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Three challenges:

functional observations + high dimension + serial dependence

Why functional time series?
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Intraday stock price (temperature, air pollution) (1 day)

2019-12-02
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This is a curve/function z
x : trading hours — R

T € trading hours — z(7) € R.
A univariate real-valued, continuous-time observed stochastic process

(time series)

(stationarity, as a rule, does not hold)
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Intraday stock price (1 day)

2019-12-02

AAPL

258 262 266 270

TR R

wwwwwww
10:00 13:00 16:00

This is a curve/function z

x : trading hours — R

T € trading hours — z(7) € R.

Traditionally: x € L?([9, 7], R)—without loss of generality,
x € L?([0,1],R).

One univariate functional observation
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Intraday stock price (several days)

2019-12-02 2019-12-03 2019-12-04 2019-12-05 2019-12-06 2019-12-09 2019-12-10 2019-12-11
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Intraday price curve observed each trading day ¢,
Denote it by a4, for each day ¢t = 1,2, ... (say),
x; @ trading hours — R

7 € trading hours — z4(7) € R.

An observed univariate functional time series (FTS).

Depending on the problem, stationarity often holds
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Intraday stock prices (several stocks; several days)

2010-12-02
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An observed low-dimensional (N = 5) multivariate functional time
series (FTS); equivalently, an observed (N = 5) x (T' = 8) panel of
functional observations

Depending on the problem, stationarity may hold
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Intraday stock prices (N — oo =“many stocks”; T'— oo =“many days”)

e.g., N = 1000 stocks observed over T' = 2000 days

An observed high-dimensional functional time series (FTS)
equivalently,

An observed “large” panel of functional observations
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Abstract Setting

(AAPL intraday) Tl Ti2 -+ Xie - TiT
(AMZN intraday) To1 Loz - Tor -+ TaT
(FB intraday) X31  Tsa - Xzg - IaT
(GOOG intraday) IN1 IN2 cee TNt e TNT

Each row is a time series of curves (order matters; (local)
stationarity is a reasonable assumption)

Each column is a vector of curves (order is arbitrary/irrelevant;
exchangeability is a reasonable assumption)
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Mixed-Nature Panels

The rows (for each day t) could be of different nature, such as
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Mixed-Nature Panels

The rows (for each day t) could be of different nature, such as

» Intra-day returns (FTS; 7 is “intraday time”),
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Mixed-Nature Panels

The rows (for each day t) could be of different nature, such as

» Intra-day returns (FTS; 7 is “intraday time”),

» Yield curves (FTS; here 7 is “maturity,” not “intraday time”)
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Mixed-Nature Panels
The rows (for each day t) could be of different nature, such as
» Intra-day returns (FTS; 7 is “intraday time”),

» Yield curves (FTS; here 7 is “maturity,” not “intraday time”)

» Overnight returns (scalar time series),
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Mixed-Nature Panels

The rows (for each day t) could be of different nature, such as

Intra-day returns (FTS; 7 is “intraday time”),

Yield curves (FTS; here 7 is “maturity,” not “intraday time”)

4
>
» Overnight returns (scalar time series),
» Daily returns (scalar time series),

>

macroeconomic indicators such as stock indices, exchange rates
(vector time series),

v
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Mixed-Nature Panels

The rows (for each day t) could be of different nature, such as

Intra-day returns (FTS; 7 is “intraday time”),

Yield curves (FTS; here 7 is “maturity,” not “intraday time”)

4
>
» Overnight returns (scalar time series),
» Daily returns (scalar time series),

>

macroeconomic indicators such as stock indices, exchange rates
(vector time series),

> ...

Different 7’s (no 7 at all in case of a scalar series) but same ¢ (e.g.,
daily observations—mixed frequencies are more delicate)
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Mixed-Nature Panels

The rows (for each day t) could be of different nature, such as

Intra-day returns (FTS; 7 is “intraday time”),

Yield curves (FTS; here 7 is “maturity,” not “intraday time”)

4
>
» Overnight returns (scalar time series),
» Daily returns (scalar time series),

>

macroeconomic indicators such as stock indices, exchange rates
(vector time series),

> ...

