

20-21/11/2023

Applicazione della fisica dei raggi cosmici

La Radiografia Muonica come strumento di *Imaging*

Discover Cosmic Rays

La radiografia Muonica

Cosa sono i Muoni??

I raggi cosmici primari provenienti dall'universo incidono sulla nostra atmosfera producendo uno «sciame» di particelle

I muoni μ sono i raggi cosmici secondari carichi più abbondanti al livello del suolo.

I muoni sono le particelle cariche più penetranti in materia, possono attraversare km di roccia -> Usati per fare le «muografie»

Introduzione:

La tecnica della radiografia muonica

La **radiografia muonica (o muografia) è una tecnica di** *imaging* **che permette di creare immagini bidimensionali o tridimensionali della densità interna dell'oggetto in esame (detto** *target***) attraverso misure di assorbimento di muoni cosmici**. I rivelatori utilizzati sono **tracciatori** (tracker) di particelle cariche.

<u>Il principio di funzionamento</u> è lo stesso della radiografia a raggi X, studia

l'assorbimento delle particelle all'interno del target

- <u>Prima applicazione</u> nel 1969 alla piramide di Chepren a Giza per la ricerca di camere nascoste
- È una tecnica non invasiva
- Molti ambiti di applicazione: geologico, minerario, archeologico, sicurezza civile
 - <u>Tempi di acquisizione</u>: qualche mese

Rivelatori per misure di radiografia muonica

La tecnica della radiografia muonica:

Rivelatori: tracciatori di particelle

I rivelatori utilizzati per le applicazioni di radiografia muonica sono dei tracciatori (tracker).

I tracciatori sono dei rivelatori costituiti da materiali sensibili al passaggio di particelle cariche e permettono di ricostruire la traiettoria della particella che ha attraversato il rivelatore e ottenere così la direzione di provenienza.

Esempio di tracciatore:

MIMA (Muon Imaging for Mining and Archaeology)

Cubo di dimensioni (50x50x50) cm³ che poggia su una piattaforma orientabile Ogni <u>modulo tracciante XY</u> è costituito da un piano X e un piano Y e permette di ottenere il <u>punto XY d'impatto della particella</u>.

Esempio di ricostruzione della traccia di una particella

X-Z view

<u>Materiale</u>: Scintillatore plastico a sezione triangolare, dimensione singola barra (4x2x40) cm. Numero barre per piano: 21.

ADC counts

Metodologia della tecnica della radiografia muonica

International-Cosmic-Day (ICD) 2023

La tecnica della radiografia muonica:

Cosa si misura

Da una misura di radiografia muonica si ottiene il numero di muoni che arriva da ogni direzione osservabile dal rivelatore $N_{\mu}(\theta, \phi)$ con θ angolo di zenit e ϕ angolo di azimut. Dall'attenuazione del flusso di muoni dovuto al target si possono individuare delle anomalie interne.

- Il rivelatore va puntato verso il target e deve trovarsi il più possibile sotto di esso per avere un flusso di muoni il più possibile verticale (angolo per il quale il flusso è massimo)
- ✓ $N_{\mu}(\theta, \phi)$ dipende dal target (forma e densità) ma anche <u>dal flusso di raggi cosmici a terra</u> e <u>dal rivelatore</u> attraverso la sua efficienza e accettanza.

Per avere $N_{\mu}(\theta, \phi)$ dipendente solo dal target e poter così ben individuare e localizzare le possibili anomalie interne sono necessarie misure e simulazioni.

La tecnica della radiografia muonica: Metodologia

Imaging Metodologia \rightarrow Mappe di densità del target

Mappe 2D di densità interna del target

Mappe 3D di densità interna del target

<u>Tecnica della triangolazione:</u> Per una visione **stereoscopica** è possibile installare i rilevatori in più punti e combinare i risultati:

 <u>Tecnica delle retroproiezioni</u>: stima la distanza dall'anomalia utilizzando i dati acquisiti da una singola misura (applicabile solo in alcune condizioni).

International-Cosmic-Day (ICD) 2023

Applicazione in ambito idrogeologico e di sicurezza civile

La radiografia muonica di argini fluviali e dighe

122220

International-Cosmic-Day (ICD) 2023

La tecnica della radiografia muonica:

Applicazione in ambito idrogeologico

Ricerca di cavita non mappate (danneggiamento causato dall'attività di fauna locale) finalizzata alla programmazione di interventi mirati di manutenzione

Il puntamento dello strumento è quasi orizzontale (tecnica al limite).

