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What is GPGPU Computing?
Some definitions

● Stream Processing: 

● Stream: set of data.
● Kernel Functions: a series of operations applied to each 

element of the stream. 



Why GPUs are interesting Computing Engines?
Today's CPUs

● ~2003: the 'free lunch' of CPU clock scaling is over.

● CPU architectures moved towards multi-core.

● Today you can buy: 10 cores Intel Wesmere-Ex

Lots of Caches

Few processing:
4 FP units are 
probably 1 pixel 
wide



Why GPUs are interesting Computing Engines?
Today's GPUs

Nvidia Fermi GF100

Lots of computing units

Small Cache



Why GPUs are interesting Computing Engines?
CPU vs. GPUs

● O(10) cores

● Low latency access to cached 
data sets

● Out of order and speculative 
execution control logic

●  Good for task parallelism

● O(100) cores
● Fast on-board memories
● Architecture allows hiding 

memory latencies
● Good for data parallelism

©Nvidia  



Why GPUs are interesting Computing Engines?
Some theory

“chips are power limited and most power is spent 
moving data around”*

• 4 cm2 chip
• 4000 64bit FPU 

fit
• Moving 64bits on 

chip == 10FMAs
• Moving 64bits off 

chip == 20FMAs

*Bill Dally, Nvidia Corp. talk at SC09



Why GPUs are interesting Computing Engines?
Check the results!



History
Hardware Devices

● Fixed Rendering Pipeline (1999-2000): Nvidia (NV10) GeForce 256, ATI (R100) .

● Programmable Rendering Pipeline (2001): Nvidia (NV20) GeForce 3,  ATI (R200) Radeon 8500.

● Floating Point Performance-Cg programming (2002): Nvidia (NV30) GeForce Fx, ATI (R300) Radeon 9700.

● Shader 3.0 - High Level Shader Language (2004/2005): Nvidia (NV40) GeForce 6, ATI (R520).

● Unified Shading Architecture (2006/2007): Nvidia (G80) GeForce 8800GTX,  ATI (R600) – Radeon HD 2900XT.

Vertex 
Processor

Fragment
 Processor



History
Market Motivation 

ATI R100 (2000) Nvidia NV20 (2001)

ATI R520 (2005)

Nvidia NV40 (2004)

Nvidia G80 (2006)

Nvidia NV20 (2001)

ATI R600 (2007)



History
Technology Scaling

● Moore's Law: doubling of transistor 
count every 18 months inside a 
single device.
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Pioneering GPGPU Approach

 After Cg language release (early 2002)

● Stream Processor  →  Fragment Processor

● Computing Kernel →  Fragment Program (Shader)

● Output Stream →  Group of rasterized Primitives

● Output Element →  Rasterized Pixel
● Output stream is saved in texture memory and used as input 

for downstream kernels.
● OpenGL application, Shader written in Cg language.



Pioneering GPGPU
Promising results and useful hints 

● Sparse Linear Algebra.

● Nvidia (NV30) GeForce FX, 
Cg shaders.

● 500 MHz GPU ~2 times 
faster than 3GHz Pentium 4

● Hints on how to improve Gc 
for scientific computing.

Stanimire Tomov, Michael McGuigan, Robert Bennett, Gordon Smith, 
John Spiletic, Benchmarking and implementation of probability-
based simulations on programmable graphics cards, Computers 
&amp; Graphics, Volume 29, Issue 1, February 2005, Pages 71-80, 
ISSN 0097-8493, 10.1016/j.cag.2004.11.

● Monte Carlo simulations

● Ising and Percolation models

● Measured 3.5 Gflops out of 
16 Gflops peak

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr\&\#246;oder. 2003. 
Sparse matrix solvers on the GPU: conjugate gradients and multigrid. 
ACM Trans. Graph. 22, 3 (July 2003), 917-924. DOI=10.1145/882262.882364 
http://doi.acm.org/10.1145/882262.882364 



GPGPU Devices: Nvidia Tesla

● 2007: starting from G80 family, Nvidia release the Tesla 
Unified Graphics and Computing Architecture

 TPC: 
texture/processor 
cluster.