Different 7’s (no 7 at all in case of a scalar series) but same ¢ (e.g.,
daily observations—mixed frequencies are more delicate)

< importance of mixed-nature panels in applications
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Mixed-Nature Panels: Abstract Setting I

(AAPL intraday) T11
(Yield Curve) T21
(daily returns) 31
(Overnight return) Tl
TN1

T12
€22
T32

ITN2

L1t
Tt
T3t

TNt

xrir
xroT
xr3rT

INT

Each row is a time series of curves, or a time series of numbers

Each column is a vector of curves & numbers

Each z;; takes values in a Hilbert Space H;

(typically, L? ([0,1],R) or RPi or R)
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Mixed-Nature Panels: Abstract Setting 11

(elements of Hy) T11  T1a - Tie

Lir
(elements of Hy) T R Tor
(elements of Hj) 31  Tza -+ Ta T3
(elements of H;) Tyl Ty Tt TiT
(elements of Hy) TN1 TNz INt c  INT

Each row is a time series of curves, or a time series of numbers

Each column is a vector of curves & numbers
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Mixed-Nature Panels: Abstract Setting II1
Each z;; takes values in a real separable Hilbert space H; (typically,
L?([0,1],R) or RP#) equipped with
> the inner product (-,-) and
> the norm ||z, = <$it,$it>}{/2, i=1,...,N.

The inner-product on L%([0,1],R) is (for f,g € L*([0,1],R))
w=[ 16

Hy :=Hi®H® - ®HN
(the direct sum of the Hilbert spaces Hy,..., Hy): the elements

Define

of Hy are of the form v := (v1,va,... ,’UN)T where v; € H;,
i=1,...,N. The space Hy, naturally equipped with the inner
product

N
E Ulv wl 9
i=1

is a real separable Hilbert space. '8



Mixed-Nature Panels: Analysis?

Some natural questions are:

» Joint model? typically impossible even for moderate N (curse of
dimensionality)

» Underlying structure in the data? intricate cross-dependencies at
all lags Better remain agnostic = nonparametric

» Forecasting? Arguably, the main problem in time series
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Mixed-Nature Panels: Analysis?

Some natural questions are:

>

Joint model? typically impossible even for moderate N (curse of
dimensionality)

Underlying structure in the data? intricate cross-dependencies at
all lags Better remain agnostic = nonparametric

Forecasting? Arguably, the main problem in time series

In the scalar case (H; =R for all 4): (Dynamic) Factor
Models—Marco Lippi’s talk

Extension needed to high-dimensional, mixed-nature, panels ...
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Why functional series?

In practice, one never observes a function! Rather, the
discretization of a function (e.g., intraday stock values recorded every
minute). At the end of the day, thus, piling them up, ... a large- N
panel of scalar or vector observations where traditional methods do

apply!

In standard factor model methods, however, the cross-sectional
ordering does not matter

e Here, after stacking the scalar values of discretized functional
observations, cross-sectional ordering does matter: scalars originating
from one given function are ordered, e.g., by intraday time 7

e Traditional methods, thus, do not apply—or then, fail to exploit
the information related to the functional nature of observations—be
they the discretized versions of unobservable functions.
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Mixed-Nature Panels: Factor Models

(elements of Hy)
(elements of Hy)
(elements of Hj)

(elements of H;)

(elements of Hy)

Factor model paradigm (scalar): for each ¢, decompose z;; into a

sum

Tit = X4t + &t =: common,; + idiosyncratic;,

where ...

T11
21
T31

ITN1

T12
T22
32

TN2

L1t
T2t
T3t

TNt

1T
ZToT
3T

INT

22 /74



The factor model paradigm (scalar case)

... decompose x;; into a sum
it = Xit + & =: common;; + idiosyncratic;,

where

» i, the common component, takes values in the finite-dimensional
space spanned by a finite (unspecified) number r of factors:
Xit = bi1uqr + - -+ + bjrup—driven by a ¢ < r-dimensional
innovation (g unspecified)), formally N-dimensional but
intrinsically r-dimensional time series with rank ¢

> &, the idiosyncratic component, is only “mildly” cross-correlated

> \;+ and &;; are mutually orthogonal
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The factor model paradigm (scalar case)

... decompose x;; into a sum
it = Xit + & =: common;; + idiosyncratic;,

where

» i, the common component, takes values in the finite-dimensional
space spanned by a finite (unspecified) number r of factors:
Xit = bi1uqr + - -+ + bjrup—driven by a ¢ < r-dimensional
innovation (g unspecified)), formally N-dimensional but
intrinsically r-dimensional time series with rank ¢

> &, the idiosyncratic component, is only “mildly” cross-correlated

> \;+ and &;; are mutually orthogonal

Neither x;+ nor &; (nor the factors u;; nor the loadings b,; ... ) are
observed; r (and ¢) are unspecified: to be recovered from the data.
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The factor model paradigm (scalar case)

The various versions of factor models then differ by their
definitions of “mildly” cross-correlated and the assumption of a finite
r (finite-dimensional factor space).

