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Introduction: the magnetic moment of a lepton

The magnetic moment µ of a charged object parameterizes
the torque that a static magnetic field exerts on it.

For a charged spin-1/2 particle:

µ = g
e

2m
S

g is the well-known gyromagnetic factor.

In QFT the response of a charged lepton (say a muon µ) to a static and uniform e.m.
field is encoded in (k = p1 − p2)

⟨µ(p2)|Jν
em(0)|µ(p1)⟩ = −ieū(p1)Γν(p1, p2)u(p2)

Lorentz invariance and e.m. current conservation constrain Γν -structure:

Γν(p1, p2) = F1(k2)γν +
i

2mµ
F2(k2)σνρkρ + P-violating terms
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The muon anomalous magnetic moment

Gyromagnetic factor gµ related to form-factors F1(k2) and F2(k2) through
gµ = 2 [F1(0) + F2(0)]

• Electric charge conservation =⇒ F1(0) = 1.

• At tree level in the SM: F2(0) = 0 =⇒ gµ = gDirac
µ ≡ 2.

The muon anomalous magnetic moment:

aµ =
gµ − 2

2
= F2(0)

non-zero only at loop level. Contributions from all SM (and BSM) fields. E.g.

If very precisely measured can be a crucial probe of the completeness of the SM. Is it? 2



Latest update (August ’23) from FNAL experiment

gµ − 2 @BNL (up to 2006) =⇒ transfer to Fermilab =⇒ gµ − 2 @Fermilab

20.0 20.5 21.0 21.5 22.0 22.5

BNL

FNAL Run-1

FNAL Run-2/3

FNAL Run-1 + Run-2/3

Exp. Average

a × 10
9

1165900

aexp
µ = 116 592 059(22) × 10−11 [0.19ppm] Congratulations!!

Results from Run-4/5/6 expected in 2025 3



Why did we pick the muon (and not e, τ) ?

Electron anomalous magnetic moment is measured with even higher precision
(x1000):

aexp
e = 1 159 652 180.73(28) × 10−12 [0.0002 ppm]

However, NP contributions expected to be

=⇒ aA
ℓ ∝ m2

ℓ /m2
A

m2
µ/m2

e ≃ 43 000

aτ would have a much higher enhancement due to NP but decays too fast. . .

−0.052 < aexp
τ < 0.013
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Can we match, on the theory side, the experimental accuracy on aµ?
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The Muon g − 2 Theory Initiative

The muon g − 2 TI has been established in 2017 with the aim of matching
the precision of the SM-theory prediction for aµ with the experimental one.

https://muon-gm2-theory.illinois.edu

• Composed by experts in lattice QCD, dispersive approach, perturbative
calculations, . . .

• First white paper out in ’20 [Physics Reports 887 (2020)]. Second in preparation.

• Last TI meeting in Bern, next one at KEK (Tsukuba, Japan).
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The muon magnetic moment in the SM

aµ can be decomposed into QED, weak and hadronic contributions

aµ = aQED
µ︸ ︷︷ ︸

>99.99%

+ aweak
µ + ahad

µ︸︷︷︸
non-perturbative

• The QED contribution to aµ is completely dominant. LO (1-loop)
contribution evaluated by J. Schwinger in 1948

=⇒ aQED,1−loop
µ = α

2π

• Since Schwinger’s calculation many more QED-loops included... 7



The QED contribution aQED
µ

Two-loops QED contributions to aµ

To match experimental accuracy ∆aexp
µ ≃ O(10−10) several orders in the

perturbative α expansion need to be considered

aQED
µ =

α

2π
+

∞∑
n=2

Cn
µ

(
α

π

)n

• Number of Feynman diagrams quickly rises with n: 1, 7, 72, 891, 12672, ...

• Heroic effort to compute them up to five-loops [T. Aoyama et al. PRLs, 2012]

C6
µ

(
α

π

)6
≃ C6

µ × 10−16 requires unnaturally large C6
µ ≃ O(106) to be relevant!!

aQED
µ = 116 584 718.931(104) × 10−11 ✓
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The weak contribution aweak
µ

aweak
µ defined as the sum of all loop diagrams containing at least a W, H, Z.