SM: streaming 
multiprocessor.

SP: streaming 
processor.

ROP: raster 
operation processor.

Tex: texture

Lindholm, E.;Nickolls, J.;Oberman, S.; NVIDIA Tesla: A Unified Graphics 
and Computing Architecture; IEEE Micro Magazine - March-April 2008.



Nvidia Tesla Architecure (G80)

● Scalable processor array

● 128 streaming processor 
(SP) cores distributed in

● 16 streaming 
multiprocessor (SM) 
organized in

● 8 indipendent 
texture/processor clusters 
(TPCs)



Streaming Multiprocessor Architecture (G80)

● Instruction cache.

● MT issue: multithreaded instr 
fetch & execute unit.

● Read only constant cache.

● 16 KB R/W shared memory.

● SP throughput: 1 multiply-
add instruction per cycle.

● SFU: transcendental 
functions + 4 FP multipliers.

@1.5 GHz → 36 Gflops.



Streaming Processor Multithreading (G80)

● HW support to manage up to 768 concurrent threads:

● Lightweight  thread creation.

● Zero-overhead thread scheduling.

● Fast barrier synchronization.

● Each thread retains its own state and can follow an independent 
code path.

● SIMT model - Single Instruction Multiple Thread:

● Threads are created and managed in groups of 32 (a warp). 

● G80  SM manages up to 24 warps.

● Warp threads start together from the same program address, but 
then may explore different code paths.

● Maximum efficiency with minimum thread path divergence.



Thread Scheduling/Execution

● Each Thread Blocks is divided in 32-thread Warps

– This is an implementation decision, not part of the CUDA 
programming model

● Warps are scheduling units in SM

● If 3 blocks are assigned to an SM and each Block 
has 256 threads, how many Warps are there in an 
SM?

– Each Block is divided into 256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the 24 Warps will be selected 
for instruction fetch and execution.

…
t0 t1 t2 … 

t31

…
…

t0 t1 t2 … 
t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP
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Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and Wen-meiW. Hwu, 2007-2010 
ECE 408, University of Illinois, Urbana-Champaign



SM Warp Scheduling

● SM hardware implements zero overhead 
Warp scheduling

●  Warps whose next instruction has its 
operands ready for consumption are 
eligible for execution.

● Eligible Warps are selected for execution 
on a prioritized scheduling policy

● All threads in a Warp execute the same 
instruction when selected

● 4 clock cycles needed to dispatch the same 
instruction for all threads in a Warp in G80

● If one global memory access is needed 
for every 4 instructions

●  A minimal of 13 Warps are needed to 
fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

.

.

.

time

warp 3 instruction 96

© David Kirk/NVIDIA and Wen-meiW. 
Hwu, 2007-2010 ECE 408, University of 
Illinois, Urbana-Champaign



Time

Thread
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. . 
.
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. . 
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Thread Block

Shared
Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

Execution and Memory Granularity 

● Local memory: private per-
thread memory for registers 
spill and stack.

● Shared memory: data 
sharing between threads in 
the same block

● Global memory: where 
sequential grids 
communicate and share 
large data sets.



Tesla GT200 & Fermi GF100
Devices 



Tesla GT200

● GT200:

● 30 SM, each: 

– 8 SP, 1 DP
– 64KB Register File
– 16KB Shared Mem
– 32 Entry Warp 

Scheduler
– A thread can reserve 

4-128 32 bits registers
– 8 FMADs and 8 

FMULs per cycle



Fermi GF100

 
•3 billion transistors

•512 CUDA Cores 

•Better DP performance

•ECC Memory support

•L1 & L2 Cache 

•Concurrent Kernels (up 
to 16)

•Faster Context 
Switching (10x)

•Unified Address Space, 
enabling C++



Fermi GF100
SM Architecture

● 32 CUDA cores

● 128 KB Register File

● 48 or 16 KB of Shared 
Memory

● 16 or 48 KB of L1 cache

● FMA (single and double 
precision)  IEEE 754-2008

● Re-designed integer ALU 
optimized for 64 bit 
operations

● Dual Warp Scheduler
©Nvidia  



Development Tools

● 2004: brook streaming language (Nvidia, ATI)

● 2007: Nvidia CUDA

● 2008: OpenCL()

You don't necessarily need to learn a new language to start 
using GPUs:

● Numerical Packages: MATLAB, Mathematica,...