The most general definition is the “General Dynamic Factor
Model” one proposed in Forni-Hallin-Lippi-Reichlin (Rev. Econ. &
Statist. 2000), Forni and Lippi (Econometric Theory 2001) and
Forni-Hallin-Lippi-Zaffaroni (JoE 2015, 2017), where ¢ < co
but r < oo is not required; there,

» & idiosyncratic (mildly cross-correlated) means: the largest
eigenvalues of £;’s N x N spectral density matrices are bounded
(all frequencies) as N — oo

> it common (pervasively cross-correlated) means: the qth
eigenvalues of xit’s N X N spectral density matrices are

unbounded (all frequencies) as N — oo but the (¢ + 1)th ones are
bounded (all frequencies)
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The factor model paradigm (scalar case)

The most popular definition is the one adopted in Bai and
Ng (Econometrica 2002) and Stock and Watson (JASA 2002),
where r < oo is required and
> & idiosyncratic (mildly cross-correlated) means: the largest
eigenvalues of &4’s N x N lag-zero covariance matrices are
bounded as N — oo

> it common (pervasively cross-correlated) means: the rth
eigenvalue of x;:’s N X N lag-zero covariance matrices are
unbounded as N — oo but the (r + 1)th one is bounded
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What the factor model is / is not

The factor model (in this high-dimensional time-series context)
» is not a data-generating process

» is not a dimension-reduction method

P is not a signal + noise model

» is not an approximate reduced rank model

Rather, the factor model

» is (under very general conditions, mostly under its GDFM form)
the expression of a representation result—a mathematical fact
rather than a “statistical model”

» is an operational decomposition aimed at a “divide and rule”
strategy ...

» .. where x; and §;; are to be recovered, then handled (e.g.,
predicted) via drastically different methods ...

» .. then put back together again, e.g., to produce forecasts
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Actually, the general dynamic factor model is not a “statistical
model”: beyond second-order stationarity and the existence of a
spectrum, it does not place any restriction on the data-generating
process—only requiring the number of exploding dynamic eigenvalues
to be finite ... (which, in view of the fact that N in practice is fixed, is
quite reasonable)

. an approach based on representation results that originates in
Forni and Lippi, Econometric Theory (2001).
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The factor model paradigm (Functional case)

A natural (and simple) functional extension of the scalar
decomposition is

ZTit = bijwry + -+ bjppy + it , VieN,VteN.
~—
common component idiosyncratic component
where
Factors uyy,...,u+ € R (unobserved, scalar),
Factor loadings b;1, ..., b;, € H,; (unobserved, functional),

Idiosyncratic component &;; € I; (unobserved, functional).
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The factor model paradigm (Functional case)

A natural (and simple) functional extension of the scalar
decomposition is

ZTit = bijwry + -+ bjppy + it , VieN,VteN.
~—
common component idiosyncratic component
where
Factors uyy,...,u+ € R (unobserved, scalar),
Factor loadings b;1, ..., b;, € H,; (unobserved, functional),

Idiosyncratic component &;; € I; (unobserved, functional).

Scalar factor models are a (very) special case: R=H; = Hy = ---.
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The covariance operator
Let
XY= (X, Xogy ooy Xove) T

denote an H y-valued random variable (to keep the presentation
simple, the dependence on N does not explicitly appear below)

The covariance operator
Cx =E[(X; - EX;)®(X; — EX,)] € L(HN)
of X, is mapping y € Hy to
CRy =E[(X; - EXy),y) (X: — EX;)| € Hy
Recall: for u € Hy, v € Hy, u®u is the operator (from Hs to H)
f€Hy (u®v)(f) = (f,v)u € Hi.

For vectors u € RP,v € RY, u®v = uv' (a p X ¢ matrix).
Foru=1€R, v € Ha, u®w is the operator (from Hs to R)

feHz = (uev)(f) = (f,v) € R.
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Eigendecomposition of the Covariance

Denote by )\ﬁl, )\ﬁg, ... the eigenvalues, in decreasing order of
magnitude, of this covariance operator.

