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The dataset

Much of the empirical research on High-Dimensional Dynamic factor
Models has been conducted on a monthly Macroeconomic dataset
containing about n = 200 time series for the US:
(1) output and income, (2) labor market, (3) housing, (4)
consumption, orders and inventories, (5) money and credit, (6) bond
and exchange rates, (7) prices, and (8) stock market. The series
length T is about 500.
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The dataset

This is the meaning of “big data” in this literature. Indeed it is big data
as compared to standard Applied Macroeconomic Analysis, in which
VAR models are employed. A VAR, Vector Auto-Regression, is, for
example,

Xt = AXt−1 + Ut ,

where Xt is a, say, the 5-dimensional vector including GDP,
Investment, Consumption, Unemployment, Interest Rate, so that A
contains 25 parameters which must be estimated. And you see that
with 10 variables you should estimate 100 parameters
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The dataset. Curse of dimensionality.

This dependence of the number of parameters to estimate on the
square of the number of variables is an example of “curse of
dimensionality”. You would never think of estimating a VAR with 100
variables.
Note that “curse of dimensionality” is relative to the number T . But
500, a little more or less, is the limit with monthly macroeconomic
data (structural break).
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Modeling high-dimensional datasets. Factors

High-dimensional factor models are based on the idea that the series
of the dataset are determined by a small number of factors, that are
common to all series, plus on individual cause of variation. Let me
use an elementary example: for i = 1, . . . ,n,

xit = biFt + ξit ,

where

(a) Everything is zero-mean covariance stationary.

(b) Ft and ξit are non-correlated.

(c) ξit and ξjt , i ̸= j , are non-correlated, that is, the ξ’s are individual
specific.

(d) The variables xit are observable, whereas Ft and ξit are latent.
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Modeling high-dimensional datasets. Factors

xit = biFt + ξit ,

where

(a) Everything is covariance stationary and zero-mean.

(b) Ft and ξit are non-correlated.

(c) ξit and ξjt , i ̸= j , are non-correlated.

(d) The variables xit are observable, whereas Ft and ξit are latent.

Suppose that the ξ’s are unpredictable and big with respect to biFt .
Then the x ’s will be little predictable. If we are able to estimate Ft and
Ft is predictable, then our prediction of the x ’s improves. More on this
later.
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Modeling high-dimensional datasets. Estimating the factor Ft

Estimation of Ft . Take the average:

Xnt =
1
n

n∑
i=1

xit =

(
1
n

n∑
i=1

bi

)
Ft +

1
n

n∑
i=1

ξit

The variances are

var
1
n

n∑
i=1

xit ≤

(
1
n

n∑
i=1

bi

)2

σ2
F +

1
n2 nmax

i
varξit = b̄2

nσ
2
F +

1
n

Mn

So we see that in the limit the ξ’s disappear in the average under the
assumption that Mn is bounded.
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Modeling high-dimensional datasets. Estimating the factor Ft

Now however, what if b̄n → 0 ? We might use, instead of the weights

1/n, the weights bi/
√

b2
1 + · · ·+ b2

n. Now the common component
cannot tend to zero.

But this is not feasible because the coefficients bi are not observable.
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Modeling high-dimensional datasets. Principal components

What we do is the following. Consider the n × n variance-covariance
matrix of the x ’s, Γx

0. Then let Wx the column eigenvector
corresponding to the first eigenvalue of Γx

n. We use Wx as weights.
Let me recall you that Px

t = W x
1 x1t + · · ·+ W x

n xnt is known as the first
Principal Component of the x vector.

We can show that

W x
i Pt = W x

i (W x
1 · · ·W x

n )


x1t
...

xnt

→ biFt ,

in mean square as n → ∞, with rate 1/
√

n.

But this is also non feasible because we do not observe Γn
x . We

actually use the estimated covariance matrix Γ̂x
n. The corresponding

estimator of biFt , that is Ŵ x
i P̂x

t converges in probability to biFt with
rate max

(
1/

√
n,1/

√
T
)

.
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Modeling high-dimensional datasets. Prediction.

