

ET-ISB SUSP

Francesco Fidecaro University of Pisa & INFN

ET-Italia Assisi

ET LF Motivations

Low frequency sensitivity gives access to:

- Higher binary system mass $\propto f^{\text{-1}}$
- Higher generated amplitude, higher SNR
- Higher cosmological redshift
- Longer signal duration, early alert $\propto\,f^{\text{-8/3}}$
- Larger pulsar population
- Close encounters
- Higher stochastic background, if detectable

10²

8

- Have test masses in a condition of «free fall», isolated from the most intense perturbation, seismic noise
- Position and orient test masses to be in the design working point, for optimal sensitivity
- How difficult it is? It depends on frequency
- In first approximation: ground motion spectrum is flat in frequency so position noise goes as f⁻²
- Thermal drift is LF

ET Seismic attenuation in Virgo

- Ground motion 10^{-7} m Hz^{-1/2} at 1 Hz vs 10^{-18} m Hz^{-1/2} at 10 Hz
- Test mass asks for a very loose link
 - Low pass filter with a steep frequency cut below the detection band
 - Cascade of harmonic oscillators (Second Order Sections)
 - Loose springs and high masses
- Dissipation to be avoided, not compatible with loose link
- Loose link through local active control limited by sensor noise
- Passive isolation for a large fraction of the chain
- But amplification at normal modes

ET LF requirements

LF noise is given by

- Microseism motion
- Newtonian noise
- Upconversion of residual motion into the detection band

Design curve based on 17 m tall suspensions

Reduction to less than 12 m:

- Significantly lower cavern excavation cost
- Suspension management similar to Virgo

Newtonian noise crossing:

2 10⁻²² Hz^{-1/2} at 1.8 Hz (AdV: 3.2 Hz)

ET Additional requirements

- RMS motion: precision of the working point settings O(10⁻¹³) m
- Angular motion: not fully studied but 10⁻⁹ rad at 10 km gives a beam center displacement of 10⁻⁵ m or a cavity length variation of 10⁻¹⁰ / 2 R_m which seems relevant even if averaged over the beam spot
- Avoid reintroduction of noise by actuators
- Controllability of the system
- Recovery from high excitation after feedback unlock, earthquakes

ET General strategy

 * * *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *</td

Seismic noise underground 200 times less than at Virgo

Position/acceleration sensors readout hits the noise floor of instrument

- Local control is effective only upstream the attenuation chain Otherwise one needs the full interferometer, which injects technical noise -> Active Noise Mitigation Division
- Improve upstream isolation with better sensing and actuation
- Rely on passive attenuation
- Gain by reducing the normal mode frequencies
- 2010 design: 17 m long suspensions to lower pendulum frequency, implications on civil engineering costs
- Vertical attenuation does not require additional height
- Challenge: fit in 10 m

Vertical displacement spectrum Virgo: 5 10⁻¹⁰ m Hz^{-1/2} at 10 Hz SOE: 3 10⁻¹⁰ m Hz^{-1/2} at 2 Hz

RMS displacement over 100 s Virgo: 10^{-6} m comparable to λ

SOE: 10^{-7} m well below λ

Strain

Virgo: 2 10⁻²² Hz^{-1/2} at 10 Hz ET: 2 10⁻²² Hz^{-1/2} at 2 Hz

Four uncorrelated mirrors Virgo: $1.5 \ 10^{-18} \text{ m Hz}^{-1/2}$ at 10 HzET: $10^{-18} \text{ m Hz}^{-1/2}$ at 2 HzWith factor 10 safety factor Virgo: $1.5 \ 10^{-19} \text{ m Hz}^{-1/2}$ at 10 HzET: $10^{-19} \text{ m Hz}^{-1/2}$ at 2 Hz

Vertical displacement spectrum Virgo: 5 10⁻¹⁰ m Hz^{-1/2} at 10 Hz SOE: 3 10⁻¹⁰ m Hz^{-1/2} at 2 Hz

RMS displacement over 100 s

Virgo: 10^{-6} m comparable to λ SOE: 10^{-7} m well below λ

Strain

Virgo: 2 10⁻²² Hz^{-1/2} at 10 Hz ET: 2 10⁻²² Hz^{-1/2} at 2 Hz

Vertical displacement spectrum Virgo: 5 10⁻¹⁰ m Hz^{-1/2} at 10 Hz SOE: 3 10⁻¹⁰ m Hz^{-1/2} at 2 Hz

