High-Dimensional Dynamic Factor Models:
 Theory and Applications to Forecasting and
 Macroeconomic Analysis.

Marco Lippi, Istituto Einaudi per l'Economia e la Finanza (EIEF), Roma

November 30, 2023
High Dimensional Data: Theory and applications
Laboratori Nazionali del Gran Sasso

The dataset

Much of the empirical research on High-Dimensional Dynamic factor Models has been conducted on a monthly Macroeconomic dataset containing about $n=200$ time series for the US:
(1) output and income, (2) labor market, (3) housing, (4)
consumption, orders and inventories, (5) money and credit, (6) bond and exchange rates, (7) prices, and (8) stock market. The series length T is about 500 .

The dataset

This is the meaning of "big data" in this literature. Indeed it is big data as compared to standard Applied Macroeconomic Analysis, in which VAR models are employed. A VAR, Vector Auto-Regression, is, for example,

$$
X_{t}=A X_{t-1}+U_{t}
$$

where X_{t} is a, say, the 5-dimensional vector including GDP, Investment, Consumption, Unemployment, Interest Rate, so that A contains 25 parameters which must be estimated. And you see that with 10 variables you should estimate 100 parameters

The dataset. Curse of dimensionality.

This dependence of the number of parameters to estimate on the square of the number of variables is an example of "curse of dimensionality". You would never think of estimating a VAR with 100 variables.
Note that "curse of dimensionality" is relative to the number T. But 500 , a little more or less, is the limit with monthly macroeconomic data (structural break).

Modeling high-dimensional datasets. Factors

High-dimensional factor models are based on the idea that the series of the dataset are determined by a small number of factors, that are common to all series, plus on individual cause of variation. Let me use an elementary example: for $i=1, \ldots, n$,

$$
x_{i t}=b_{i} F_{t}+\xi_{i t}
$$

where
(a) Everything is zero-mean covariance stationary.
(b) F_{t} and $\xi_{i t}$ are non-correlated.
(c) $\xi_{i t}$ and $\xi_{j t}, i \neq j$, are non-correlated, that is, the ξ 's are individual specific.
(d) The variables $x_{i t}$ are observable, whereas F_{t} and $\xi_{i t}$ are latent.

Modeling high-dimensional datasets. Factors

$$
x_{i t}=b_{i} F_{t}+\xi_{i t}
$$

where
(a) Everything is covariance stationary and zero-mean.
(b) F_{t} and $\xi_{i t}$ are non-correlated.
(c) $\xi_{i t}$ and $\xi_{j t}, i \neq j$, are non-correlated.
(d) The variables $x_{i t}$ are observable, whereas F_{t} and $\xi_{i t}$ are latent.

Suppose that the ξ 's are unpredictable and big with respect to $b_{i} F_{t}$.
Then the x 's will be little predictable. If we are able to estimate F_{t} and F_{t} is predictable, then our prediction of the x 's improves. More on this later.

Modeling high-dimensional datasets. Estimating the factor F_{t}

Estimation of F_{t}. Take the average:

$$
X_{n t}=\frac{1}{n} \sum_{i=1}^{n} x_{i t}=\left(\frac{1}{n} \sum_{i=1}^{n} b_{i}\right) F_{t}+\frac{1}{n} \sum_{i=1}^{n} \xi_{i t}
$$

The variances are

$$
\operatorname{var} \frac{1}{n} \sum_{i=1}^{n} x_{i t} \leq\left(\frac{1}{n} \sum_{i=1}^{n} b_{i}\right)^{2} \sigma_{F}^{2}+\frac{1}{n^{2}} n \max _{i} \operatorname{var} \xi_{i t}=\bar{b}_{n}^{2} \sigma_{F}^{2}+\frac{1}{n} M_{n}
$$

So we see that in the limit the ξ 's disappear in the average under the assumption that M_{n} is bounded.

Modeling high-dimensional datasets. Estimating the factor F_{t}

Now however, what if $\bar{b}_{n} \rightarrow 0$? We might use, instead of the weights $1 / n$, the weights $b_{i} / \sqrt{b_{1}^{2}+\cdots+b_{n}^{2}}$. Now the common component cannot tend to zero.

