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When we build Einstein Telescope, how many compact
binary signals will it be able to detect?
How well will it localize them in the sky?
How well will it measure their parameters?



Matched filtering

The gravitational-wave detection problem: we have data

𝑑(𝑡) = ℎ𝜃(𝑡)⏟
GW

+ 𝑛Gaussian(𝑡) + 𝑛non-Gaussian(𝑡)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
noise 𝑛(𝑡)

and we want to find where ℎ(𝑡) is, while typically |ℎ| ≪ |𝑛|. The
Gaussian component has a spectral density 𝑆𝑛(𝑓). Let’s assume
we want to use a linear filter, so that in the time domain it reads:

̂𝜌(𝜏) = ∫ 𝑑(𝑡 + 𝜏)𝑓(𝑡)d𝑡

for some function 𝑓(𝑡).



We want to maximize the “distinguishability” of the signal: we
can quantify it with the signal-to-noise ratio

𝑆
𝑁 = ̂𝜌(a signal is present)

root-mean-square of ̂𝜌

Ignoring the non-Gaussian part of the noise, the optimal solution
is ̂𝜌 ∝ (𝑑|ℎ), where

(𝑎|𝑏) = 4ℜ ∫
∞

0

𝑎(𝑓)𝑏∗(𝑓)
𝑆𝑛(𝑓) d𝑓 ,



Optimal signal-to-noise ratio

The signal-to-noise ratio statistic is

𝜌 = 𝑆
𝑁 = (𝑑|ℎ)

√(ℎ|ℎ)

With the expected noise realization (⟨𝑛(𝑡)⟩ = 0):

𝜌opt = √(ℎ|ℎ) = 2√∫
∞

0

|ℎ(𝑓)|2
𝑆𝑛(𝑓) d𝑓 .

If we do not have the data, this is a good proxy. For a real detector,
we do injection studies and compute a False Alarm Rate (FAR).



SNR thresholds

What is a “high enough” value for the SNR?

Without time shifts nor non-Gaussianities, the SNR would simply
follow a 𝜒2 distribution with two degrees of freedom: “five 𝜎”
significance with a threshold of 𝜌 = 5.5.

In real data this has to be estimated through injections:

FAR = FAR8 exp (−𝜌 − 8
𝛼 ) .

For BNS in O1: 𝛼 = 0.13 and FAR8 = 30000yr−1.



Gravitational wave data analysis

Suppose we measure 𝑑 = ℎ𝜃 + 𝑛, where our model for ℎ𝜃 = ℎ(𝑡; 𝜃)
depends on several parameters (typically, between 10 and 15).

We can estimate the parameters 𝜃 by exploring the posterior
distribution

𝑝(𝜃|𝑑) = ℒ(𝑑|𝜃)𝜋(𝜃) = 𝒩 exp ((𝑑|ℎ𝜃) − 1
2(ℎ𝜃|ℎ𝜃)) 𝜋(𝜃) ,

where 𝜋(𝜃) is our prior distribution on the parameters. We are
neglecting non-Gaussianities in the noise, and assuming its spectral
density is known!



The posterior is explored stochastically (with MCMC, nested
sampling…) yielding many samples 𝜃𝑖 distributed according to
𝑝(𝜃|𝑑), with which can compute summary statistics:

▶ mean ⟨𝜃𝑖⟩,
▶ variance 𝜎2

𝑖 = ⟨(𝜃𝑖 − ⟨𝜃𝑖⟩)2⟩,
▶ covariance 𝒞𝑖𝑗 = ⟨(𝜃𝑖 − ⟨𝜃𝑖⟩)(𝜃𝑗 − ⟨𝜃𝑗⟩)⟩.

At this stage, we are not making any approximation, and the
covariance matrix is just a summary tool - the full posterior is still
available.
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Parameter dependence of CBC signals

A list of the parameters a BNS signal depends on, with relative
error (𝜎𝑥/𝑥) values computed from the parameter estimation of
GW170817.



Intrinsic parameters

▶ masses 𝑚1 and 𝑚2: 𝜎𝑥/𝑥 ∼ 10%,
▶ chirp mass ℳ: 𝜎𝑥/𝑥 ∼ 0.1%.

ℳ = (𝑚1𝑚2)3/5

(𝑚1 + 𝑚2)1/5

▶ mass ratio 𝑞 = 𝑚1/𝑚2: 𝜎𝑥/𝑥 ∼ 20%.

