomenological) for gluonic observables
e.g. Regge high-energy limits, Wilson lines, Amplitudes,…



More integrable crossroads

ABJM theory

Chern-Simons+Matter

AdS /CFT4 3

AdS /CFT3 2

AdS /CFT3 2

A different type of gauge theory in 3D 
(arising in condensed matter)

Strings  different models with large parameter space

Strings

CFT2
Mysterious non-Lagrangian theories living

on D-branes in string theory 

(Aharony Bergman Jafferis Maldacena)



How do we solve these new types of integrable 
theories?

“It is a spin chain/lattice model!” 

“The building blocks are hexagons!”

“It is a string!”

Let’s see what we can solve very well (non-perturbatively), how, and 
where we go from there

A lot of evidence for solvability of all correlators, at all orders in 1/Nc… 

but not there yet



the spectrum

⟨𝒪(x)�̄�(y)⟩ ∝ 1
|x − y |2Δ𝒪(g)

First conceptual solution: 
works by R. Tateo et al. , Arutyunov et al. , Kazakov et al. ‘09

Modern very powerful method is called 
“Quantum Spectral Curve” 

What we can really solve very well:

[Gromov, Kazakov, Leurent, Volin’13]

In each case, a complex analysis problem for “Q-functions”  
Qi(u)
  spectral parameter

What is it?

[AC, Gromov, Fioravanti, Tateo’14]

[AC, Gromov, Stefanski Torrielli]

+[Ekhammar,Volin] ‘21

=4 SYM 

  

𝒩
ABJM

  AdS /CFT3 2

 solution      <->      <->   point in the spectrumQi(u)



Can solve (almost) any question on the spectrum

Analytic continuation in Spin: Regge 

Trajectories

Exact numerical spectrum

Analytic computations and numerology:
N=4 SYM: Multiple Zeta Values


ABJM: alternating Multiple Zeta Values


[Marboe, Volin ’14]+…

 Anselmetti, Bombardelli, AC, Conti, Tateo]

Cusp anomalous dimension…

 From [Gromov, Levkovich-Maslyuk, Sizov ’15]

Spectrum of operators on Wilson line: [AC, Julius, Gromov, Preti ’21]

[Gromov, Levkovich-Maslyuk’15 ]

(also w.i.p. with R. Tateo and N. Brizio, V. Tripodi)



Beyond the spectrum



Q-functions  operator wave functions in a special basis↔

|Ψ2⟩

|Ψ1⟩

|Ψ3⟩

∝ ∫ ∏Q1( ⃗x )∏Q2( ⃗x )∏Q3( ⃗x ) dμ( ⃗x ) ?

[AC,Gromov,Levkovich-Maslyuk’18,‘21] 
 [Giombi, Komatsu ’18][Basso Georgoudis ’22] … 

One of the exciting (and difficult) frontier problems of my research field 
is understanding how to link the Quantum Spectral Curve 


and correlation functions

Much work is needed, but we are starting to see concrete examples of 
precisely this structure



Another way: Bootstrap

Conformal Field Theories satisfy consistency conditions

Crossing equations <-> conformal symmetry, unitarity, locality (OPE)
Not limited to large  .Nc

Complicated consistency equations for the conformal data  ,  Δk Cijk



e.g. critical exponents of Ising 3D [El-Showk,Paulos,Poland, 
Rychkov,Simmons-Duffin,Vichi ’12]+…

One of the recent revolutions in formal 

theory: analytical and numerical methods

to exploit these constraints

Numerical method gives rigorous bounds. 


Do they converge to precise values? How? 


What about theories with continuous parameters like N=4 SYM? 

[Beem, Rastelli, van Rees ’13]

Are they just somewhere inside the bounds?



Idea: combine integrability and conformal bootstrap.


…


A nice setup (avoids mixing orders in 1/Nc) is the defect sector: operators 
inserted on a straight Wilson line


?

