Equivariant Donaldson-Witten theory

Ekaterina Sysoeva

Università di Torino, Sezione INFN di Torino

Santo Stefano Belbo 11-12 Nov 2023

Outline

(1) Review. What is equivariant Donaldson-Witten theory?
(2) Equivariant localisation on \mathbb{R}^{4}. Recurrence relation for instantons
(3) Localisation on a $4 D$ sphere. How we can use our formula
(4) Equivariant localisation on compact toric manifolds

Supersymmetric field theory

- We consider en extension of Poincaré algebra with \mathcal{N} fermionic generators

$$
Q_{u}=\binom{Q_{\alpha u}}{\bar{Q}^{\alpha u}}, \quad u=1, \ldots, \mathcal{N}
$$

- Super Poincaré algebra

$$
\begin{array}{ll}
\left\{Q_{\alpha}^{u}, \bar{Q}_{\dot{\beta} v}\right\}=2 \delta_{v}^{u} \sigma_{\alpha \dot{\beta}}^{\mu} P_{\mu}, & {\left[P_{\mu}, Q_{\alpha u}\right]=0,} \\
{\left[M_{\mu \nu}, Q_{\alpha u}\right]=-\left(\sigma_{\mu \nu}\right)_{\alpha}^{\beta} Q_{\beta u},} & \left\{Q_{\alpha u}, Q_{\beta v}\right\}=0, \\
{\left[P_{\mu}, \bar{Q}_{\dot{\alpha} u}\right]=0,} & {\left[M_{\mu \nu}, \bar{Q}^{\dot{\alpha} u}\right]=-\left(\bar{\sigma}_{\mu \nu}\right)_{\dot{\beta}}^{\dot{\alpha}} \bar{Q}^{\dot{\beta} u}}
\end{array}
$$

- There is $U(\mathcal{N})$ symmetry called an R-symmetry

$$
Q_{\alpha u} \rightarrow U_{u}^{w} Q_{\alpha w}, \quad \bar{Q}_{\dot{\alpha}}^{u} \rightarrow U_{u}^{* w} \bar{Q}_{\dot{\alpha}}^{w}
$$

Topological field theories

There are two types of the topological field theories.
1°. Shwartz type: Action is explicitly metric independent.
2°. Cohomological type: There is an explicit metric dependence of the action, but the correlation functions do not depend on the metric.

- Q - scalar supersymmetry of the action and

$$
T_{\mu \nu}=\frac{\delta S}{\delta g^{\mu \nu}}=-\mathrm{i} Q G \mu \nu
$$

- $\mathcal{O}_{i}-Q$-invariant operators

$$
\frac{\delta}{\delta g^{\mu \nu}}\left\langle\mathcal{O}_{i_{1}} \cdots \mathcal{O}_{i_{n}}\right\rangle=0 \quad\left\langle\mathcal{O}_{i_{1}} \cdots \mathcal{O}_{i_{n}}(Q V)\right\rangle=0
$$

- Topological observables

$$
\mathcal{O} \in \frac{\operatorname{Ker} \mathrm{Q}}{\operatorname{Im} \mathrm{Q}}
$$

Topological twist of the $\mathcal{N}=2$ supersymmetric theory

- Field content of $\mathcal{N}=2$ theory: gauge field A_{μ}, two gluinos $\lambda_{v \alpha}$, complex scalar ϕ, auxiliary field $D_{u v}$
- Wick rotation $\mathbb{R}^{(3,1)} \rightarrow \mathbb{R}^{4}$
- Total symmetry group

$$
\overbrace{S U(2)_{-} \times \underbrace{S U(4)}_{S U(2)_{+}^{\prime}}}^{S U(2)_{+}} \times S U(2)_{R}) \times U(1)
$$