But this is not feasible because the coefficients b_{i} are not observable.

Modeling high-dimensional datasets. Principal components

What we do is the following. Consider the $n \times n$ variance-covariance matrix of the x 's, Γ_{0}^{x}. Then let W_{x} the column eigenvector corresponding to the first eigenvalue of Γ_{n}^{x}. We use W_{x} as weights. Let me recall you that $P_{t}^{x}=W_{1}^{x} x_{1 t}+\cdots+W_{n}^{x} x_{n t}$ is known as the first Principal Component of the x vector.

We can show that

$$
W_{i}^{x} P_{t}=W_{i}^{x}\left(W_{1}^{x} \ldots W_{n}^{x}\right)\left(\begin{array}{c}
x_{1 t} \\
\vdots \\
x_{n t}
\end{array}\right) \rightarrow b_{i} F_{t}
$$

in mean square as $n \rightarrow \infty$, with rate $1 / \sqrt{n}$.
But this is also non feasible because we do not observe Γ_{x}^{n}. We actually use the estimated covariance matrix $\hat{\Gamma}_{n}^{x}$. The corresponding estimator of $b_{i} F_{t}$, that is $\hat{W}_{i}^{x} \hat{P}_{t}^{x}$ converges in probability to $b_{i} F_{t}$ with rate $\max (1 / \sqrt{n}, 1 / \sqrt{T})$.

Modeling high-dimensional datasets. Prediction.

Now suppose that, for example:

$$
F_{t}=\alpha F_{t-1}+u_{t},
$$

where u_{t} is a white noise. Thus estimation of $b_{i} F_{t}$ and orthogonality of $b_{i} F_{t}$ and $\xi_{i t}$ allows predicting $x_{i t}$ by separately predicting F_{t} and $\xi_{i t}$, which is an obvious advantage with respect to predicting $x_{i t}$ directly.

Of course it is necessary that we have a decent estimation of $b_{i} F_{t}$ and $\xi_{i t}$.

Modeling high-dimensional datasets. Many factors.

The model can obviously be generalised for many factors.

$$
x_{i t}=b_{i 1} F_{1 t}+\cdots+b_{r 1} F_{r t}+\xi_{i t}=\chi_{i t}+\xi_{i t} .
$$

The variables χ are called the common components and the ξ the idiosyncratic components. For example, the observable variables in our macroeconomic dataset are driven by a factor representing change in technology and another representing demand, so that $r=2$. The model is estimated by means of the eigenvectors corresponding to the first r eigenvalues of $\hat{\Gamma}_{n}^{x}$ and

$$
\hat{W}_{i 1}^{x} \hat{P}_{1 t}^{x}+\cdots+\hat{W}_{r}^{x} \hat{P}_{r t}^{x} \rightarrow \chi_{i t}
$$

as n and T at rate $\max (1 / \sqrt{n}, 1 / \sqrt{T})$.

Modeling high-dimensional datasets. Many factors.

Still this is not completely feasible because the integer r is not observable. So it must be estimated. More on this later.

Now there is something to say about the model:

$$
x_{i t}=b_{i 1} F_{1 t}+\cdots+b_{r 1} F_{r t}+\xi_{i t}=\chi_{i t}+\xi_{i t}
$$

Forget estimation, now we pretend to know the covariance matrix of the χ 's and the ξ 's.

Firstly, the assumption that the ξ 's must be non correlated to one another can be relaxed. Some "weak" correlation can be allowed. For example, $\xi_{1 t}$ can be correlated to a finite number of other idiosyncratic components.

Secondly, some assumptions must be made on χ 's to prevent that their covariance matrix become singular as $n \rightarrow \infty$.

Modeling high-dimensional datasets. Many factors.