Now suppose that, for example:

Ft = αFt−1 + ut ,

where ut is a white noise. Thus estimation of biFt and orthogonality
of biFt and ξit allows predicting xit by separately predicting Ft and ξit ,
which is an obvious advantage with respect to predicting xit directly.

Of course it is necessary that we have a decent estimation of biFt

and ξit .
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Modeling high-dimensional datasets. Many factors.

The model can obviously be generalised for many factors.

xit = bi1F1t + · · ·+ br1Frt + ξit = χit + ξit .

The variables χ are called the common components and the ξ the
idiosyncratic components. For example, the observable variables in
our macroeconomic dataset are driven by a factor representing
change in technology and another representing demand, so that
r = 2. The model is estimated by means of the eigenvectors
corresponding to the first r eigenvalues of Γ̂x

n and

Ŵ x
i1P̂x

1t + · · ·+ Ŵ x
r P̂x

rt → χit ,

as n and T at rate max
(

1/
√

n,1/
√

T
)

.
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Modeling high-dimensional datasets. Many factors.

Still this is not completely feasible because the integer r is not
observable. So it must be estimated. More on this later.

Now there is something to say about the model:

xit = bi1F1t + · · ·+ br1Frt + ξit = χit + ξit .

Forget estimation, now we pretend to know the covariance matrix of
the χ’s and the ξ’s.

Firstly, the assumption that the ξ’s must be non correlated to one
another can be relaxed. Some “weak” correlation can be allowed. For
example, ξ1t can be correlated to a finite number of other
idiosyncratic components.

Secondly, some assumptions must be made on χ’s to prevent that
their covariance matrix become singular as n → ∞.
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Modeling high-dimensional datasets. Many factors.

Fom previous slide.

xit = bi1F1t + · · ·+ br1Frt + ξit = χit + ξit .

Firstly, the assumption that the ξ’s must be non correlated to one
another can be relaxed. Some “weak” correlation can be allowed. For
example, ξ1t can be correlated to a finite number of other
idiosyncratic components.

Secondly, some assumptions must be made on χ’s to prevent that
their covariance matrix become singular as n → ∞. So we assume:

(1) Let µξ
1n be the first eigenvalue of Γξn. There exists R such that

µξ
1n ≤ R for all n.

(2) Let µχ
rn be the r -th eigenvalue of Γχn . limn→∞ µχ

rn = ∞.
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Modeling high-dimensional datasets. Many factors.

From previous(1) Let µξ
1n be the first eigenvalue of Γξn. There exists R

such that µξ
1n ≤ R for all n.

(2) Let µχ
rn be the r -th eigenvalue of Γχn . limn→∞ µχ

rn = ∞.

It is under (1) and (2) that we have

W x
i1Px

1t + · · ·+ W x
r Px

rt → χit and Ŵ x
i1P̂x

1t + · · ·+ Ŵ x
r P̂x

rt → χit (∗)

in mean square and in probability, respectively.

Now you will object that these are assumptions on unobservable
variables. But we have:

Theorem. Conditions (1) and (2) hold if and only if, as n → ∞,
(3) µx

rn → ∞, there exists S such that µx
r+1,n ≤ S.

Thus under (3) we have (∗).
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Modeling high-dimensional datasets. Many factors.

Previous (3) µx
rn → ∞, there exists S such that µx

r+1,n ≤ S.

Summing up, under (3)

(A) the integer r can be consistently estimated;

(B) Ŵ x
i1P̂x

1t + · · ·+ Ŵ x
r P̂x

rt → χit .

Now suppose that
Ft = AFt−1 + Rt ,

that is, Ft is generated by an r -dimensional VAR. Then the vector
χt = (χ1t · · · χrt) also is generated by a VAR

χt = Bχt−1 + Vt .

This VAR can be used to predict for example x1t (a generalization of
what we have seen in the elementary example with r = 1).
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Modeling high-dimensional datasets. Many factors.