RMS displacement over 100 s Virgo: 10^{-6} m comparable to λ

SOE: 10^{-7} m well below λ

Strain

Virgo: 2 10⁻²² Hz^{-1/2} at 10 Hz ET: 2 10⁻²² Hz^{-1/2} at 2 Hz

Vertical displacement spectrum Virgo: 5 10⁻¹⁰ m Hz^{-1/2} at 10 Hz SOE: 3 10⁻¹⁰ m Hz^{-1/2} at 2 Hz

RMS displacement over 100 s Virgo: 10^{-6} m comparable to λ SOE: 10^{-7} m well below λ

Strain

Virgo: 2 10⁻²² Hz^{-1/2} at 10 Hz ET: 2 10⁻²² Hz^{-1/2} at 2 Hz

Vertical displacement spectrum Virgo: 5 10⁻¹⁰ m Hz^{-1/2} at 10 Hz SOE: 3 10⁻¹⁰ m Hz^{-1/2} at 2 Hz

RMS displacement over 100 s

Virgo: 10^{-6} m comparable to λ SOE: 10^{-7} m well below λ

Strain

With factor 10 safety factor Virgo: 1.5 10^{-19} m Hz^{-1/2} at 10 Hz ET: 10^{-19} m Hz^{-1/2} at 2 Hz

Vertical displacement spectrum Virgo: 5 10⁻¹⁰ m Hz^{-1/2} at 10 Hz SOE: 3 10⁻¹⁰ m Hz^{-1/2} at 2 Hz

RMS displacement over 100 s

Virgo: 10^{-6} m comparable to λ SOE: 10^{-7} m well below λ

Strain

Virgo: 2 10⁻²² Hz^{-1/2} at 10 Hz ET: 2 10⁻²² Hz^{-1/2} at 2 Hz

ET Initial ISB-SUSP organization

- WP I.1 Suspension chain
- WP I.2 Cold Payload Design
- WP I.3 Warm Payload Design
- WP I.4 Test-Mass Suspension
- WP I.5 Seismic Isolation Platform
- WP I.6 Auxiliary Optics Suspensions

WP 1 Suspension chain

Pendulum-Inverted Pendulum

How to soften a suspension stage

Normal mode frequencies 0.68 Hz 0.74 Hz

Prototype being tested in Pisa

ET Lab work has started

- Work in progress by Sara Ardito, Matteo Baratti, Lorenzo Bellizzi, Federico De Santi, Maria Antonietta Palaia, Lucia Papalini, Luca Muccillo, Michele Vacatello
- Transfer function of single leg
- Top mass effect
- Counterweight effect

ET Lab work has started

- Work in progress by Sara Ardito, Matteo Baratti, Lorenzo Bellizzi, Federico De Santi, Maria Antonietta Palaia, Lucia Papalini, Luca Muccillo, Michele Vacatello
- Transfer function of single leg
- Top mass effect
- Counterweight effect

$$f_0^2 = \frac{1}{4\pi^2} \frac{k - (M_{load} + \frac{M_{leg}}{2})\frac{g}{l}}{M_{load} + \frac{M_{leg}}{3}}$$

The results are the following:

$$k = (1775 \pm 61)\frac{N}{m}$$

 $M_{leg} = (8.8 \pm 0.4)kg$

 $M_{0Hz} = 188kg$

ET Lab work has started

• Work in progress by Sara Ardito, Matteo Baratti, Lorenzo Bellizzi, Federico De Santi, Maria Antonietta Palaia, Lucia Papalini, Luca Muccillo, Michele Vacatello

NGSA nMAS

New Magnetic Anti Spring (nMAS) – Test in Progress

- · A mechanical filter has been assembled to be used as test bench for the first prototype of nMAS.
- A measurements campaign for a complete characterization and optimization of the nMAS geometry has just started @ INFN Pisa laboratory

2

NGSA: Mechanical filter with improved Magnetic Anti-Spring (MAS)

Freq [Hz]

MUR Finanziato dall'Unione europea NextGenerationEU

15

WP 2/3 Cold/Warm payload design

Room Temperature Payload (ET-HF)

Large Mass Payload already developed for AdV Phase II.