Fom previous slide.

$$
x_{i t}=b_{i 1} F_{1 t}+\cdots+b_{r 1} F_{r t}+\xi_{i t}=\chi_{i t}+\xi_{i t}
$$

Firstly, the assumption that the ξ 's must be non correlated to one another can be relaxed. Some "weak" correlation can be allowed. For example, $\xi_{1 t}$ can be correlated to a finite number of other idiosyncratic components.
Secondly, some assumptions must be made on χ 's to prevent that their covariance matrix become singular as $n \rightarrow \infty$. So we assume:
(1) Let $\mu_{1 n}^{\xi}$ be the first eigenvalue of Γ_{n}^{ξ}. There exists R such that $\mu_{1 n}^{\xi} \leq R$ for all n.
(2) Let $\mu_{r n}^{\chi}$ be the r-th eigenvalue of Γ_{n}^{χ}. $\lim _{n \rightarrow \infty} \mu_{r n}^{\chi}=\infty$.

Modeling high-dimensional datasets. Many factors.

From previous(1) Let $\mu_{1 n}^{\xi}$ be the first eigenvalue of Γ_{n}^{ξ}. There exists R such that $\mu_{1 n}^{\xi} \leq R$ for all n.
(2) Let $\mu_{r n}^{\chi}$ be the r-th eigenvalue of $\Gamma_{n}^{\chi} . \lim _{n \rightarrow \infty} \mu_{r n}^{\chi}=\infty$.

It is under (1) and (2) that we have

$$
\begin{equation*}
W_{i 1}^{x} P_{1 t}^{x}+\cdots+W_{r}^{x} P_{r t}^{x} \rightarrow \chi_{i t} \quad \text { and } \quad \hat{W}_{i 1}^{x} \hat{P}_{1 t}^{x}+\cdots+\hat{W}_{r}^{x} \hat{P}_{r t}^{x} \rightarrow \chi_{i t} \tag{*}
\end{equation*}
$$

in mean square and in probability, respectively.
Now you will object that these are assumptions on unobservable variables. But we have:

Theorem. Conditions (1) and (2) hold if and only if, as $n \rightarrow \infty$, (3) $\mu_{r n}^{x} \rightarrow \infty$, there exists S such that $\mu_{r+1, n}^{x} \leq \boldsymbol{S}$.

Thus under (3) we have (*).

Modeling high-dimensional datasets. Many factors.

Previous (3) $\mu_{r n}^{x} \rightarrow \infty$, there exists S such that $\mu_{r+1, n}^{x} \leq S$.
Summing up, under (3)
(A) the integer r can be consistently estimated;
(B) $\hat{W}_{i 1}^{x} \hat{P}_{1 t}^{x}+\cdots+\hat{W}_{r}^{x} \hat{P}_{r t}^{x} \rightarrow \chi_{i t}$.

Now suppose that

$$
F_{t}=A F_{t-1}+R_{t},
$$

that is, F_{t} is generated by an r-dimensional VAR. Then the vector $\chi_{t}=\left(\chi_{1 t} \cdots \chi_{r t}\right)$ also is generated by a VAR

$$
\chi_{t}=B \chi_{t-1}+V_{t} .
$$

This VAR can be used to predict for example $x_{1 t}$ (a generalization of what we have seen in the elementary example with $r=1$).

Modeling high-dimensional datasets. Many factors.

Now suppose that

$$
\begin{equation*}
F_{t}=A F_{t-1}+R_{t}, \tag{**}
\end{equation*}
$$

that is, F_{t} is generated by an r-dimensional VAR. Then the vector $\chi_{t}=\left(\chi_{1 t} \cdots \chi_{r t}\right)$ also is generated by a VAR

$$
\chi_{t}=B \chi_{t-1}+V_{t} .
$$

This VAR can be used to predict for example $x_{1 t}$ (a generalization of what we have seen in the elementary example with $r=1$).
Of course this is an improvement with respect to using a VAR for ($x_{1 t} \cdots x_{r t}$).
Lastly, note that estimations of the VAR $(* *)$ implies that r is small, otherwise we fall again in the curse of dimensionality.

Modeling high-dimensional datasets. Dynamics.