- $S U(2)_{R}$ indices $u, v \rightarrow \dot{\alpha}, \dot{\beta}$
- Twisted supercharges

$$
\begin{gathered}
\mathcal{Q}=\varepsilon^{\dot{\alpha} \dot{\beta}} \bar{Q}_{\dot{\alpha} \dot{\beta}}, \quad \mathcal{Q}_{\mu}=\frac{1}{2}\left(\sigma_{\mu}\right)^{\dot{\alpha} \beta} Q_{\dot{\alpha} \beta}, \\
\mathcal{Q}_{\mu \nu}^{+}=\frac{1}{2} \varepsilon^{\alpha \beta}\left(\sigma_{\mu}\right)^{\dot{\alpha} \alpha}\left(\sigma_{\nu}\right)^{\dot{\beta} \beta}\left(\bar{Q}_{\dot{\alpha} \dot{\beta}}+\bar{Q}_{\dot{\beta} \dot{\alpha}}\right)
\end{gathered}
$$

Twisted $\mathcal{N}=2$ theory

- Twisted group

$$
S U(2)_{-} \times S U(2)_{+} \times S U(2)_{R} \times U(1)_{R} \rightarrow S U(2)_{-} \times S U(2)_{+}^{\prime} \times U(1)_{R}
$$

- Twisted spin content of the fields

$$
\begin{aligned}
A_{\mu}(1 / 2,1 / 2,0)^{0} & \rightarrow A_{\mu}(1 / 2,1 / 2)^{0} \\
\lambda_{v \alpha}(1 / 2,0,1 / 2)^{-1} & \rightarrow \psi_{\mu}(1 / 2,1 / 2)^{1} \\
\bar{\lambda}_{v \dot{\alpha}}(1 / 2,0,1 / 2)^{1} & \rightarrow \eta(0,0)^{-1}, \chi_{\mu \nu}^{+}(1,0)^{-1} \\
\phi(0,0,0)^{-2} & \rightarrow \phi(0,0)^{-2} \\
\phi^{\dagger}(0,0,0)^{2} & \rightarrow \phi^{\dagger}(0,0)^{2} \\
D_{u v}(0,0,1)^{0} & \rightarrow D_{\mu \nu}^{+}(1,0)^{1}
\end{aligned}
$$

- No spinors, no more!

Donaldson-Witten theory on a manifold

- Twisted action is \mathcal{Q}-exact up to a topological term

$$
S=\mathcal{Q} V-\frac{1}{2} \int F \wedge F
$$

- Semi-classical approximation is exact!

$$
\begin{aligned}
\left\langle\mu_{1} \cdots \mu_{n}\right\rangle & =\int[\mathcal{D}] \mu_{1} \cdots \mu_{n} e^{-\frac{1}{g^{2}} \mathcal{Q} V} \\
\frac{\partial}{\partial g}\left\langle\mu_{1} \cdots \mu_{n}\right\rangle & =\frac{2}{g^{3}}\left\langle\mu_{1} \cdots \mu_{n}(\mathcal{Q} V)\right\rangle=0
\end{aligned}
$$

With $g \rightarrow 0$ the integral reduces to the integral over the classical solutions.

Equivariant twisted $\mathcal{N}=2$ theory on \mathbb{R}^{4}

- We can get a theory on \mathbb{R}^{4} from a theory in 6 D space $\mathbb{C} \times \mathbb{R}^{4}$ with flat metric

$$
\mathrm{d} s^{2}=A \mathrm{~d} z \mathrm{~d} \bar{z}+\mathrm{d} x^{2}
$$

by a standard torus identification

$$
(z, \bar{z}, x) \sim(z+n+m \tau, \bar{z}+n+m \bar{\tau}, x)
$$

- Nekrasov suggested to consider a theory on the Ω-background. Two ways to understand what it is:
1°. Keep the flat metric, but change the identification

$$
(z, \bar{z}, x) \sim\left(z+n+m \tau, \bar{z}+n+m \bar{\tau}, g_{1}^{n} g_{2}^{m} x\right)
$$

g_{1}, g_{2} are two commuting rotations on \mathbb{R}^{4}
2°. Keep the standard identification, but change the metric

$$
\mathrm{d} s^{2}=A \mathrm{~d} z \mathrm{~d} \bar{z}+g_{\mu \nu}\left(\mathrm{d} x^{\mu}+\xi_{\Omega}^{\mu} \mathrm{d} z+\bar{\xi}_{\Omega}^{\mu} \mathrm{d} \bar{z}\right)\left(\mathrm{d} x^{\nu}+\xi_{\Omega}^{\nu} \mathrm{d} z+\bar{\xi}_{\Omega}^{\nu} \mathrm{d} \bar{z}\right)
$$