● Libraries

● C CUDA and libraries examples 



CUDA Programming Model
Expressing Parallelism

● built around a scalable array of 
multithreaded Streaming 
Multiprocessors (SMs)

● 2D Grid of thread blocks 
(coarse grain parallelism)

● 3D array of threads in a block 
(fine grain parallelism)

● Thread blocks are distributed 
to Stream Multiprocessors for 
execution (possibly many)

● Threads belonging to the 
same block get executed 
concurrently in the SM.



CUDA Memory Model

● cpu/gpu code different access 
to memories

● CUDA API

● cudaMalloc() on cpu: 
allocates objects in Gpu 
global memory

● cudaFree()
● cudaMemcpy()

– CPU to GPU
– GPU to CPU
– CPU to CPU
– GPU to GPU



CUDA C Example

__global__:  kernel definition
blockIdx, threadIdx: built_in variables
<<<dimgrid,dimblock>>>: 2D dimension
of grid of blocks, 3D dimension of thread array



lCUDA Toolkit includes several libraries:

●Standard C Math Library (LIBM)
●Dense Linear Algebra (cuBLAS)
●Sparse Linear Algebra (cuSPARSE)
●Pseudo and Quasi random number generators (cuRAND)
●Fast Fourier Transform (cuFFT)
●Image & Signal Processing (NPP)
●STL-like Parallel Algorithms Template Library  (Thrust)

Linkable from C/C++ and Fortran.

Libraries



cuBLAS

● Implementation of BLAS (Basic 
Linear Algebra Subprograms).

● Single, double, complex and 
double complex data types (S, D, 
C, Z).

● All 152 standard BLAS routines.

● Column-major storage. 

● Helper functions (memory 
allocation, data transfer).

● Support for CUDA streams.

● V4.0 supports multiple GPUS and 
concurrent kernels.

©Nvidia  



Libraries

Several open source and commercial* libraries:

• MAGMA: Linear Algebra 

• CULA Tools*: Linear Algebra

• OpenVidia: Computer Vision

• OpenCurrent: CFD

• CUSP: Sparse Linear Solvers

• Gromacs, AMBER, NAMD: molecular dynamics

• CUDA-meme: gene sequencing

• NAG*: Computational Finance

• Many others...

• Surprisingly: GPUs are very good for search algorithms: availability of hw 
resources lead to new algorithmic developments exploiting them



MAGMA: Matrix Algebra for GPU 
and Multicore Architectures

● LAPACK style

● multicore+GPU 
systems

● heuristic 
autotuning: 
generation of 
multiple code 
variants, selecting 
the fastest ones 
through 
benchmarking.

● QR, LU 
factorization

Horton, M., Tomov, S., Dongarra, J. "A Class of Hybrid LAPACK Algorithms for Multicore and GPU Architectures," Symposium for Application Accelerators in High Performance 
Computing (SAAHPC'11), Knoxville, TN, July 19-20, 2011. 



CPU/GPU Task Partitioning

● C  ← αA B + βC

● DGEMM(A, B, C) = DGEM(A, B
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Massimiliano Fatica. 2009. Accelerating linpack with CUDA on heterogenous clusters. In 
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing 
Units (GPGPU-2). ACM, New York, NY, USA, 46-51. DOI=10.1145/1513895.1513901 
http://doi.acm.org/10.1145/1513895.1513901 

O(N2) O(N3)



CPU/GPU Task Partitioning

● Optimal Partitioning: 

T
GPU

(M, K, N
1
) = T

CPU
(M, K, N

2
)

● Omitting O(N2) data transfer:

N
1 
/N = G

GPU 
/(G

CPU 
+G

GPU
)

// Copy A from CPU memory to GPU memory devA

status = cublasSetMatrix (m, k , sizeof(A[0]), A, lda, devA, m_gpu);

