

International-Cosmic-Day (ICD) 2022

21-22/11/2022

Applicazione della fisica dei raggi cosmici

Discover Cosmic Rays

La Radiografia Muonica come strumento di *imaging*

Introduzione:

La tecnica della radiografia muonica

La **radiografia muonica (o muografia) è una tecnica di** *imaging* **che permette di creare immagini bidimensionali o tridimensionali della densità interna dell'oggetto in esame (detto** *target***) attraverso misure di assorbimento di muoni cosmici**. I rivelatori utilizzati sono **tracciatori** (tracker) di particelle cariche.

<u>Il principio di funzionamento</u> è lo stesso della radiografia a raggi X, studia

l'assorbimento delle particelle all'interno del target

- <u>Prima applicazione</u> nel 1969 alla piramide di Chepren a Giza per la ricerca di camere nascoste
- È una tecnica non invasiva
- Molti ambiti di applicazione: geologico, minerario, archeologico, sicurezza civile
 - <u>Tempi di acquisizione</u>: qualche mese

La tecnica della radiografia muonica Perché usare i muoni?

I muoni μ sono i raggi cosmici secondari carichi più abbondanti al livello del suolo.

I muoni vengono prodotti in atmosfera principalmente dal decadimento dei pioni carichi:

 $\pi^+ \rightarrow \mu^+ + \nu_\mu$; $\pi^- \rightarrow \mu^- + \overline{\nu_\mu}$

I muoni hanno una vita media τ di ~2.2 μ s ed una massa $m_{\mu} = 106 MeV/c^2$ e la loro volta decadono in elettroni e positroni:

$$\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \nu_e \quad ; \quad \mu^- \rightarrow e + \overline{\nu_e} + \nu_\mu$$

La relativamente lunga vita media permette, ad una buona percentuale di μ , di raggiungere il suolo

In <u>direzione verticale al livello del mare il flusso di</u> μ è di circa 100/s m² e decresce come <u> $cos^2(\theta)$ </u> in funzione dell'angolo zenitale θ

I muoni sono le particelle cariche più penetranti in materia, possono attraversare km di roccia -> Usati per fare le «muografie»

Rivelatori per misure di radiografia muonica

La tecnica della radiografia muonica:

Rivelatori: tracciatori di particelle

I rivelatori utilizzati per le applicazioni di radiografia muonica sono dei tracciatori (tracker).

I tracciatori sono dei rivelatori costituiti da materiali sensibili al passaggio di particelle cariche e permettono di ricostruire la traiettoria della particella che ha attraversato il rivelatore e ottenere così la direzione di provenienza.

Esempio di tracciatore:

<u>MIMA</u> (Muon Imaging for Mining and Archaeology)

Ogni <u>modulo tracciante XY</u> è costituito da un piano X e un piano Y e permette di ottenere il punto XY d'impatto della particella.

Esempio di ricostruzione della traccia di una particella

X-Z view

Cubo di dimensioni (50x50x50) cm³ che poggia su una piattaforma orientabile

<u>Materiale</u>: Scintillatore plastico a sezione triangolare, dimensione singola barra (4x2x40) cm. Numero barre per piano: 21.

ADC counts

Metodologia della tecnica della radiografia muonica

International-Cosmic-Day (ICD) 2022

La tecnica della radiografia muonica:

Cosa si misura

Da una misura di radiografia muonica si ottiene il numero di muoni che arriva da ogni direzione osservabile dal rivelatore $N_{\mu}(\theta, \phi)$ con θ angolo di zenit e ϕ angolo di azimut. Dall'attenuazione del flusso di muoni dovuto al target si possono individuare delle anomalie interne.

- Il rivelatore va puntato verso il target e deve trovarsi il più possibile sotto di esso per avere un flusso di muoni il più possibile verticale (angolo per il quale il flusso è massimo)
- ✓ $N_{\mu}(\theta, \phi)$ dipende dal target (forma e densità) ma anche <u>dal flusso di raggi cosmici a terra</u> e <u>dal rivelatore</u> attraverso la sua efficienza e accettanza.

Per avere $N_{\mu}(\theta, \phi)$ dipendente solo dal target e poter così ben individuare e localizzare le possibili anomalie interne sono necessarie misure e simulazioni.

La tecnica della radiografia muonica: Metodologia

Imaging Metodologia \rightarrow Mappe di densità del target

Mappe 2D di densità interna del target

Variando $\bar{\rho}(\theta, \phi) : T_{misu}(\theta, \phi) = T_{simu}(\theta, \phi, \bar{\rho}) \longrightarrow$

$\boldsymbol{\rho}_{target}(\theta, \phi)$

Mappe 3D di densità interna del target

Tecnica della triangolazione: Per una visione stereoscopica è possibile installare i rilevatori in più punti e combinare i risultati:

Tecnica delle retroproiezioni: stima la distanza dall'anomalia utilizzando i dati acquisiti da una singola misura (applicabile solo in alcune condizioni).

International-Cosmic-Day (ICD) 2022

Applicazione in ambito idrogeologico e di sicurezza civile

La radiografia muonica di argini fluviali e dighe

STATISTICS.

La tecnica della radiografia muonica:

Applicazione in ambito idrogeologico

Ricerca di cavita non mappate (danneggiamento causato dall'attività di fauna locale) finalizzata alla programmazione di interventi mirati di manutenzione

Il puntamento dello strumento è quasi orizzontale (tecnica al limite).

I risultati sono in accordo con quelli di una *indagine geoelettrica* eseguita nello stesso periodo.

Applicazione in ambito archeologico La radiografia muonica di siti archeologici

Ricerca e ricostruzione di cavita non mappate alla Galleria Borbonica a Napoli

Galleria Borbonica (NA)

Galleria Borbonica: ingresso

Galleria Borbonica: esterno

Galleria Borbonica: misura

Sono state individuate due nuove regioni da esplorare!!

Ricerca e ricostruzione di cavita non mappate alla Necropoli del Palazzone - Perugia

Applicazione in ambito geologico

La radiografia murantea di miniére

International-Cosmic-Day (ICD) 2022

Ricerca di cavità alla miniera del Temperino a Campiglia Marittima (Toscana) d'interesse archeologico e geologico e finalizzate alla messa in sicurezza della miniera

Risultati delle misure di radiografia muonica realizzate con MIMA

Ogni colore rappresenta un valore del numero di muoni rivelato in quella direzione

Ricostruzione 3D delle cavità osservate con la radiografia muonica

Non solo cavita....

Ricostruzione 3D del corpo denso