- Prototype installed at Cascina (Middle-West Arm)
- People in Pay group of AdV
 - **Rome:** E. Majorana, V. Mangano, L. Naticchioni, P. Puppo, P. Rapagnani, tech: M. Perciballi
 - PG: F. Travasso, H. Vocca
 - **Urbino:** F. Piergiovanni, M. Montani
 - EGO: P. Ruggi

ETIC-CAOS: Perugia

- Improvements: Intermediate mass adoption (triple pendulum)
- Controls (...)
- Parametric instabilities (presently in the Pay item resp. P. Puppo)

- Payload prototype
- Cryostat prototype
- Project at KIT for a superfluid helium suspension cable.

X. Koroveshi, S. Grohmann, P. Rapagnani, and V. Mangano, Experimental plans to valida the He-II based payload cooling concept, TalkHeld at ECLOUDand GWDVac'22 Workshops, Portoferraio, Italy (2022), <u>10.5445/IR/1000153742/v2</u>.

People:

- Rome: A. Cruciani, E. Majorana, V. Mangano, L. Naticchioni, S. Pirro, P. Puppo, P. Rapagnani, F. Ricci, M. Ricci, Eng: E. Benedetti, F. Hoang, M. Orsini, D. Pasciuto.
- EGO: P.Ruggi
- KIT (Karlsruhe Institute of Technology): X. Koroveshi, S. Grohmann
- KAGRA collaborators https://wiki.et-gw.eu/ISB/Suspensions/LF Payload/WebHome

17

MUR

Papers: X. Koroveshi et al., PHYSICAL REVIEW D 108, 123009 (2023)

2

Assisi 20-2-2024 P. Puppo

Background hardware developments at this site

- Realization of new Viable sapphire blades integrated in the marionette starting from KAGRA model, purposes:
- Investigating low quality factors measured with the original (highest Q=1.5e5 in Roma)
 cause reasonably identified in the non-monolithic structure at the clamp
- Investigating Breaking strength
 - → very promising results of bending breaking strength (ISO certified)
- Developing a new, larger blade meant for ET size
 manufacturing inquire
- Ongoing realization of Marionette suspension clamp for a sapphire rod
- Ongoing ribbon suspension studies

WP 4 Test mass suspensions

- Involved groups:
 - Glasgow
 - Maastricht
 - Perugia/Camerino (Clemson University and NAOJ are associated groups)
 - Urbino
 - ILM
 - Roma
 - Groups for suspension in compression

IMPEX and Wielandts UPMT

ET Silicon: Float Zone production

Very promising results from IKZ;

Results on Si-fibers after process improvement

ET Silica-silicon fibers/rods

Very promising results from Clemson University

Advantages

(d)

- High quality of the lateral surface
- Possibility to have very long fibers/rods

100µm

• Very easy and safe to re-melt: possibility to implement heads and to weld different parts

The challenge is the production of thick fibers/rods

(e)

Disadvantages

Very thin

100µm

• Poly-crystalline

ET Suspension in compression

Warm Suspensions

https://theses.gla.ac.uk/81461 https://theses.gla.ac.uk/40954/

- Significant studies have been undertaken on higher stress fibres, Kyung-Ha Lee (PhD), Karl Toland (PhD)
- For 1.6 GPa failure times are projected ~30 years in-air
- In summer 2023 we will undertake further stress corrosion tests to
- test hang time in air for 3GPa-4GPa fibres (est. mins-hrs)
- repeat in vacuum to understand improvement due to water egress. Aim to identify max safe stress

Failure time of fused silica fibres at specific detector stress values

Figure 4.16: Predicted in-air lifetime of fused silica fibres at relevant detector stress values.