Now suppose that
Ft = AFt−1 + Rt , (∗∗)

that is, Ft is generated by an r -dimensional VAR. Then the vector
χt = (χ1t · · · χrt) also is generated by a VAR

χt = Bχt−1 + Vt .

This VAR can be used to predict for example x1t (a generalization of
what we have seen in the elementary example with r = 1).
Of course this is an improvement with respect to using a VAR for
(x1t · · · xrt).
Lastly, note that estimations of the VAR (∗∗) implies that r is small,
otherwise we fall again in the curse of dimensionality.
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Modeling high-dimensional datasets. Dynamics.

Again the model

xit = bi1F1t + · · ·+ br1Frt + ξit = χit + ξit .

I proposed the example in which r = 2, with the two factors
interpreted as technology and demand. The model can
accommodate also, for example,

xit = biut + ciut−1 + ξit , (†)

where ut is a white noise. Indeed, by setting F1t = ut and F2t = ut−1,
we have r = 2 and

xit = biF1t + ciF2t + ξit . (††)

In this case we say that the model has 2 static factors F1t and F1t ,
and 1 dynamic factor, ut . Thus the dynamics in (†) has been
transformed into the static representation (††).
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Modeling high-dimensional datasets. Dynamics.

However, there are fairly elementary cases in which this
transformation is not possible. Suppose that χit is generated by the
autoregressive equation

χit = αiχi,t−1 + ut ,

where the coefficients αi are drawn from the uniform distribution
between −.9 and .9. We write

χit =
1

1 − αiL
ut = ut + αiχt−1 + α2

i ut−2 + · · · ,

where L is the lag operator: Lyt = yt−1. Setting

xit = χit + ξit =
1

1 − αiL
ut + ξit ,

the static representation xit = bi1F1t + · · ·+ br1Frt + ξit is impossible.
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Modeling high-dimensional datasets. Dynamics.

You see that in the example we have r > q, where q is the dimension
of the dynamic. This is a general fact.

To accommodate the case

xit = χit + ξit =
1

1 − αiL
ut + ξit ,

we introduce a more general model:

xit = [biout + bi1ut−1 + · · · ] + ξt = bi(L)ut + ξt

The analysis of this model requires consideration of the spectral
density matrix of (x1t · · · xnt). Under the assumptions that
ut is a q-dimensional white noise,
ξit ⊥ ut−s for all i , t and s, we have
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Modeling high-dimensional datasets. Dynamics.

Previous

xit = [biout + bi1ut−1 + · · · ] + ξt = bi(L)ut + ξt

The analysis of this model requires consideration of the spectral
density matrix of (x1t · · · xnt). Under the assumptions that
ut is a q-dimensional orthonormal white noise,
ξit ⊥ ut−s for all i , t and s, we have, setting Bn(L) = (b1(L) · · · bn(L))′,

Σx
n(θ) = Bn(e−iθ)B′

n(e
iθ) + Σξ

n(θ).

Then:
We take the first q eigenvalues λx

nj(θ) and corresponding normalized
n × 1 eigenvectors Z x

nj(θ).
Transform the eigenvectors back in the time domain where they
produce n × 1 filters Z x

nj(L) and produce the first q dynamic principal
components:

Px
jt = Z x

nj(L)(x1t · · · xnt)
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Modeling high-dimensional datasets. Dynamics.

Lastly we obtain the estimator of χit :

Z x
n1,i(L

−1)Px
1t + · · ·+ Z x

nr ,i(L
−1)Px

rt .

EXAMPLE. The model is{
xit = ut + ξit if i is odd

xit = ut−1 + ξit if i is even

where the ξ’s are unit variance white noises. This is a stylised
example with leading and lagging variables. For n even,

Σx
n(θ) =


1

e−iθ

...
1

e−iθ


(

1 eiθ · · · 1 eiθ
)
+ In

λx
n1(θ) = n + 1

px
n1 =

1√
n

(
1 eiθ · · · 1 eiθ

)
χ1t,n =

1√
(n + 1)n

(
1 F · · · 1 F

)
xnt =

n√
(n + 1)n

ut

+
1√

(n + 1)n
(ξ1t + ξ2t+1 + · · ·+ ξn−1t + ξnt+1)
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Modeling high-dimensional datasets. Example.