$\xi_{\Omega}^{\mu}=\Omega_{\nu}^{\mu} x^{\nu}, \bar{\xi}_{\Omega}^{\mu}=\bar{\Omega}_{\nu}^{\mu} x^{\nu}$ and Ω_{ν}^{μ} are the generators of the rotations g_{1}, g_{2} on \mathbb{R}^{4}.

$$
\Omega^{\mu \nu}=\left(\begin{array}{cccc}
0 & \epsilon_{1} & 0 & 0 \\
-\epsilon_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \epsilon_{2} \\
0 & 0 & -\epsilon_{2} & 0
\end{array}\right), \bar{\Omega}^{\mu \nu}=\left(\begin{array}{cccc}
0 & \bar{\epsilon}_{1} & 0 & 0 \\
-\bar{\epsilon}_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & \bar{\epsilon}_{2} \\
0 & 0 & -\bar{\epsilon}_{2} & 0
\end{array}\right) .
$$

Nekrasov: in a theory on the Ω-background the supersymmetric charge preserving the action is not \mathcal{Q} but

$$
\tilde{\mathcal{Q}}=\mathcal{Q}+\Omega_{\nu}^{\mu} x^{\nu} \mathcal{Q}_{\mu}
$$

- Now we take observables from the equivariant cohomology $\mathcal{O} \in \frac{\operatorname{Ker} \tilde{Q}}{\operatorname{Im} \tilde{Q}}$

Equivariant localisation

- The scalar supersymmetric generator turns out to be an equivariant differential on the space of the field configurations.
- We can use the Localisation theorem to compute the correlators.

Localisation theorem

Let \mathcal{M} be a compact oriented D-dimensional smooth manifold equipped with the action of a group G with X being the locus of the fixed points. Then the integral of a closed equivariant form α is given by the localization formula:

$$
\int_{\mathcal{M}} \alpha=(-2 \pi)^{\frac{D}{2}} \int_{X} \frac{\alpha_{0}(X)}{e_{G}(\mathcal{N} X)}
$$

where $\alpha_{0}(x)$ is the zero-form part of α at the fixed point x.

Equivariant localisation on \mathbb{R}^{4}. Nekrasov partition function

- $\mathbf{a}=\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{C}^{N}$ are the vacuum expectation values of the Higgs field. $S U(N)$ theory: $\sum_{u=1}^{N} a_{u}=0$

$$
\mathcal{Z}(\mathbf{a})=Z_{\text {pert }}(\mathbf{a}) Z_{\text {inst }}(\mathbf{a}) \quad Z_{\text {inst }}(\mathbf{a})=\sum_{k=0}^{\infty} q^{k} Z_{k}(\mathbf{a})
$$

- Terms are parametrized by N Young diagrams $\vec{Y}=\left(Y_{1}, \ldots, Y_{N}\right)$ with the total number of boxes $|\vec{Y}|=k$.

$$
\begin{aligned}
Z_{k}(\mathbf{a})= & \sum_{\substack{\vec{Y} \\
|\vec{Y}|=k}}\left(\prod_{(i, j) \in Y_{u}}\left(a_{v u}+\epsilon_{1}\left(i-\tilde{I}_{Y_{v}, j}\right)-\epsilon_{2}\left(j-1-I_{Y_{u}, i}\right)\right)\right. \\
& \left.\cdot \prod_{(i, j) \in Y_{v}}\left(a_{v u}-\epsilon_{1}\left(i-1-\tilde{I}_{Y_{u}, j}\right)+\epsilon_{2}\left(j-I_{Y_{v}, i}\right)\right)\right)^{-1}
\end{aligned}
$$

$I_{Y, i}$ is the length of the i-th row of diagram Y, $\tilde{I}_{Y, i}$ is the length of the i-th column of diagram Y.