- 160kg suspension already hung for several years in Glasgow
- Plan to re-hang in 2023 for testing new fibre geometries

PHYSICAL REVIEW APPLIED

ghlights Recent Subjects Accepted Collections Authors Referees Search

Large-scale Monolithic Fused-Silica Mirror Suspension for Third-Generation Gravitational-Wave Detectors

A. V. Cumming, R. Jones, G. D. Hammond, J. Hough, I. W. Martin, and S. Rowan Phys. Rev. Applied **17**, 024044 – Published 16 February 2022

160kg test hang

WP 5 Seismic isolation platform

Status of compact isolation of a large mirror at a low frequency

SIDER, Ameer (phd student) asider@uliege.be

On behalf of the E-TEST collaboration DCC No. P2200399-v1

GWADW2023 - Italy

25 May 2023

E-TEST project for proof of concepts

Features of E-TEST Project:

- Suspend large silicon mirror (100 Kg)
- Operate at cryogenic temperature (25 K)
- Develope cryogenic sensors and electronics.
- Laser and optics at 2 microns.
- Compact suspension (4.5 meters) with isolating at low frequency (0.1-10 Hz).

🔳 UCLouvain 🚊 micas

E-TEST is a project funded by the Interreg Euregio Meuse-Rhine and ET2SME consortium.

Nik hef

KU LEUVEN

RWITHAACHEN UNIVERSITY

WP3 – Development and test of a Nested Inverted Pendulum (NIP)

The goal is to built and test a NIP prototype in 1:2 scale, to be tested in the Gravitational Physics Laboratory at INFN-Napoli

Total mass 1200 kg

Legs of about 1.7 and 1.4 m (excluding flex joints)

Dummy mass = 600 kg

The design is based on preliminary studies with Octopus

The mechanical design is quite advanced (it is supported by Octopus and FEM simulations)

Active Pre-isolator (WP SUS.PRE)

• We will place an active stage under the inverted pendulum.

Real-time Control Sys. (WP SUS.SCS)

- RCS "Katane"
 - Evolution of VIRGO control system.
 - Based on DSP (and FPGA)
 - MTCA.4 standard and custom electronics
- RCS "Zancle"
 - Based on GPU (and FPGA)
- Synergic Projects
 - NGSA
 - LabView PXI System

WP 6 Auxiliary optics suspensions

• Stand by, need indications for optical layout

Sensors: translation/acceleration 10⁻¹³ m Hz^{-1/2} at 2 Hz 10⁷ Hz^{1/2} dynamic range Sensors: rotation 1 nrad $Hz^{-1/2}$ at 2 Hz 10⁷ Hz^{1/2} dynamic range Actuators: Dynamic range 10⁷ Hz^{1/2} or more Suspension materials Mechanical properties Creep Vacuum compatibility Electronics and control Dynamic range 10⁷ Hz^{1/2} or more Strategies and adaptive control (many suspensions to be tuned) Computing power

Finanziato dall'Unione europea NextGenerationEU

ET Main R&D facility

Finanziato

dall'Unione europea

CAOS Centro per Applicazioni sulle Onde gravitazionali e la Sismologia

CAOS is the main ETIC infrastructure, located in Perugia. An international facility to develop new technologies for seismic filtering and low noise controls.

• Plant area: 441 m²

22/02/2

- Interior height: 19.5 m
- 8 m long Fabry-Perot cavity
- 15 m tall vacuum towers
- Over 13 m long suspensions

unipg

\underline{ET} Other relevant research infrastructures

Finanziato dall'Unione europea NextGenerationEU

- PLANET
- ARC-ETCRYO
- CAOS
- GEMINI
- SAMaNET
- BETIF

Have to be present in ISB-SUSP

ET Organization questions

- Current WP needs to be adapted to the work to be done and the people doing it
 - Introduce more detail and ensure that developments are done in the right context (sensors, actuators, electronics, control, simulation)
 - To be discussed
- Gather all RU interested in suspensions to agree on a design for the bid book