We are measuring the detector-frame mass:

ℳ = ℳsource(1 + 𝑧)



Alternative parametrization:
▶ symmetric mass ratio 𝜈 = 𝜇/𝑀 = 𝑞/(1 + 𝑞)2: 𝜎𝑥/𝑥 ≈ 4%
▶ total mass 𝑀 = 𝑚1 + 𝑚2: 𝜎𝑥/𝑥 ≈ 3%



▶ aligned spin: 𝜒1𝑧 and 𝜒2𝑧: 𝜎𝑥/𝑥 ∼ 3 and 10 respectively,
▶ effective aligned spin 𝜒eff = (𝑚1𝜒1𝑧 + 𝑚2𝜒2𝑧)/(𝑚1 + 𝑚2):

𝜎𝑥/𝑥 ∼ 1 (compatible with zero)
▶ precessing spin 𝜒𝑝: compatible with zero,



▶ tidal polarizability Λ1 and Λ2: 𝜎𝑥/𝑥 ∼ 1.5,
▶ effective tidal parameter Λ̃: 𝜎𝑥/𝑥 ∼ 0.6.

Λ𝑖 = 2
3𝜅2 (𝑅𝑖𝑐2

𝐺𝑚𝑖
)
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Extrinsic parameters

▶ distance 𝑑𝐿 𝜎𝑥/𝑥 ∼ 20%,
▶ degeneracy with the inclination of the source, 𝜄:

𝜎𝑥/𝑥 ∼ 10%,
▶ arrival time at geocenter 𝑡⊕,
▶ phase 𝜙,
▶ polarization angle 𝜓: 𝜎𝑥 ∼ 0.3rad,
▶ sky position (ra, dec): 𝜎𝑥 ∼ 2deg and 9deg.



The 1𝜎 sky area in steradians can be written in the Gaussian case
as:

ΔΩ1𝜎 = 2𝜋| cos(dec)|√𝜎2
ra𝜎2

dec − cov2
ra, dec

and it satisfies 𝑝(source within ΔΩ) = 1 − exp(−ΔΩ/ΔΩ1𝜎).
With this we can compute the 90 sky area in square degrees:

ΔΩ90% = − log(1 − 0.9)ΔΩ1𝜎 (180 deg
𝜋 rad )
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GW150914 comparison

▶ 𝜎ℳ/ℳ = 𝜎𝑀/𝑀 ≈ 3%: not so many cycles
▶ two-detector event: sky area was 600deg2, but the Gaussian

approximation gives 1800deg2.



Correlation structure

We can use Pearson correlation coefficients to visualize the (linear)
correlation structure of the posterior:

𝜌𝑖𝑗 = cov(𝜃𝑖, 𝜃𝑗)
𝜎𝑖𝜎𝑗
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Antenna pattern

The strain at the detector depends on the antenna pattern:

ℎ(𝑡) = ℎ𝑖𝑗(𝑡)𝐷𝑖𝑗(𝑡) = ℎ+(𝑡)𝐹+(𝑡) + ℎ×(𝑡)𝐹×(𝑡) .
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Fisher matrix

In the Fisher matrix approximation, we are approximating the
likelihood as

ℒ(𝑑|𝜃) ≈ 𝒩 exp (−1
2Δ𝜃𝑖ℱ𝑖𝑗Δ𝜃𝑗)

where Δ𝜃𝑖 = 𝜃𝑖 − ⟨𝜃𝑖⟩.
A multivariate normal distribution, with covariance matrix
𝒞𝑖𝑗 = ℱ−1

𝑖𝑗 . This is a good approximation for the posterior in the
high-SNR limit, since the prior matters less then.



The Fisher matrix ℱ𝑖𝑗 can be computed as the scalar product of
the derivatives of waveforms:

ℱ𝑖𝑗 = ⟨𝜕𝑖𝜕𝑗ℒ⟩∣𝜃=⟨𝜃⟩ = (𝜕𝑖ℎ|𝜕𝑗ℎ) = 4ℜ ∫
∞

0

1
𝑆𝑛(𝑓)

𝜕ℎ
𝜕𝜃𝑖

𝜕ℎ∗

𝜕𝜃𝑗
d𝑓 .



For 𝑁 detectors,

ℱ𝑖𝑗 =
𝑁

∑
𝑘=1

ℱ(𝑘)
𝑖𝑗

The covariance matrix can be evaluated in seconds, while full
parameter estimation takes hours to weeks.

Also, it is easy in the Fisher approach to account for new effects
such as the rotation of the Earth.

Tricky step computationally: inverting ℱ𝑖𝑗 to get 𝒞𝑖𝑗.