[AC, Gromov, Julius, Preti, ’21-’23]

We can also get extra constraints from integrability considering 

deformations of the line into a cusp




First 3 OPE coefficients including the first 10 states

The error reduces from 16% to 75% depending on the coupling

Nder = 60



First 3 OPE coefficients including the first 10 states 
and 1 integrated correlator

Nder = 60

Constraint 2

Constraint 1



First 3 OPE coefficients including the first 10 states 
and both integrated correlator

Nder = 60 and 140

𝒪(1/g4)

𝒪(g8)

𝒪(g2)
𝒪(1/g0)



And surprisingly higher-point functions (not just constants) can be 
constrained tightly too

4-point function



there is much more to explore

• Is there a procedure at least in principle to get arbitrary precision?


• Move off from the Wilson line to study the local theory in 4D, maybe using 

consistency equations with the defect?


• Beyond large Nc?.


• And many more questions….


See [Caron-Huot, Coronado Zahraee ’22]!
[Billo`, Goncalves, Lauria, Meineri ‘2016] [Bianchi ’21,’22] 



Conclusions

Integrability and conformal bootstrap seem to have a lot to say 
about some gauge theories and AdS/CFT. 

We can already study non-perturbative phenomena and  
explore the mathematical structures of these models 
e.g. perturbative series and MZV, radius of convergence, complex spin… 

Until now the deepest understanding concerns the spectrum,  
but there are important indications that much more should be 
possible! 

Thank you for your attention!



Thank you for your attention!



Extra



𝒢1+ℬ2
(λ, χ) + ∑Δn

C2
1,1,Δn

𝒢Δn
(χ) = 0

Bootstrability setup
The bootstrap equation obtained before is

Now we have access to the spectrum! 1D CFT is unitary C2
1,1,Δ ≥ 0

This can be done efficiently with Semi Definite Programming.  

We use the powerful package SDPB

Truncation is necessary, but the bounds are rigorous:


      ,   bounds better and better for .α [f(χ)] ∼ ∑Nder
l=0 αl f (2l)(χ)

χ= 1
2

Nder → ∞

[Simmons-Duffin ’15]

Bounds on the allowed conformal data.

Try to find a linear functional , satisfying desired inequalities on conf. blocksα
Numerical bootstrap setup: 

[El-Showk,Paulos,Poland,Rychkov,

Simmons-Duffin,Vichi ’12]



𝒢1+ℬ2
(λ, χ) + C2

1,1,Δ1
𝒢Δ1

(χ) + ∑n≥2 C2
1,1,Δn

𝒢Δn
(χ) = 0

Bounds for the first OPE coefficient  C2
1,1,Δ1

 ,     


  for 


  is maximal 

αupper[𝒢Δ1
] = 1

αupper[𝒢Δ] ≥ 0 Δ ≥ Δ* ≡ Δ2

αupper[𝒢1+ℬ2
] ≡ − Bupper

Using SDPB, find the functional such that


Upper bound

−Bupper + C2
1,1,Δ1

+ ( ≥ 0 quantity) = 0

 ,     


  for 


  is maximal 

αlower[𝒢Δ1
] = − 1

αlower[𝒢Δ] ≥ 0 Δ ≥ Δ* ≡ Δ2

αlower[𝒢1+ℬ2
] ≡ Blower

Lower bound

+Blower − C2
1,1,Δ1

+ ( ≥ 0 quantity) = 0

Blower ≤ C2
1,1,Δ1

≤ Bupper



αupper [𝒢Δ]

Δ

Δ
αlower [𝒢Δ]

Δ2

Δ2

The two functionals for coupling g=1/2, Nder = 20



Strong coupling
[Ferrero Meneghelli ’21]

OPE coefficient  including only 2 statesC2
1,1,Δ1

Strong coupling
[Ferrero Meneghelli ’21]

Weak coupling
[Kiryu Komatsu’18] ; [AC, Gromov, Julius, Preti ’22]

The error is computed measuring the thickness of the region, namely 1/2(C2
upper − C2

lower)
Strong coupling has higher precision ( ) than weak coupling ( )10−4 10−2

[AC, Gromov, Julius, Preti ’21]



∫
1

0
δ𝒜(χ)

1 + log χ
χ2

dχ −
3ℂ − 𝔹

8 𝔹2
= 0 ∫

1

0

δf(χ)
χ

dχ −
ℂ

4 𝔹2
− 𝔽 + 3 = 0

Constraint 1 Constraint 2

Integrated correlators