ET Census of participants

Finanziato dall'Unione europea

1	Name	Surname	ET Research Unit	Email	I.1 Suspension chain	I.2 Cold Payload Design	I.3 Warm Payload Design	I.4 Test-Mass Suspension	1.5 Seismic Isolation Platform	I.6 Auxiliary Optics Suspensions
2	Francesco	Fidecaro	Pisa	francesco.fidecaro@unipi.it	ves 🔻	not	not	not	not	not
3	Valerio	Boschi	Pisa	valerio.boschi@pi.infn.it	ves 🔻	•	•	· · ·	ves 🔹	· · ·
4	Paola	Puppo	Roma	paola.puppo@roma1.infn.it	not	yes 🔻	yes 🔻	yes 🔻	not	not
5	Andrew	Spencer	The Institute for Gra	andrew.spencer@glasgow.ac.uk	yes 🔻	yes 🔻	not	yes 🔻	not	not
6	Nathan	Holland	VU Amsterdam / N	nholland@nikhef.nl	yes 🔻	yes 🔹	not 🔹	not	yes 🔹	not 🔻
7	Joris	van Heijningen	VU Amsterdam / N	j.v.van.heijningen@vu.nl	yes 🔻	in future 🔹	not 🔹	yes 🔹	in future 🔹	yes 🔻
8	Jesse	van Dongen	VU Amsterdam / N	jvdongen@nikhef.nl	yes 🔻	yes 🔹	not 🔹	yes 🔹	yes 🔹	not 🔻
9	Victoria	Graham	The Institute for Gra	v.graham.1@research.gla.ac.uk	not 🔻	yes 🔹	not 🔹	yes 🔻	not 🔻	not 🔻
10	Alberto	Gennai	Pisa	alberto.gennai@pi.infn.it	yes 🔻	yes 🔹	in future 🔹	in future 🔹	yes 🔹	in future 🔹
11	Conor	Mow-Lowry	VU Amsterdam / N	ic.m.mow-lowry@vu.nl	yes 🔻	yes 🔹	not 🔹	not 🔻	yes 🔹	in future 🔹
12	Massimiliano	Razzano	Pisa	massimiliano.razzano@unipi.it	yes 🔻	in future 🔹	in future 🔹	not 🔹	yes 🔹	not
13	James	Hough	Glasgow	james.hough@glasgow.ac.uk	not 🔹	not	not	yes 🔹	not	•
14	Mark	Barton	Glasgow	mark.barton@glasgow.ac.uk	not 🔹	not	in future 🔹	not	not	not
15	Sheila	Rowan	Glasgow	sheila.rowan@glasgow.ac.uk	not	not	in future 🔹	yes 🔻	not	not
16	Maria Antonietta	Palaia	Università di Pisa, I	mariaantonietta.palaia@phd.uinipi.it	yes 🔻	not 🔻	not 🔹	not 🔹	not	not 🔻
17	Michele	Vacatello	University of Pisa /	michele.vacatello@phd.unipi.it	yes 🔻	not 🔻	not 🔹	not 🔹	not 🔻	not 🔹
18	Lorenzo	Bellizzi	University of Pisa /	lorenzo.bellizzi@df.unipi.it	yes 🔻	not 🔻	not 🔻	not 🔹	not 🔻	not 🔻
19	Russell	Jones	Glasgow	russell.jones@glasgow.ac.uk	not 🔹	in future 🔹	yes 🔻	yes 🔻	not	not 🔻
20	Bell	Angus	Glasgow	angus.bell@glasgow.ac.uk	not 🔻	in future 🔹	yes 🔻	yes 🔻	not 🔻	not 🔻
21	Werneke	Patrick	Nlkhef	p.werneke@nikhef.nl	not 🔻	not 🔻	not 🔻	not 🔻	not 🔻	not 🔻
22	Giles	Hammond	Glasgow	giles.hammond@glasgow.ac.uk	yes 🔻	yes 🔻	yes 🔹	yes 🔻	not 🔻	in future 🔹
23	Gregoire	Lacaille	Glasgow	gregoire.lacaille@glasgow.ac.uk	not 🔻	not 🔻	not 🔹	yes 🔹	not 🔹	not 🔻
24	Karen	Haughian	Glasgow	karen.haughian@glasgow.ac.uk	not 🔻	not 🔻	not 🔻	yes 🔻	not 🔹	not 🔻
25	Alan	Cumming	Glasgow	alan.cumming@glasgow.ac.uk	not 🔻	in future 🔹	yes 🔻	yes 🔻	not 🔻	not 🔻
26	Flavio	Travasso	Perugia	flavio.travasso@unicam.it	not 🔻	in future 🔹	not 🔻	yes 🔻	not 🔹	yes 🔻
27	Giovanni	Losurdo	Pisa	losurdo@pi.infn.it	yes 🔻	not	not 🔻	not 🔻	yes 🔻	not 🔻
28	Franco	Frasconi	Pisa	frasconi@pi.infn.it	yes 🔻	not	not 🔻	yes 🔻	yes 🔹	not 🔻
29										