Again the model

$$
x_{i t}=b_{i 1} F_{1 t}+\cdots+b_{r 1} F_{r t}+\xi_{i t}=\chi_{i t}+\xi_{i t} .
$$

I proposed the example in which $r=2$, with the two factors interpreted as technology and demand. The model can accommodate also, for example,

$$
x_{i t}=b_{i} u_{t}+c_{i} u_{t-1}+\xi_{i t},
$$

where u_{t} is a white noise. Indeed, by setting $F_{1 t}=u_{t}$ and $F_{2 t}=u_{t-1}$, we have $r=2$ and

$$
x_{i t}=b_{i} F_{1 t}+c_{i} F_{2 t}+\xi_{i t}
$$

In this case we say that the model has 2 static factors $F_{1 t}$ and $F_{1 t}$, and 1 dynamic factor, u_{t}. Thus the dynamics in (\dagger) has been transformed into the static representation ($\dagger \dagger$).

Modeling high-dimensional datasets. Dynamics.

However, there are fairly elementary cases in which this transformation is not possible. Suppose that $\chi_{i t}$ is generated by the autoregressive equation

$$
\chi_{i t}=\alpha_{i} \chi_{i, t-1}+u_{t},
$$

where the coefficients α_{i} are drawn from the uniform distribution between -. 9 and .9. We write

$$
\chi_{i t}=\frac{1}{1-\alpha_{i} L} u_{t}=u_{t}+\alpha_{i} \chi_{t-1}+\alpha_{i}^{2} u_{t-2}+\cdots
$$

where L is the lag operator: $L y_{t}=y_{t-1}$. Setting

$$
x_{i t}=\chi_{i t}+\xi_{i t}=\frac{1}{1-\alpha_{i} L} u_{t}+\xi_{i t},
$$

the static representation $x_{i t}=b_{i 1} F_{1 t}+\cdots+b_{r 1} F_{r t}+\xi_{i t}$ is impossible.

Modeling high-dimensional datasets. Dynamics.

You see that in the example we have $r>q$, where q is the dimension of the dynamic. This is a general fact.
To accommodate the case

$$
x_{i t}=\chi_{i t}+\xi_{i t}=\frac{1}{1-\alpha_{i} L} u_{t}+\xi_{i t}
$$

we introduce a more general model:

$$
x_{i t}=\left[b_{i o} u_{t}+b_{i 1} u_{t-1}+\cdots\right]+\xi_{t}=b_{i}(L) u_{t}+\xi_{t}
$$

The analysis of this model requires consideration of the spectral density matrix of $\left(x_{1 t} \cdots x_{n t}\right)$. Under the assumptions that u_{t} is a q-dimensional white noise,
$\xi_{i t} \perp u_{t-s}$ for all i, t and s, we have

Modeling high-dimensional datasets. Dynamics.

Previous

$$
x_{i t}=\left[b_{i o} u_{t}+b_{i 1} u_{t-1}+\cdots\right]+\xi_{t}=b_{i}(L) u_{t}+\xi_{t}
$$

The analysis of this model requires consideration of the spectral density matrix of $\left(x_{1 t} \cdots x_{n t}\right)$. Under the assumptions that u_{t} is a q-dimensional orthonormal white noise,
$\xi_{i t} \perp u_{t-s}$ for all i, t and s, we have, setting $B_{n}(L)=\left(b_{1}(L) \cdots b_{n}(L)\right)^{\prime}$,

$$
\Sigma_{n}^{x}(\theta)=B_{n}\left(e^{-i \theta}\right) B_{n}^{\prime}\left(e^{i \theta}\right)+\Sigma_{n}^{\xi}(\theta)
$$

Then:
We take the first q eigenvalues $\lambda_{n j}^{x}(\theta)$ and corresponding normalized $n \times 1$ eigenvectors $Z_{n j}^{x}(\theta)$.
Transform the eigenvectors back in the time domain where they produce $n \times 1$ filters $Z_{n j}^{x}(L)$ and produce the first q dynamic principal components:

$$
P_{j t}^{x}=Z_{n j}^{x}(L)\left(x_{1 t} \cdots x_{n t}\right)^{\prime}
$$

Modeling high-dimensional datasets. Dynamics.