Similarly denote by Ay, 1, Ay o, and XFCV,I’ )\f\,’Q, ... the eigenvalues

of the covariance operators Cy; and ngv
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High-Dimensional Functional Factor Model

Definition. We say that a (second-order stationary in ¢t € Z )
functional zero-mean process

X:={zy:ieNteZ}
admits a high-dimensional functional factor model representation
with r factors if

Tig = binwyg + -+ biptps 0 = Y + &y, 1 ENEEZ,

=0

where

» b;; € H;, (functional loadings; no dependence in t)

> uy = (Ui, .. - ,urt)T7 with values in R", is zero-mean second-order
stationary, co-stationary with X', and E [ututT] is positive definite
(scalar factors),

» {&i:}, with values in H;, is zero-mean second-order stationary,
and E [u;¢&¢] =0forall j=1,...,r and i € N,

> SUPN>1 AN, = 00, SUPN>1 AN yq < OO

> supys>i )\3,71 < oo.

33 /74



scalar factors, functional loadings ... allow the impact of a common
shock to depend on 7; in an item-specific way (recall that 7, and 7,
may be of an entirely different nature) ...

. would not be possible with functional factors and scalar loadings
(which, moreover, require H; = Hy = ..., thus precluding the analysis
of mixed-nature panels).
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High-Dimensional Functional Factor Models
In “matrix” notation,

x; = xt + & = Byug + &,

where
> ;= (T14,...,7n¢) " is Hy-valued,
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High-Dimensional Functional Factor Models
In “matrix” notation,

Ty =Xt +& = Byug + &4,

where
> ;= (T14,...,7n¢) " is Hy-valued,
» By is N x r with (By)y = by € H;.
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High-Dimensional Functional Factor Models
In “matrix” notation,

x; = xt + & = Byug + &,

where
> ;= (214,...,2n¢)" is Hy-valued,
» By is N x r with (BN)zl =b; € H;.
» u; is R"-valued, Eu; =0,
and E [ututT] =X, € R"™*" is positive definite,
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High-Dimensional Functional Factor Models
In “matrix” notation,

x; = xt + & = Byug + &,

where
> ;= (214,...,2n¢)" is Hy-valued,
» By is N x r with (BN)zl =b; € H;.
» u; is R"-valued, Eu; =0,
and E [ututT] =X, € R"™*" is positive definite,
> & is Hy-valued and E&;, =0,
> Eu, @& =0,
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High-Dimensional Functional Factor Models
In “matrix” notation,

x; = xt + & = Byug + &,

where
> ;= (214,...,2n¢)" is Hy-valued,
» By is N x r with (BN)zl =b; € H;.
» u; is R"-valued, Eu; =0,
and E [ututT] =X, € R"™*" is positive definite,
& is Hy-valued and E&; =0,
Eu,®& =0,
SUP N> 1 AN, = 00 SUDN>1 AN ppq < OO

SUp N >1 )‘§V,1 < 0.

vVvyyvyy

Recall: for u € Hi, v € Ha, u®wv : Hy — H; is defined by
(w@v)(f) = {f,v)u.

For vectors u € RP,v € R, u@v = uv".
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Representation results (I)

Let (note that Ay ; s monotone increasing in V)

Af = lim ANy, =12,

N—o0
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Representation results (I)

Let (note that Ay ; s monotone increasing in V)

Af = lim ANy, =12,

Theorem (Existence: Tavakoli, Nisol and Hallin, 2020)

The process X admits a (high-dimensional) functional factor model
representation with v factors if and only if

> \¥ =0, and
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Representation results (I)

Let (note that Ay ; s monotone increasing in V)

Af = lim ANy, =12,

Theorem (Existence: Tavakoli, Nisol and Hallin, 2020)

The process X admits a (high-dimensional) functional factor model
representation with v factors if and only if

> \X =0, and

Except for the existence of a bounded eigenvalue (assumption: the
number of exploding eigenvalues is finite), no specific factor model
assumption! Moreover, recall that in practice N is fixed!