I risultati sono in accordo con quelli di una *indagine geoelettrica* eseguita nello stesso periodo.

Ricerca di anomalie interne al corpo diga relativamente alla Diga di Bilancino. Dati in fase di studio.

Diga di Bilancino (FI)

Sez. A Sez. A Sez. A Sez. B Disposizione di tre misure di radiografia muonica con il rivelatore MIMA

strumentate

Lago di Bilancino (FI)

Applicazione in ambito archeologico La radiografia muonica di siti archeologici

Ricerca e ricostruzione di cavita non mappate alla Galleria Borbonica a Napoli

Galleria Borbonica (NA)

Galleria Borbonica: ingresso

Galleria Borbonica: esterno

Galleria Borbonica: misura

Sono state individuate due nuove regioni da esplorare!!

Necropoli del Palazzone Perugia

Studio Muografico della Necropoli del Palazzone (Perugia) Risultati muografici e sopralluogo preliminare

Muografia alla necropoli del Palazzone

Applicazione in ambito industriale

Misura in corso! Sito di Misura: Altoforno situato nell'acciaieria dell'Arcelormittal a Brema (Germania)

Applicazione in ambito geologico

La radiografia muonicardi miniere

Ricerca di cavità alla miniera del Temperino a Campiglia Marittima (Toscana) d'interesse archeologico e geologico e finalizzate alla messa in sicurezza della miniera

Mappe angolari 2D di densità:

Oltre alla Gran Cava sono visibili altri segnali a bassa densità

Ricostruzione 3D delle cavità osservate con la radiografia muonica

Sono in atto ricerche per l'ispezione delle nuove cavità

Ref: Borselli, D., Beni, T., Bonechi, L. *et al.* Three-dimensional muon imaging of cavities inside the Temperino mine (Italy). *Sci Rep* **12**, 22329 (2022). https://doi.org/10.1038/s41598-022-26393-7

La tecnica della radiografia muonica:

Applicazione in ambito geologico minerario

Sigla	Tipo di giacimento	Caratteri geochimici	Località	Processo genetico	Rocce incassanti
G1	Skarn a hedenbergite, ilvaite ± johannsenite	Cu, Pb, Zn, Fe,	<u>Min. del Temperino</u> Min. dei Lanzi Valle dei Manienti	Idrotermali magmatici di sostituzione	Marmi bianchi, (Giura)
G2	Aureola di contatto e skarn ± vene di quarzo e clorite	Cu, Zn, Pb, As, Fe, Sn, W, Th	Botro ai Marmi Monte Spinosa	Idrotermali magmatici di sostituzione	Marmi grigi e bianchi (Trias- Giura), granito (Mio-Pliocene).
G3	Vene e masse di cassiterite, pirite e idrossidi di Fe ± scheelite e tormalina	Sn, W, Fe, As	Monte Valerio Cento Camerelle Valle Pozzatello Monte Spinosa Campo alle Buche	Idrotermali magmatici in vene e disseminazioni	Marmi grigi e bianchi, diaspri, calcari e marne (Trias-Giura)
G4	Masse di idrossidi di Fe	Fe, As, Cu, Pb, Zn, Sn	Campo alle Buche Colle Sant'Antonio Cento Camerelle	alterazione supergenica alle spese di depositi a skarn e a solfuri	Marmi grigi e bianchi, diaspri, calcari e marne (Trias-Giura)
NW Earle shaft					

I livelli e le gallerie della miniera del Temperino sono stati scavati verticalmente e orizzontalmente all'interno dello skarn per trovare i depositi minerari arricchiti in Cu-Fe. Tra questi, i principali depositi si trovano all'interno del corpo di skarn e raramente le superfici di contatto tra marmo e skarn sono

mineralizzate.

La tecnica della radiografia muonica:

Applicazione in ambito geologico minerario

0.01165

0,00012,500 25,000 37,5050,000

T. Beni, D. Borselli, L. Bonechi et al., *Transmission-Based Muography for Ore Bodies Prospecting: A Case Study from a Skarn Complex in Italy*, Nat. Resour. Res. **32** (2023) 1529. DOI: 10.1007/s11053-023-10201-8

Discover Cosmic Rays

INTERNATIONAL COSNIC DAY

International-Cosmic-Day (ICD) 2023