Lastly we obtain the estimator of $\chi_{i t}$:

$$
Z_{n 1, i}^{x}\left(L^{-1}\right) P_{1 t}^{x}+\cdots+Z_{n r, i}^{x}\left(L^{-1}\right) P_{r t}^{x} .
$$

EXAMPLE. The model is

$$
\left\{\begin{array}{l}
x_{i t}=u_{t}+\xi_{i t} \text { if } i \text { is odd } \\
x_{i t}=u_{t-1}+\xi_{i t} \text { if } i \text { is even }
\end{array}\right.
$$

where the ξ 's are unit variance white noises. This is a stylised example with leading and lagging variables. For n even,

$$
\Sigma_{n}^{x}(\theta)=\left(\begin{array}{c}
1 \\
e^{-i \theta} \\
\vdots \\
1 \\
e^{-i \theta}
\end{array}\right)\left(\begin{array}{lllll}
1 & e^{i \theta} & \ldots & 1 & e^{i \theta}
\end{array}\right)+I_{n}
$$

Modeling high-dimensional datasets. Example.

The first eigenvalue and corresponding eigenvector are

$$
\lambda_{n}^{X}(\theta)=n+1, \quad Z_{n 1}^{X}(\theta)=\frac{1}{\sqrt{n}}\left(\begin{array}{lllll}
1 & e^{i \theta} & \cdots & 1 & e^{i \theta}
\end{array}\right)^{\prime} .
$$

The filter corresponding to $Z_{n 1}^{x}(\theta)$ is

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{lllll}
1 & L^{-1} & \cdots & 1 & L^{-1}
\end{array}\right)^{\prime}
$$

and the first principal component

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\left(x_{1 t}+L^{-1} x_{2 t} \cdots+x_{n-1, t}+L^{-1} x_{n t}\right) \\
& \quad=\sqrt{n} u_{t}+\frac{1}{\sqrt{n}}\left(\xi_{1 t}+\xi_{2, t+1} \cdots+\xi_{n-1, t}+\xi_{n, t+1}\right)
\end{aligned}
$$

Modeling high-dimensional datasets. Example.

and the first principal component

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\left(x_{1 t}+L^{-1} x_{2 t} \cdots+x_{n-1, t}+L^{-1} x_{n t}\right) \\
& \quad=\sqrt{n} u_{t}+\frac{1}{\sqrt{n}}\left(\xi_{1 t}+\xi_{2, t+1} \cdots+\xi_{n-1, t}+\xi_{n, t+1}\right)
\end{aligned}
$$

The estimates of $\chi_{1 t}$ and $\chi_{2 t}$, for example, are

$$
u_{t}+\frac{1}{n}\left(\xi_{1 t}+\xi_{2, t+1} \cdots+\xi_{n-1, t}+\xi_{n, t+1}\right)
$$

and

$$
u_{t}+\frac{1}{n}\left(\xi_{1, t-1}+\xi_{2, t} \cdots+\xi_{n-1, t-1}+\xi_{n, t}\right)
$$

respectively. You see the "realignment" induced by the dynamic principal component.

Modeling high-dimensional datasets. Example.

The model

$$
\left\{\begin{array}{l}
x_{i t}=u_{t}+\xi_{i t} \text { if } i \text { is odd } \\
x_{i t}=u_{t-1}+\xi_{i t} \text { if } i \text { is even }
\end{array}\right.
$$

can be rewritten as

$$
x_{i t}=b_{i 1} F_{1 t}+b_{i 2} F_{2 t}+\xi_{i t},
$$

where $F_{1 t}=u_{t}, F_{2 t}=u_{t-1}$ and the b's are defined in an obvious way. In the static framework

$$
S_{n}^{x}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
\vdots & \\
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{lllll}
1 & 0 & \cdots & 1 & 0 \\
0 & 1 & \cdots & 0 & 1
\end{array}\right)+I_{n}
$$

Modeling high-dimensional datasets. Example.