As in the scalar case [Chamberlain & Rothschild (1982); Forni &
Lippi (2001); Hallin & Lippi (2013)] but we remove (our proof does
not need it) the assumption var(x;;) > 6, Vi.
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Representation results (1I)

Theorem (Uniqueness: Tavakoli, Nisol and Hallin, 2020)

Let xip = xit + &it, © € Nyt € Z, (functional factor model with r
factors). Then,

Xit = projg, (zit|Ds), VieN,t€Z

where

. N—oo
Dy = {pe L3Q)|p= lim (o, @)y, an € Hy, o], =5 0}

The common and idiosyncratic components, thus, are unique, and
asymptotically identified.
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Representation results (1I)

Theorem (Uniqueness: Tavakoli, Nisol and Hallin, 2020)

Let xip = xit + &it, © € Nyt € Z, (functional factor model with r
factors). Then,

Xit = projg, (zit|Ds), VieN,t€Z

where

. N—oo
Dy = {pe L3Q)|p= lim (o, @)y, an € Hy, o], =5 0}

The common and idiosyncratic components, thus, are unique, and
asymptotically identified.
... As in the scalar case, however, for any invertible @,

Byuy = (BnQ)(Q 'uy),

hence loadings and factors are jointly but not separately identifiable.
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Other Functional Factor Models?

Multivariate case (N fixed—genuine models, thus):

> Castellanos et al. (2015), White & Gelfand (2020): Functional
factors, scalar loadings

> Kowal, Matteson & Ruppert (2017): scalar factors, functional
loadings
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Other Functional Factor Models?

Multivariate case (N fixed—genuine models, thus):
> Castellanos et al. (2015), White & Gelfand (2020): Functional
factors, scalar loadings
> Kowal, Matteson & Ruppert (2017): scalar factors, functional
loadings

High-dimensional case (N — c0):

» Gao, Shang & Yang (2019): univariate FPCA (with a dangerous
preliminary dimension-reduction step which potentially may
destroy all common components!) followed by separate factor
models on scores.

» Tang, Shang & Yang (2021); Qiao, Guo, & Wang (2021): flexible
loading schemes with H; = H; Vi > 1.
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However,
e none of these alternative approaches is based on a representation
result; the factor model structure they are based on, thus, may not be

there!

e functional factors and scalar loadings are NOT a plus:

— require H; = H; for all i, which is extremely restrictive ...

— preclude the possibility of 7-specific loadings
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Estimation of factors and loadings

Given observations 1, ...,z € Hy, under the assumptions of
Theorem I with unspecified number r of factors, we need to estimate
the factor loadings and the factors.

Therefore, we more enerally consider, for arbitrary k, the

solutions B](V) and U = (u :(Lk) sy Ugfc)) of the minimization
problem
2
min rBY U H )uu«)H
B eL(RF Hy), U eRFXT N Z t

(for k = r, the least-squares estimators) .
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Estimation of factors and loadings

Given observations 1, ...,z € Hy, under the assumptions of
Theorem I with unspecified number r of factors, we need to estimate
the factor loadings and the factors.

Therefore, we more enerally consider, for arbitrary k, the

solutions B](V) and U = (u :(Lk) sy Ugfc)) of the minimization
problem
2
min rBY U H )u(k)H
B eL(RF Hy), U eRFXT N Z t

(for k = r, the least-squares estimators) .

Now, Xn1 = (21, ...,xr) induces an operator
L(Xn7):RY — Hy

while Uq(qk) is a r x T real matrix, hence can be viewed as a mapping
U RT 5 R
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Estimation of factors and loadings

The minimization problem therefore can be rewritten as the
minimization of

2
P(BY U = ||Lxwr) - BYUR||

where |[|-||5 is the Hilbert-Schmidt norm.
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Estimation of factors, loadings

Since BE@U;M is of rank k, by the Eckart—Young—Mirsky
theorem, the minimum is achieved for

ByxUr = BYUY,

the rank & truncation of the singular value decomposition (SVD) of
L(XnNT)-

Details are skipped
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Estimation of factors, loadings

Singular value decomposition

L(Xn~T) Z)‘l/2el®fl (1)

We could compute it either via
(A) Spectral decomposition of L(Xn7)L(Xn71)* € L(Hy, Hn), or
(B) Spectral decomposition of L(Xn7)*L(Xnr) € L(RT,RT).
(B) is advantageous because no need for having basis functions of Hy and
computing their inner products:
1. Compute (F)st = (s, x¢) = vazl (%‘s,%‘t)Hi for s,t=1,...,T
2. compute the leading k eigenvalue/eigenvector pairs (A, fi) of F, and
set
Ai=T 2N eR, fi:= Tl/sz/‘fl’ eR”;
3. compute &; := 5\_1/2T*1 ZtT:l(fl)twt € Hy;
4. set U(k) (fi,.- . fr)T € R**T and define Ef\lf) as the operator in
£(]R’C HN) mapping the [-th canonical basis vector of R* to )\I/Qél7
l=1,... k.
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Estimation of factors, loadings