Zamolodchikov recurrence relation

- There is a recurrence relation in $S U(2)$ theory

$$
Z_{\text {inst }}(a)=1+\sum_{m, n=1}^{\infty} \frac{q^{m n} Z_{\text {inst }}\left(\epsilon_{m,-n}\right)}{\left(-a+\epsilon_{m, n}\right)\left(a+\epsilon_{m, n}\right)} \frac{2 \epsilon_{m, n}}{\prod_{\substack{i=-m+1 \\(i, j) \neq(0,0)}}^{m} \prod_{j=-n+1}^{n} \epsilon_{i, j}}
$$

- $\epsilon_{m, n}=m \epsilon_{1}+n \epsilon_{2}, a=a_{1}-a_{2} \triangleq a_{12}$
- Poles are simple and located at $a=\epsilon_{m, n}$ with $m \cdot n>0$.

$$
\operatorname{Res}_{a=\epsilon_{m, n}} Z_{\text {inst }}(a)=-q^{m n} \frac{Z_{\text {inst }}\left(\epsilon_{m,-n}\right)}{\prod_{\substack{i=-m+1 \\(i, j) \neq(0,0)}} \prod_{j=-n+1}^{n} \epsilon_{i, j}}
$$

- Equivalent form

$$
\lim _{\alpha \rightarrow 0} \frac{\mathcal{Z}\left(\alpha+\epsilon_{m, n}\right)}{\mathcal{Z}\left(\alpha+\epsilon_{m,-n}\right)}=-\operatorname{Sign}\left(\epsilon_{1}\right)
$$

Partial Weyl permutation

- $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^{N}$ are points of reference for \mathbf{a}

$$
\begin{array}{cc}
a_{1}=\alpha_{1}+m_{1} \epsilon_{1}+n_{1} \epsilon_{2} & \hat{a}_{1}=\alpha_{1}+m_{1} \epsilon_{1}+n_{1} \epsilon_{2} \\
\ldots & \\
a_{u}=\alpha_{u}+m_{u} \epsilon_{1}+\mathbf{n}_{\mathbf{u}} \epsilon_{2} & \\
\cdots & \hat{a}_{u}^{(u v)}=\alpha_{u}+m_{u} \epsilon_{1}+\mathbf{n}_{\mathbf{v}} \epsilon_{2} \\
a_{v}=\alpha_{v}+m_{v} \epsilon_{1}+\mathbf{n}_{\mathbf{v}} \epsilon_{2} & \rightarrow \\
\cdots & \hat{a}_{v}^{(u v)}=\alpha_{v}+m_{v} \epsilon_{1}+\mathbf{n}_{\mathbf{u}} \epsilon_{2} \\
\cdots \\
a_{N}=\alpha_{N}+m_{N} \epsilon_{1}+n_{N} \epsilon_{2} & \\
& \hat{a}_{N}^{(u v)}=\alpha_{N}+m_{N} \epsilon_{1}+n_{N} \epsilon_{2}
\end{array}
$$

- α_{u} is arbitrary (not necessary small)

Residue formula

- Poles are simple and located at $a_{u v}=\epsilon_{m n}$ with $m \cdot n>0$
- Residue of $Z_{\text {inst }}(\mathbf{a})$ w.r.t. $a_{u v}$ is proportional to the value $Z_{\text {inst }}\left(\hat{\mathbf{a}}^{(\mathbf{u v})}\right)$.

$$
\lim _{\alpha_{u v} \rightarrow 0} \frac{\mathcal{Z}(\mathbf{a})}{\mathcal{Z}\left(\hat{\mathbf{a}}^{(u v)}\right)}=-\operatorname{Sign}\left(\epsilon_{1}\right)
$$

It is exact with respect to all variables except $\alpha_{u v}$.

- In terms of only instanton part if has the form

$$
\operatorname{Res}_{\mathrm{a}_{u v}=\epsilon_{m, n}} Z_{\mathrm{inst}}(\mathbf{a})=q^{m n} \frac{1}{\mathcal{P}_{N}^{(u v)}(m, n \mid \mathbf{a})} Z_{\mathrm{inst}}\left(\hat{\mathbf{a}}^{(u v)}\right)
$$

where

$$
\mathcal{P}_{N}^{(u v)}(m, n \mid \mathbf{a})=\prod_{i=-m j=-n}^{m-1} \prod_{i, j}^{n-1} \epsilon_{i, j} \prod_{\substack{w=1 \\ w \neq u, v}}^{N} \prod_{i=1}^{m} \prod_{j=1}^{n}\left[\left(a_{v w}+\epsilon_{i, j}\right)\left(-a_{u w}+\epsilon_{i, j}\right)\right]
$$