• Smallest of the three contributions due to Fermi-scale suppression:

aweak
µ ∝ α2

W

m2
µ

M2
W

≃ O(10−9)

Sample of one-loop weak diagrams:

• At target precision of ∼ 0.1 ppm two-loops calculation is sufficient [Czarnecki et
al PRD (2006), Gnendiger et al PRD (2013)].

aweak
µ = 153.6(1.0) × 10−11 ✓
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The hadronic contribution ahad
µ

Contributions to ahad
µ at target accuracy of O(10−10):

ahad
µ = aHVP−LO

µ︸ ︷︷ ︸
O(7×10−8)

+ aHlbl
µ︸︷︷︸

O(10−9)

+ aHVP−NLO
µ︸ ︷︷ ︸
O(10−9)

+ aHVP−NNLO
µ︸ ︷︷ ︸
O(10−10)

HVP-LO =⇒ ⇐= Hlbl

• NLO and NNLO HVP contributions relevant at target accuracy. At NLO:

• However, they can obtained from same non-perturbative input of aHVP−LO
µ .

Hence we shall discuss only the latter.
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How important are hadronic contributions?

The uncertainty in the theory prediction for aµ dominated by the hadronic
contribution, despite its smallness

Dominant source of uncertainty is aHVP−LO
µ

• Hadronic contributions are fully non-perturbative.

• Two main approaches to evaluate them:

Dispersive approach:

• Relates full aHVP−LO
µ to e+e− → hadrons

cross-section via optical theorem.

• For Hlbl (only) low-lying intermediate-states
contributions can expressed in terms of
transition form-factors TFFs.

Lattice QCD:

• Only known first-principles SM method to
evaluate both aHVP

µ and aHlbl
µ .

• In the past the accuracy of the predictions
were not good enough. The situation has
recently changed. 11



The hadronic light-by-light contribution

aHlbl
µ occurs at O(α3). Related to 2 → 2 (generally virtual) photons scattering

It involves the fourth-rank VP tensor:

T ⟨0|JµJνJρJσ |0⟩ = Πµνρσ(k1, . . . , k4)

• In the dispersive framework [Colangelo et al. JHEP09 (2015)] one isolates the
dominant intermediate-states contributions:

• parameterized by transition form-factors TFFs. For dominant π0-pole contr.

i

∫
d4xeiqxT ⟨0|Jµ(x)Jν(0)|π0(p)⟩ = ϵµναβqαpβFπ0γ∗γ∗ (q2, (q − p)2)

TFFs from dispersion relations (using available exp. input) or recently from LQCD. 12



The hadronic light-by-light on the lattice

The cleanest, assumptions-independent, way of computing aHlbl
µ is given by Lattice

QCD. The lattice QCD input is the 4-point correlation function of e.m. currents

Πµνρσ(x, y, z, w) = T ⟨0|Jµ(x)Jν(y)Jρ(z)Jν(w)|0⟩

• Long distance contribution very noisy. Noise rapidly increases reaching mphys
π .

• Clever tricks employed to reduce computational cost. Lattice input can be
compressed into

iΠ̂ρ,µνλσ(x, y) =
∫

dz zρ⟨0|Jµ(x)Jν(y)Jσ(z)Jλ(0)|0⟩

aHlbl
µ =

mµe6

3

∫
d4 y

∫
d4 x L[ρ,σ],µνλ(x, y)︸ ︷︷ ︸

QED kernel

i Π̂ρ,µνλσ(x, y)︸ ︷︷ ︸
QCD input

• So far two lattice Collaborations have fully computed aHlbl
µ :

RBC/UKQCD (’21, ’23) and MAINZ (’22).
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Summary of current status for aHlbl
µ

[Taken from A. Gerardin talk at TI Meeting ’23, Bern]

aHlbl;π0
µ × 1011 [This work=BMWc]

• Lattice calculations of aHlbl
µ in line, though with somewhat larger central values,

with the dispersive result from WP ’20.

• Lattice calculations of aHlbl;π0
µ slightly smaller (1.7σ) than dispersive one.

• 10% accuracy goal for aHlbl
µ seems achievable. Many lattice Coll. working on

both full aHlbl
µ and pseudoscalar TFFs (π0, η, η′). 14



The LO hadronic-vacuum-polarization (HVP) contribution

aHVP−LO
µ is the largest of the hadronic contributions.

• Until ’20 LQCD calculations above percent level accuracy.

• However, aHVP−LO
µ is related to σ(γ∗ → hadrons) through optical theorem. . .