Our method is of the FPCA type, but

» distinct from other multivariate FPCAS (rameay & Sitverman (2005)

Berrendero, Justel & Svarc (2011), Chiou, Chen and Yang (2014), Jacques and Preda (2014)

» contrary to other FPCA methods, works for distinct H;’s,

> close to Happ & Greven (2018); however, no preliminary
Karhunen—Loéve dimension reduction for individual x;’s prior to
conducting the global PCA—not a good idea in our setting, as
there is no guarantee that the common component will survive
the individual Karhunen—Loéve projections (which, actually,
might well remove all common components)
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Consistency results: average error bounds

(assuming k =)
Let CN,T := min{VN, V/T}. Assumptions A, B, ...are functional versions of classical assumptions
on scalar factor models (Bai and Ng 2002, etc.)

Theorem (Tavakoli, Nisol and Hallin, 2020)

Under assumptions A, B, C, D,

. ==((7) |H =il
ol — ruU VT, = Op(C .
S ‘H T T 2/ p(Cn 1)

Theorem (Tavakoli, Nisol and Hallin, 2
Under Assumptions A, B, C, D, and E(a),

min

RERTXT

B(MDA-1/2 - BNR‘HZ/W: Op (C;I::TQ) :

Theorem (Tavakoli, Nisol and Hallin, 2020)
Under Assumptions A, B, C, D, and E(a), o € [0, 1],

3

i=1t=1

N T _lta
> X it —xall2=0p Oy 2 |-
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Consistency results: uniform error bounds
(assuming k =)

Let R = /‘\*117'(TT>U7*,B;V By /(NT). Assumptions A, B, ...are functional versions of classical
assumptions on scalar factor models (Bai and Ng 2002, etc.)

Theorem (Tavakoli, Nisol and Hallin, 2020)

Under Assumptions A, B, C, D and G(k),

_ 1 7l/(2K)
max |Gy — Rutl = Op [max{ —, ——— 1.
t=1,...,T VT vN

Theorem (Tavakoli, Nisol and Hallin, 2020)

Let Assumptions A, B, C, D, H(~) hold. TI

o [[B6 — wi?| = op (max{;, M}) _
=1 000y e 2

vN VT

Theorem (Tavakoli, Nisol and Hallin, 203

Under Assumptions A, B, C, D, G(x), H(v),

T1/(2K)  1og(N)1og(T)1/2Y  log(N) log(T)1/2Y

o (™)
VN | VNTE-1/C)7 VT ):

Xt — Xit

H, = Op(max{

Consistency if N, T — oo such that T = o(N"®) and log(N) = o(v/T/ log(T)1/27).
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Estimating the Number of Factors: Consistency

Estimate the number 7 of factor by (similar to Bai and Ng 2002)

7:=arg min V(k, ﬁq(ﬂk)) +kg(N,T),

=1,...,kmax

where g(N,T) is a penalty function and

T
- , 1 k)~ (&) ||?
VUM :=  min —E:Hm - BWa H 2)
T BYecr my) NT & ETEN T
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Estimating the Number of Factors: Consistency

Estimate the number 7 of factor by (similar to Bai and Ng 2002)

7:=arg min V(k, ﬁq(ﬂk)) +kg(N,T),

=1,...,kmax

where g(N,T) is a penalty function and

T

~ : 1 k) ~(k) ||

V(k:,U(k)) = min — Hmt - BV H (2)
r BWecmr Hy) NT ; N

Theorem (Tavakoli, Nisol and Hallin, 2020)

Under Assumptions A, B, C and D, if
g(N,T) -0 and Cnr1g(N,T)— oo,
as Cy.r = min{vN,VT} — oo, then

P(f=r) —1, asCnr — 0.
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Estimating the Number of Factors: Remarks

» the penalty should converge to zero slow enough that
Cn,1 g(N,T) — oo; this (which is consistent with Amengual and
Watson (2007)) is stronger than Bai and Ng’s condition that
CX.r 9(N,T) — oo; but Bai and Ng require E[|&;|7] < co. Since
we have control over g(N,T) but not on E[|£;|"], stronger
conditions on g(N,T') are preferable

» in the particular case H; = R, Bai and Ng also require
E|ju]|* < oo and E|&;|® < oo, which we do not need

