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Physics vs Metaphysics

Physics focus on 
measurable 
quantities.

Large part of 
metaphysics by the 
Scholasticists is now 
modeled by physics
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Particle physics

● The matter is the result of the 
interaction of elementary particles 

● Discovering the laws modeling the 
behavior of elementary particles

● The applications are all around us

– Semiconductors
– Medicine
– Cosmology

● The models are point-to-point

– Not necessarily providing the tools to 
describe complex bodies

Cosmogony
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Theory vs reality

● Theoretical physicists provide 
plenty of models
– Or models with plenty of degree of 

freedom
● Experimentalists have to pin the 

reality to the right model
– Building experiments to probe the reality

● Experiments are getting bigger and 
bigger
– More and more expensive and complicated
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Water - Earth – Fire –  Air

● Elementary particles interact with 
matter producing measurable 
quantities
– Electrical Charge
– Change of Temperature
– Light Emission

● Sensors are used to detect these 
quantities → into an electrical signal
– Photo-multiplier tube for light
– Thermistors for temperature
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Detectors

● The detectors are designed to 
maximize the signal

● Using elements having special 
properties to detect 
particles/radiation
– Scintillators are materials that emit faint 

light pulses during interaction with 
particles

● Using active and passive shielding 
to reject unwanted events

Demiurge
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LNGS Experiments
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BOREXino since 2004

● Detect neutrinos from the Sun
● Low background design

– Radio-pure materials
– Active and passive shielding

● Reached unprecedented 
contamination levels

● 300 tons of liquid scintillators + 
2000 photomultiplier tubes
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Borexino
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XENON-nT

● Detect WIPMs as dark matter candidate
● XENON based experiments achieved 

the best sensitivity
– Negative result

● Using the ultra-low background design 
(materials, vetoes)

● WIMPs interaction generate light and 
charge
– Light detected by ~500 PMTs

● Between 3 to 100 photons

– The charge is converted in a second light pulse
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LEGEND

● Searching for forbidden double 
beta decay in 76Ge
– Current limit is larger than 2 1026 years

● 200 – 1000 kg of enriched Ge
● Using the ultra-low background 

design (materials, vetoes)
● Ge crystals are configured as 

large fully-depleted diodes
– Detect the ionized charge induced by 

the decay



13

LEGEND
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Signal extraction
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Front-End Electronics

● Typically the output of the 
sensors is very small
– For the signal acquisition
– For the transmission on cables

● Very low noise amplifiers are 
developed
– To optimize the signal integrity

● The front-end can be at room 
temperature or in cryogenic 
environment
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LNGS Examples
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Charge sensitive amplifiers
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Waveform Digitization

● Before 1971 photos on 
oscilloscope waveforms

● Modern experiments are based 
of fast digitizers (>100 MHz) 
with 12-16 bits

100 GS/s
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Digital Signal Processing

● Digitized waveform can be 
further processed to maximize 
the signal to noise ratio
– Typically filtering is used to abate noise

● At the expense of losing part of the signal

● DSP use is ubiquitous in modern 
devices
– Multi-rate filtering ← iPOD (mp3)
– RADAR

DSP
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Spectroscopy Amplifiers
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DSP for improved filtering

In the digital domain the filtering can be much more advanced
CRC filters can be replaced by gaussian or other symmetric shapes
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Matched
filter

Turin 1960
Maximize SNR

(amplitude)

Introduced for RADAR

Correlate the signal
with the known ref

Minimize the phase 
Dispersion

Can be implemented 
only in digital
(anti-causal)

1/
(2

 τ
)

1/
(e

 τ
)

35 %
better
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Low Level Analysis

● Reconstruct the waveforms in 
high level data

● Include calibrations
● Position reconstruction

● In general the most complicated 
part of the analysis chain
– Knowledge of the detector details
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Borexino

● Interaction of solar neutrino generates 
about 500 photons
– ~ hundreds per day over a background of 1 million

● Detected by the PMTs

● We record the time, amplitude and position 
of each signal

● We reconstruct
– Interaction energy
– Pulse shape
– Position in the detector
– Status of the vetoesDemiurge
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High Level Analysis
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Multi-Dimensional Data

● High level data are nativelly highly-
dimensional

● An event correspond to an 
interaction in the detector
– Several information are available

● Primary data (energy, position, topology)
● Nuisance data (veto, metadata)

● However we typically do not employ 
multi-dimensional regression
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Histogram

● Typically we populate histograms 
with our primary data

● Search peaks (or other features) in 
these histograms

● Unbinned likelihood are not 
common

● Histogramming is often abused
– Even to calculate the with of a peak we 

typically use histograms
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GERDA Final data



30

χ² test

● The research of features on histograms is 
based on the χ²
–  We assume each bin is an independent random 

variable
– We use the Neyman χ²

● The minimization of the χ² provides the 
model parameters and the goodness of 
fit

● It is a very handy process
– Not immune to several quirks
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Multivariate fit of Borexino data
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χ² not always is benevolent

● Not always the bin contents are 
independent
– Or the binning is wrong
– # of degree of freedom is overestimated

● P-value wrong

● Look elsewhere effect
– Random peaks can appear

● …
● CERN requires 5 σ evidence

Rounding problems



33

χ² not always is benevolent

● Not always the bin contents are 
independent
– Or the binning is wrong
– # of degree of freedom is overestimated

● P-value wrong

● Look elsewhere effect
– Random peaks can appear

● …
● CERN requires 5 σ evidenceLook elsewhere

p-value of fluctuation .5%

p-value for any 
bin 90%
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Model Driven vs Data Driven
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Interpretation of linear regression

The two 
approach 

coincide only if 
<(εi/δi)2> = 1

y =ɑ + β x
εi = y(xi) – yi

yi ± δi
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Software Tools
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ROOT

● ROOT is a software package developed 
at CERN
– With the main focus on particle physics

● It has a nice data storage (columnar 
db-file)
– Allows to analyze large data set

● Larger than memory size

● It was written in C++
– Well before C++11
– It uses a C++ interpreter (clang)

Its syntax is ugly 
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C++

● After Fortran77 CERN pushed the 
scientific community for the adoption 
of C++

● C++ is fine for the DAQ
– And for the intensive low-level analysis

● C++ is not a scripting language
– Complex (bloated) syntax
– Not vectorized + external iterator
– Handling string is painful
– Missing syntactic sugar
– Prone to memory leaks

"There are only two kinds of 
languages: the ones people 

complain about and the ones 
nobody uses" 

Bjarne Stroustrup
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PYTHON

● Python is acquiring popularity in 
particle physics
– It is easy to learn
– Has advanced scientific libraries

● ROOT library as well

● It is much better than C++ but
– Missing large data-set operation
– Many dislike the syntax
– It is much slower than C++

● Some compilation/optimization options available
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R

● Personally I use R
● It is not tailored for particle 

physics
– Histogram fitting is somehow missing

● It forces me to study and to think 
differently

● No built-in support for large data 
set
– I use SPARK clusters with parallel 

map/reduce
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Conclusion

● A rich environment that includes
– Theory
– Experiments
– Models
– Data
– Plus our idiomatic use of statistics

● Large experiments are fueled by large 
international collaboration of physicists 



42

Thank you
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XENON-nT
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