• In terms of the e+e− → hadron cross-section or actually the R-ratio:

R(E) =
σ(e+e−(E) → hadrons)
σ(e+e−(E) → µ+µ−)

• one has a very simple formula for aHVP−LO
µ

aHVP−LO
µ =

∫ ∞

mπ

dE R(E) K̃(E)︸ ︷︷ ︸
analytic function

0
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2.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

m
µ
K̃
(E

)
×

10
7

E [GeV]
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aHVP−LO
µ from the dispersive approach (I)

The central idea is to replace R(E) → Rexp(E) and use previous formula.
e+e− → hadrons measured since ’60 in various experiments

Inclusive measurement of Rexp(E) obtained summing more than fourty
exclusive channel measurements (comb. of various exp. , dominated by π’s).

WP ’20, pre-CMD3

Two main groups involved in the analysis: DHMZ, KNT.
DHMZ = Davier-Hoecker-Malaescu-Zhang, KNT = Keshavarzi-Nomura-Teubner 16



aHVP−LO
µ from the dispersive approach (II)

Combination of DHMZ and KNT results gives:

aHVP−LO
µ [disp.] = 6931(40) × 10−11 [WP ’20]

A word of caution here, after all we are trading what should be a SM prediction with
the results from (many) experiment. Replacement OK if:

• All relevant decay channels identified.

• No underestimated uncertainty in any of the
relevant channels (ISR & hadron/lepton VP
insertion subtracted properly?).

• No NP contamination in the measurement
(e.g. e+e− → A∗

NP → hadrons).

Pre-CMD3

BABAR-KLOE discrepancy in ππ-channel
considered ”acceptable” in WP ’20

Under these assumptions. . .
17



The g − 2 puzzle

• Using aHVP
µ from dispersive analysis as in WP ’20 a > 5σ discrepancy present.

• Did we find NP?

• In the meantime the g − 2 puzzle has evolved because Lattice QCD entered the
game. . .
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aHVP−LO
µ from lattice QCD

On the lattice, evaluating aHVP−LO
µ is much easier than aHlbl

µ .

The QCD input is the 2-point Euclidean correlation function of e.m. currents:

C(t) =
1
3

∫
d3x ⟨0|Ji

em(t, x)Ji
em(0)|0⟩ Ji

em =
2
3

ūγiu −
1
3

d̄γid −
1
3

s̄γis +
2
3

c̄γic

aHVP−LO
µ =

∫ ∞

0
dt K(t)︸︷︷︸
analytic kernel

C(t) K(t)
t≫m−1

µ→ t2 [Enhancement of C(t) tail]

1e-09

1e-08

1e-07

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01
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C(t ≫ a) ∼ e−2mπt C(t)
∆C(t) ∼ e−mπt

[G. Parisi, 1984]

a
3
C
(t
)

u
d
−

qu
ar

ks

t [fm]

Large times noisy

Main difficulties for subpercent accuracy:
• S/N problem at large times.

• Large lattice volumes V = L3 required to
fit the light ππ states.

• Isospin-breaking effects α3, α2(md − mu)
needs to be computed at target accuracy.
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BMWc crosses the Rubicon [Nature 593 (2021)]

• Order of magnitude improvement in stat. accuracy

• Large lattice volumes up to L ≃ 11 fm

• Seven lattice spacings to control UV cut-off effects.

Modern algorithms and new methods

Adaptative solvers & eigendeflation
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The aµ discrepancy after BMWc’s result

• BMWc’s result is 2.1σ larger then aµ[disp.].

• . . .and only 1.7σ smaller than FNAL+BNL results
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A pretty confusing situation. . .

To clear up the situation we need. . .double-checks!!

At this point it is also very important to divide the puzzle into two different branches

aHVP−LO
µ :

• BMWc is, as of today, the only Coll. that
computed aHVP−LO

µ at subpercent accuracy.

• Given the complexity of the calculation,
independent lattice calculations are
fundamental to establish the faith of the aµ

anomaly.

• Four Coll., RBC/UKQCD, FNAL, ETMC,
MAINZ, expected to give an update in ’24.

e+e− → hadrons:

• We need stringent tests of the experimental
R(E) against SM (i.e. lattice) predictions.

• Can we cook-up R(E)-based observables
capable in principle of magnifying the
previous discrepancy?

• E.g. by easing the lattice calculation. . .

• Tests of e+e− totally independent of aexp
µ .
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The Euclidean windows to test e+e− → hadrons

To perform stringent tests of R(E) we are not bound to aHVP−LO
µ∫ ∞

0
dt K(t) C(t)︸ ︷︷ ︸

lattice, SM

= aHVP−LO
µ =

∫ ∞

Mπ

dE K̃(E) Rexp(E)︸ ︷︷ ︸
dispersive, experimental⇓ ⇓∫ ∞

0
dt K(t) C(t) Θw(t)︸ ︷︷ ︸

lattice, SM

= aw
µ =

∫ ∞

Mπ

dE K̃(E) Rexp(E) Θ̃w(E)︸ ︷︷ ︸
dispersive, experimental
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• ΘSD + ΘW + ΘLD = 1. w = {SD, W, LD} probe R(E) at different energies.