» we also are weakening their assumption

]E’\/N(<Eta£s> /N —vn(t — S))’4 <M < oo, Vs t,N>1,

on idiosyncratic cross-covariances into
2
E ‘\/N((ét,55> /N —uvn(t— 8))‘ < M thanks to a sharp use of

Holder inequalities between Schatten norms of compositions of
operators

» in practice, we recommend combining the method considered
here with the tuning device proposed in Hallin and Liska (2007)
and Alessi, Barigozzi, and Capasso (2009)

58 /74



Application to forecasting mortality curves in Japan

Data

> 47 Japanese prefectures (N = 47),

» Yearly mortality curves from 1975 through 2016 (T' = 42),
» Mortality curves by gender (female, male),

> Same dataset as Gao, Shang & Yang (2019).
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1975

—— Hokkaido
== Fukui

20 40 60

age
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

Mortality curves in Japanese prefectures at t=1976

—— Hokkaido
== Fukui

log_10 mortality

0 20 40 60 80

age

61 /74



Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1977

—— Hokkaido
== Fukui
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

Mortality curves in Japanese prefectures at t=1978

—— Hokkaido
== Fukui Zz

log_10 mortality
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1979

—— Hokkaido
== Fukui
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1980

—— Hokkaido
== Fukui

40

age

60

80

65 /74



Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

Mortality curves in Japanese prefectures at t=1981

—— Hokkaido
== Fukui

log_10 mortality
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1982

—— Hokkaido
== Fukui
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1983

—— Hokkaido
== Fukui
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Application to forecasting mortality curves in Japan

Yearly mortality curves of N = 47 Japanese prefectures for 1975-2016 (T = 42).

log_10 mortality

Mortality curves in Japanese prefectures at t=1984

—— Hokkaido
== Fukui
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Application to forecasting mortality curves in Japan

Comparing 3 forecasting models

GSY Method of Gao, Shan & Yang (2019), based on separate
scalar factor models on the FPCA scores of each FTS
(each 7), with an ARMA model on the factors.

CF Componentwise forecasting using ARIMA models on
FPCA scores (Happ & Greven 2018).

TNH Our method (identification of the number of factors
yields = ¢ = 1), based on an ARIMA model on the
estimated factor, and ARIMA models on idiosyncratics.

Measures of Performance
MAFE Mean absolute forecasting error,

MSFE Mean squared forecasting error.
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Forecasting performance

Forecasting Errors (X 1000)

Female Male
MAFE MSFE MAFE MSFE

GSY CF TNH GSY CF TNH GSY CF TNH GSY CF TNH
h =1 296 286 250 190 166 143 268 232 221 167 124 122
h =2 295 294 252 187 171 145 271 243 224 171 131 124
h =3 294 301 254 190 176 148 270 252 227 170 136 126
h =4 300 305 258 195 178 152 274 259 230 177 141 129
h =5 295 308 259 190 179 154 270 268 233 169 146 131
h =6 295 313 259 194 181 156 271 278 235 169 152 134
h =7 302 321 263 200 187 161 266 289 240 164 160 138
h =38 298 329 269 192 193 167 266 302 245 161 168 142
h=9 303 339 275 203 199 172 277 315 251 169 178 148
h = 10 308 347 280 209 205 177 283 327 254 174 186 150
Mean 299 314 262 195 183 157 272 277 236 169 152 134
Median 297 311 259 193 180 155 271 273 234 169 149 133

GSY = Gao, Shan & Yang (2019)
CF = Component-wise forecasting
TNH = our method

h is the number of steps ahead for forecasting
in red: minimal prediction error amongst the 3 methods
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Flexibility of our method

Loadings 1 and factor 1

Year
1980 1990 2000 2010
1 I 1 |
—— Loading 1 of Hokkaido
— = Loading 1 of Fukui
— ||+ factor1
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Concluding Remarks

High-dimensional functional factor models:

» Mixed natured panels;

> Representation result: links between high-dimensional functional
factor models and eigenvalues of covariance operator;

> N,T — oo asymptotics (no cross-constraints);

» Estimation and consistency of factors, loadings, common
component, and number of factors;

» Results inspired by the scalar case [chamberlain & Rothschild, 1983; Forni et
al. 2000; Bai & Ng 2002; Stock & Watson 2002; Fan et al. 2013, and many others] and
reducing to scalar case results as a special case but with weaker
assumptions;
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