// Copy B1 from CPU memory to GPU memory devB

status = cublasSetMatrix (k ,n_gpu, sizeof(B[0]), B, ldb, devB, k_gpu);

// Copy C1 from CPU memory to GPU memory devC

status = cublasSetMatrix (m, n_gpu, sizeof(C[0]), C, ldc, devC, m_gpu);

// Perform DGEMM(devA,devB,devC) on GPU

// Control immediately return to CPU

cublasDgemm('n', 'n', m, n_gpu, k, alpha, devA, m,devB, k, beta, devC, m);

// Perform DGEMM(A,B2,C2) on CPU

dgemm_cpu('n','n',m,n_cpu,k, alpha, A, lda,B+ldb*n_gpu, ldb, beta,C+ldc*n_gpu, ldc);

// Copy devC from GPU memory to CPU memory C1

status = cublasGetMatrix (m, n, sizeof(C[0]), devC, m, C, *ldc);



Lattice QCD



Lattice QCD



Lattice QCD



• The NA62 at CERN aims at measuring the Branching Ratio of 
the ultra-rare decay K→πνν(bar) (BR~10-10)
• The experiment requires a selective and efficient online 
selection for the events of interest for the measurement. 
• The trigger is structured in  3 levels (L0-L1-L2): the first level 
is synchronous  (hardware) with a fixed latency  (1 ms), while 
the other levels are implemented in software.
• The initial rate of 10 MHz has to be reduced to  10 kHz for 
final acquisition on tapes.

[G.Lamanna, M.Sozzi]



The use of GPUs to build “high 
quality” primitives can be exploited 
to define highly selective trigger 
conditions.

RO 
board

L0TP

L1 
PC

GPU

L1TP

L2 
PC

GPU

GPU

1 MHz 100 kHz

RO 
board

L0 
GPU

L0TP

10 MHz 10 MHz

1 MHz

Max 1 ms latency

• In the software levels, based on PC, 
the use of GPUs is “trivial”.

• In the hardware level it’s important 
to have a small and stable latency, 
in order to ensure a “real-time” 
processing. 

[G.Lamanna, M.Sozzi]



The faster algorithm for the L0, in TESLA 
C1060, identify a single tin in 50 ns
At L1 the multiple rings search need few 
tens of us, using a special parallel 
algorithm (called Almagest) developed  for 
optimization on GPU.

• As first exercise we 
implemented a fast 
rings pattern 
recognition for the 
RICH detector.

[G.Lamanna, M.Sozzi]



Since the L0 works in “real-time” all the contributions to the total latency 
have to be considered:

Buffering time

Transfer time through ethernet 

Transfer time from NIC to RAM

Copy of the data between RAM and GPU

Processing time

Copy of the results from GPU to RAM

(Time from NIC to 
RAM)

(Packet processing time in linux 
kernel)

[G.Lamanna, M.Sozzi]



The stability of transfer and execution times is studied in order to understand 
the deterministic behaviour of the system

[G.Lamanna, M.Sozzi]



Our GPU cluster node:
• A dual-socket multi-core CPU
• 2 Nvidia M20XX GPUs
• one APEnet+ card

Our case study:
• 64^3x128 lattice
• Wilson fermions
• SP

A cluster for LQCD...
APE group



APEnet+ HW
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• 3D Torus, scaling up to 
thousands of nodes

• packet auto-routing
• 6 x 34+34 Gbps links
• Fixed costs: 1 card + 3 

cables
• PCIe X8 gen2

• peak BW 4+4 GB/s
• A Network Processor

• Powerful zero-copy 
RDMA host interface

• On-board processing
• Experimental direct 

GPU interface 
• SW: MPI (high-level), RDMA 

API (low-level)

APE group



The traditional flow

Network CPU GPU

Director

kernel

calc

CPU memory GPU memory

transfer

APE group



Optimized network

APEnet+ CPU GPU

Director

kernel

CPU memory GPU memory

transfer Direct GPU access

APE group



Summary

● Heterogeneous ManyCore era has come:

the sooner you jump in, the better.