Eigenvalues and eigenvectors are

$$
\begin{aligned}
\mu_{n 1}^{x} & =\mu_{n 2}^{x}=n / 2+1 \\
W_{n 1}^{x} & =\frac{1}{\sqrt{n / 2}}\left(\begin{array}{lllll}
1 & 0 & \cdots & 1 & 0
\end{array}\right) \\
W_{n 2}^{x} & =\frac{1}{\sqrt{n / 2}}\left(\begin{array}{lllll}
0 & 1 & \cdots & 0 & 1
\end{array}\right)
\end{aligned}
$$

The principal components are:

$$
\begin{aligned}
& P_{1}^{x}=\sqrt{(n / 2)} u_{t}+\frac{1}{\sqrt{(n / 2)}}\left(\xi_{1 t}+\xi_{3 t}+\cdots \xi_{n-1 t}\right) \\
& P_{2}^{x}=\sqrt{(n / 2)} u_{t}+\frac{1}{\sqrt{(n / 2)}}\left(\xi_{2 t}+\xi_{4 t}+\cdots \xi_{n t}\right)
\end{aligned}
$$

Modeling high-dimensional datasets. Example.

The principal components are:

$$
\begin{aligned}
& P_{1}^{X}=\sqrt{(n / 2)} u_{t}+\frac{1}{\sqrt{(n / 2)}} \xi_{1 t}+\xi_{3 t}+\cdots+\xi_{n-1, t} \\
& P_{2}^{X}=\sqrt{(n / 2)} u_{t}+\frac{1}{\sqrt{(n / 2)}}\left(\xi_{2 t}+\xi_{4 t}+\cdots \xi_{n t}\right)
\end{aligned}
$$

and the estimate of $\chi_{1 t}$ is

$$
u_{t}+\frac{1}{n / 2}\left(\xi_{1 t}+\xi_{3 t}+\cdots+\xi_{n-1}+\xi_{2 t}+\xi_{4 t}+\cdots \xi_{n}\right)
$$

So you see that the dynamic approach is two times more efficient in the elimination of the idiosyncratic component.

Modeling high-dimensional datasets. Example.

However, let us go back to:
The first eigenvalue and corresponding eigenvector are

$$
\lambda_{n}^{X}(\theta)=n+1, \quad Z_{n 1}^{x}(\theta)=\frac{1}{\sqrt{n}}\left(\begin{array}{lllll}
1 & e^{i \theta} & \ldots & 1 & e^{i \theta}
\end{array}\right)^{\prime} .
$$

The filter corresponding to $Z_{n 1}^{x}(\theta)$ is

$$
\frac{1}{\sqrt{n}}\left(\begin{array}{lllll}
1 & L^{-1} & \cdots & 1 & L^{-1}
\end{array}\right)^{\prime}
$$

and the first principal component

$$
\begin{aligned}
& \frac{1}{\sqrt{n}}\left(x_{1 t}+L^{-1} x_{2 t} \cdots+x_{n-1, t}+L^{-1} x_{n t}\right) \\
& \quad=\sqrt{n} u_{t}+\frac{1}{\sqrt{n}}\left(\xi_{1 t}+\xi_{2, t+1} \cdots+\xi_{n-1, t}+\xi_{n, t+1}\right)
\end{aligned}
$$

You see that the filter (\ddagger) is two sided, which a serious drawback.

First Papers
Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000). The generalized dynamic factor model: identification and estimation. The Review of Economics and Statistics 82, 540-554.

Stock, J. H. and M. W. Watson (2002a). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association 97, 1167-1179.

Stock, J. H. and M. W. Watson (2002b). Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic Statistics 20, 147-162.

Bai, J. and S. Ng (2002). Determining the number of factors in approximate factor models. Econometrica 70, 191-221.

Literature

Relatively recent
Forni, M., M. Hallin, M. Lippi, and P. Zaffaroni (2015). Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. Journal of Econometrics 185, 359-371.

Forni, M., M. Hallin, M. Lippi, and P. Zaffaroni (2017). Dynamic factor models with infinite dimensional factor space: Asymptotic analysis. Journal of Econometrics 199, 74-92.