The first eigenvalue and corresponding eigenvector are

λx
n(θ) = n + 1, Z x

n1(θ) =
1√
n

(
1 eiθ · · · 1 eiθ

)′
.

The filter corresponding to Z x
n1(θ) is

1√
n

(
1 L−1 · · · 1 L−1

)′
and the first principal component

1√
n

(
x1t + L−1x2t · · ·+ xn−1,t + L−1xnt

)
=

√
n ut +

1√
n

(
ξ1t + ξ2,t+1 · · ·+ ξn−1,t + ξn,t+1

)
.
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Modeling high-dimensional datasets. Example.

and the first principal component

1√
n

(
x1t + L−1x2t · · ·+ xn−1,t + L−1xnt

)
=

√
n ut +

1√
n

(
ξ1t + ξ2,t+1 · · ·+ ξn−1,t + ξn,t+1

)
.

The estimates of χ1t and χ2t , for example, are

ut +
1
n

(
ξ1t + ξ2,t+1 · · ·+ ξn−1,t + ξn,t+1

)
and

ut +
1
n

(
ξ1,t−1 + ξ2,t · · ·+ ξn−1,t−1 + ξn,t

)
respectively. You see the “realignment” induced by the dynamic
principal component.
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Modeling high-dimensional datasets. Example.

The model {
xit = ut + ξit if i is odd

xit = ut−1 + ξit if i is even

can be rewritten as

xit = bi1F1t + bi2F2t + ξit ,

where F1t = ut , F2t = ut−1 and the b’s are defined in an obvious way.
In the static framework

Sx
n =


1 0
0 1
...
1 0
0 1


(

1 0 · · · 1 0
0 1 · · · 0 1

)
+ In
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Modeling high-dimensional datasets. Example.

Eigenvalues and eigenvectors are

µx
n1 = µx

n2 = n/2 + 1

W x
n1 =

1√
n/2

(
1 0 · · · 1 0

)
W x

n2 =
1√
n/2

(
0 1 · · · 0 1

)
The principal components are:

Px
1 =

√
(n/2)ut +

1√
(n/2)

(ξ1t + ξ3t + · · · ξn−1t)

Px
2 =

√
(n/2)ut +

1√
(n/2)

(ξ2t + ξ4t + · · · ξnt)
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Modeling high-dimensional datasets. Example.

The principal components are:

Px
1 =

√
(n/2)ut +

1√
(n/2)

ξ1t + ξ3t + · · ·+ ξn−1,t

Px
2 =

√
(n/2)ut +

1√
(n/2)

(ξ2t + ξ4t + · · · ξnt)

and the estimate of χ1t is

ut +
1

n/2
(ξ1t + ξ3t + · · ·+ ξn−1 + ξ2t + ξ4t + · · · ξn)

So you see that the dynamic approach is two times more efficient in
the elimination of the idiosyncratic component.
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Modeling high-dimensional datasets. Example.

However, let us go back to:
The first eigenvalue and corresponding eigenvector are

λx
n(θ) = n + 1, Z x

n1(θ) =
1√
n

(
1 eiθ · · · 1 eiθ

)′
.

The filter corresponding to Z x
n1(θ) is

1√
n

(
1 L−1 · · · 1 L−1

)′
(‡)

and the first principal component

1√
n

(
x1t + L−1x2t · · ·+ xn−1,t + L−1xnt

)
=

√
n ut +

1√
n

(
ξ1t + ξ2,t+1 · · ·+ ξn−1,t + ξn,t+1

)
.

You see that the filter (‡) is two sided, which a serious drawback.
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