• aSD/W very precise on the lattice =⇒ may enhance differences with Rexp(E). 23



The short- and intermediate-distance windows

In ’22 many lattice Collaborations computed aW
µ and we (ETM) also aSD

µ .

intermediate-distance =⇒ E ≲ 1 GeV (ππ, πππ)

225 230 235 240 245 250

Rexp(E)
4.5σ

Informal average

aWµ × 1010

ETMC-22

CLS/MAINZ-22

BMW-20

RBC/UKQCD-23

short-distance =⇒ Large E ≳ 1GeV

67 67.5 68 68.5 69 69.5 70 70.5

1.4σ

Rexp(E)

aSDµ × 1010

ETMC-22

• Many more lattice results for ud-quark contribution. All in line ✓.

• A big achievement for the lattice community.

• Striking ∼ 4.5σ tension with Rexp(E)-based results for aW
µ . 24



Implications of windows results

• High-energy part of Rexp(E) in line
with SM prediction.

• Hadronic running of α at the Z-scale
(∆α(M2

Z)) in line with Rexp(E)
results [Cè et al, JHEP 08 (2022)].

• EW precision tests not affected by the
observed low-energy tension.

• aW
µ results suggest strong deviation

of Rexp(E) from SM for E ∼ mρ.

• Lattice results extremely solid. The
various groups use very different
simulation setups.

• How to reconcile theory and
experiments ?

In [PRD 107 (2023)] we noticed that the observed differences in aw
µ can be explained

by a few percent increase in the 2π channel contribution to Rexp(E) below 1 GeV.
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What about computing R(E) directly on the lattice?

Can we compute R(E) directly on the lattice?

C(t) =
1

12π2

∫ ∞

0
dE e−Et R(E) E2

• Inverting the previous relation to obtain R(E) from C(t) (our lattice input) is
an ill-posed problem if. . .

• . . . C(t) affected by statistical uncertainties and known only at a discrete and
finite number of times (typical situation encountered in lattice calculation).

• But. . . this is not the end of the story.

• We have a new numerical technique, the Hansen-Lupo-Tantalo (HLT) method,
which allows us to obtain on the lattice an energy-smeared version of R(E).
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The energy-smeared R−ratio

In PRL 130 (2023) we (ETM) exploited the HLT method to evaluate on the lattice:

Rσ(E) =
∫ ∞

0
dω R(ω) N(E − ω, σ)︸ ︷︷ ︸

Gaussian

Rσ(E) is a ”sort of” energy-binned version of R(E) (with bin-size ∼ σ).
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• In the low-energy region, for σ ≃ 0.6 GeV, we observe a ≈ 3σ (or 2.5 − 3%)
deviation w.r.t. e+e− experimental results.

• Similar conclusions as from aW
µ =⇒ higher SM value w.r.t. Rexp(E) results

around the ρ resonance.
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The CMD-3 result [talk by F. Ignatov this afternoon]

A new measurement of e+e− → π+π− with CMD detector at VEPP-2000 [F. Ignatov
et al, arXiv:2302.08834] can shed a new light on the puzzle.

• CMD-3 result incompatible with previous measurements (some of them were
already in tension, e.g. BABAR-KLOE).

• If confirmed will drammatically reduce the strength of the aµ anomaly (and also
aW

µ tension).

• At the moment the situation of exp. e+e− → hadrons needs to be clarified. 28



Summary

Where do we stand?

aHVP−LO
µ :

• Many Collaborations expected to give an
update next year, to confirm or not the
BMWc result.

• It is conceivable that the SM value of
aHVP−LO

µ in the next WP update will be
entirely based on lattice results.

• Rexp(E)-based results for aHVP−LO
µ need

clarifications.

e+e− → hadrons:

• Lattice QCD has signalled an inconsistency
between previous e+e− → hadron
measurements and the SM value.

• NP, unknown systematic in measurements?

• The new CMD-3 result can provide an
explanation.

• Double-checks needed. BABAR expected
to give an update next year and KLOE
re-analysis started.

• Energy-smeared R(E) on the lattice can be
improved (smaller σ, higher accuracy). 29



Thank you for the attention and Happy Holidays!
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