Recurrence relation

- We chose $N-1$ independent variables to be $a_{u N}, u=1 \ldots N-1$ and assume that $a_{\hat{u} N}, \hat{u}=2 \ldots N-1$ are away from the poles as well as their differences $a_{\hat{u} N}-a_{\hat{v} N}$.
- $Z_{\text {inst }}(\mathbf{a})$ has poles only with respect to $a_{1 N}$ at the points $a_{1 N}=\epsilon_{m, n}$ and $a_{1 N}=\epsilon_{m, n}+a_{\hat{u} N}$

$$
\begin{gathered}
Z_{\text {inst }}(\mathbf{a})=1+\sum_{w=2}^{N} \sum_{m, n=1}^{\infty} \frac{q^{m n} Z_{\text {inst }}\left(\hat{\mathbf{a}}^{(1 w)}\right)}{\left(a_{1 N}-a_{w N}+\epsilon_{m, n}\right)\left(a_{1 N}-a_{w N}-\epsilon_{m, n}\right)} \\
\cdot \frac{2 \epsilon_{m, n}}{\mathcal{P}_{N}^{(1 w)}(m, n \mid \mathbf{a})}
\end{gathered}
$$

[E. Sysoeva \& A. Bykov. (2023). Recurrence relation for instanton partition function in SU(N) gauge theory. JHEP]

Localisation on S^{4}. Pestun's formula

- Partition function of nonequivariant $\mathcal{N}=2$ theory on S^{4}

$$
\begin{aligned}
\mathcal{Z}_{S^{4}} & =\frac{1}{\operatorname{vol}(G)} \int_{\mathfrak{g}}[\mathrm{d} a] e^{-2 \pi \mathrm{i} \tau r^{2} a^{2}} Z_{\text {lloop }}^{S^{4}}(a)\left|Z_{\text {inst }}^{\mathbb{R}^{4}}(a)\right|^{2} \\
& =\frac{1}{\operatorname{vol}(G)} \int_{\mathbb{R}^{N}} \mathrm{~d}^{N} a\left|Z_{\text {pert }}^{\mathbb{R}^{4}}(a) Z_{\text {inst }}^{\mathbb{R}^{4}}(a)\right|^{2}
\end{aligned}
$$

is expressed via the equivariant Nekrasov partition function with the equivariant parameters $\epsilon_{1}=\epsilon_{2}=r^{-1}$.

- It is a strong instrument to compute different correlators on a sphere.
- $Z_{\text {inst }}$ complicates calculations, especially in the case of $S U(N)$ gauge group, nut something has been done.

$$
\int \prod_{i=1}^{4} \mathrm{~d} x_{i} \mu\left(\left\{x_{i}\right\}\right)\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right) \mathcal{O}\left(x_{3}\right) \mathcal{O}\left(x_{4}\right)\right\rangle=\left.\frac{1}{4} \Delta_{\tau} \partial_{m}^{2} \log \mathcal{Z}_{S^{4}}\right|_{m=0}
$$

$4 D$ compact toric manifold

Compact toric manifold - algebraic torus $\left(\mathbb{C}^{*}\right)^{2}$ appropriately compactified by gluing with $\mathbb{C P}^{1}$ surfaces (divisors).

- Toric manifold comes with $U(1)^{2}$ action.
- There are χ fixed points of $U(1)^{2}$ and a standard cover by χ coordinate patches with a fixed point at the origin.
- Each patch is a copy of \mathbb{C}^{2} with $U(1)^{2}$ acting with the local weights $\epsilon_{1}^{\ell}, \epsilon_{2}^{\ell}$.
- It is a complex manifold which admit a Kähler form ω.
- Examples of compact toric manifolds: $\mathbb{C P}^{2}, S^{2} \times S^{2}, \ldots$

Partition function of the theory

We want to compute

$$
\mathcal{Z}_{\mathcal{M}}=\int[\mathrm{d} A][\mathrm{d} \Psi][\mathrm{d} \Phi][\mathrm{d} \bar{\Phi}][\mathrm{d} \eta]\left[\mathrm{d} \chi^{+}\right]\left[\mathrm{d} B^{+}\right] e^{-\int_{\mathcal{M}} \mathcal{L}}
$$

where the Lagrangian is

$$
\mathcal{L}=(\text { topological term })+\mathcal{Q} \mathcal{V}
$$

and
$\mathcal{V}=-\operatorname{Tr}\left[\mathrm{i} \chi^{(0,2)} \wedge F^{(2,0)}+\mathrm{i} \chi(\omega \wedge F-\lambda \omega \wedge \omega \mathbb{1})+\Psi \wedge \star(\mathcal{Q} \Psi)^{\dagger}+\eta \wedge \star(\mathcal{Q} \eta)^{\dagger}\right]$.

- Nekrasov conjectured

$$
\mathcal{Z}_{\mathcal{M}}=\sum_{\mathbf{k} \in \mathcal{R}} \operatorname{Res}_{\alpha=0} \prod_{\ell=1}^{\chi} \mathcal{Z}^{\mathbb{R}^{4}}\left(\alpha+k^{\ell} \epsilon_{1}^{\ell}+k^{\ell+1} \epsilon_{2}^{\ell}\right)
$$

\mathcal{R} is restricted by the stability conditions.

DI on compact toric manifolds in $S U(N)$

After a very long computation the answer turns out to be

$$
\mathcal{Z}_{\mathcal{M}}=\lim _{\delta \rightarrow 0} \sum_{\mathbf{k} \in \mathbb{Z} \chi(N-1)} \mathrm{JK}\left[e^{i \delta \boldsymbol{\kappa} \cdot \boldsymbol{\alpha}} \mathcal{Z}(\boldsymbol{\alpha}, \mathbf{k})\right]
$$

where

$$
\mathcal{Z}(\boldsymbol{\alpha}, \mathbf{k})=\prod_{\ell=1}^{\chi} \mathcal{Z}^{\mathbb{R}^{4}}\left(\alpha+k^{\ell} \epsilon_{1}^{\ell}+k^{\ell+1} \epsilon_{2}^{\ell}, q e^{\Omega_{\ell}}\right)
$$

- Stability conditions are hidden in $e^{i \delta \kappa \cdot \alpha}$

$$
\boldsymbol{\kappa} \cdot \boldsymbol{\alpha}=\sum_{u=1}^{N} \kappa_{u} \alpha_{u} \quad \kappa_{u}=\sum_{\ell=1}^{\chi} k_{u}^{\ell} \int_{\mathcal{D}_{\ell}} \omega
$$

Some more explicit answers

- With the $S U(2)$ gauge group we get

$$
\mathcal{Z}_{\mathcal{M}}=\sum_{k^{\ell} \in \mathbb{Z}^{x}} \operatorname{sign}(k) \operatorname{Res}_{\alpha=0} \mathcal{Z}(\alpha, \mathbf{k})
$$

[Bonelli et al. (2021). Gauge theories on compact toric manifolds.]

- With the $S U(3)$ gauge group we get

$$
\begin{array}{r}
\mathcal{Z}_{\mathcal{M}}=\sum_{\mathbf{k} \in \mathbb{Z}^{2} \chi} \operatorname{sign}\left(\kappa_{2}+\kappa_{3}-2 \kappa_{1}\right) \operatorname{sign}\left(\kappa_{1}+\kappa_{3}-2 \kappa_{2}\right) \\
\operatorname{Res}_{\alpha_{12}=0} \operatorname{Res}_{\alpha_{23}=0} \mathcal{Z}(\boldsymbol{\alpha}, \mathbf{k})
\end{array}
$$

- Number of terms is actually finite.
- Numerical computations are very demanding in terms of the computational power even with the $S U(3)$ gauge group.

Possible directions of future research

- Direct application of the recurrence relation to some computational problems
- Understand what the recurrence relation means in terms of the dual CFT theory
- Consider non-commutative instantons on compact toric manifolds
- Build the 5D and 6D theories on compact toric manifolds

Thank you for the attention!

