
GPU for Scientific Computing

Alessandro Lonardo, INFN Roma 1

ESC 2011
Bertinoro, 24 October 2011

Outline

● What is GPGPU computing

● Motivation behind GPUs as general purpose computing engines

● HPC results

● How did we get here? Some History

● Current GPU architectures

● CUDA C example.

● Libraries.

● INFN projects using GPU technology.

What is GPGPU Computing?
Some definitions

● Stream Processing:

● Stream: set of data.
● Kernel Functions: a series of operations applied to each

element of the stream.

Why GPUs are interesting Computing Engines?
Today's CPUs

● ~2003: the 'free lunch' of CPU clock scaling is over.

● CPU architectures moved towards multi-core.

● Today you can buy: 10 cores Intel Wesmere-Ex

Lots of Caches

Few processing:
4 FP units are
probably 1 pixel
wide

Why GPUs are interesting Computing Engines?
Today's GPUs

Nvidia Fermi GF100

Lots of computing units

Small Cache

Why GPUs are interesting Computing Engines?
CPU vs. GPUs

● O(10) cores

● Low latency access to cached
data sets

● Out of order and speculative
execution control logic

● Good for task parallelism

● O(100) cores
● Fast on-board memories
● Architecture allows hiding

memory latencies
● Good for data parallelism

©Nvidia

Why GPUs are interesting Computing Engines?
Some theory

“chips are power limited and most power is spent
moving data around”*

• 4 cm2 chip
• 4000 64bit FPU

fit
• Moving 64bits on

chip == 10FMAs
• Moving 64bits off

chip == 20FMAs

*Bill Dally, Nvidia Corp. talk at SC09

Why GPUs are interesting Computing Engines?
Check the results!

History
Hardware Devices

● Fixed Rendering Pipeline (1999-2000): Nvidia (NV10) GeForce 256, ATI (R100) .

● Programmable Rendering Pipeline (2001): Nvidia (NV20) GeForce 3, ATI (R200) Radeon 8500.

● Floating Point Performance-Cg programming (2002): Nvidia (NV30) GeForce Fx, ATI (R300) Radeon 9700.

● Shader 3.0 - High Level Shader Language (2004/2005): Nvidia (NV40) GeForce 6, ATI (R520).

● Unified Shading Architecture (2006/2007): Nvidia (G80) GeForce 8800GTX, ATI (R600) – Radeon HD 2900XT.

Vertex
Processor

Fragment
 Processor

History
Market Motivation

ATI R100 (2000) Nvidia NV20 (2001)

ATI R520 (2005)

Nvidia NV40 (2004)

Nvidia G80 (2006)

Nvidia NV20 (2001)

ATI R600 (2007)

History
Technology Scaling

● Moore's Law: doubling of transistor
count every 18 months inside a
single device.

10/95 03/97 07/98 12/99 04/01 09/02 01/04 05/05 10/06 02/08
0

100

200

300

400

500

600

700

800

3.5 7 15 23 25
57

125130

222

302

681

1997199819992000200120022003200420052006
1

10

100

1000
Intel CPU Transistor Count & Moore's Law

Millions of Transistors
Moore's Law

History
CPU Vs. GPU Scaling

0 426 699 913 10961430176721012221255729833501
1

10

100

1000

Nvidia GPU Transistor Count & Moore's Law

Transistor Count
Moore's Law

Pioneering GPGPU Approach

 After Cg language release (early 2002)

● Stream Processor → Fragment Processor

● Computing Kernel → Fragment Program (Shader)

● Output Stream → Group of rasterized Primitives

● Output Element → Rasterized Pixel
● Output stream is saved in texture memory and used as input

for downstream kernels.
● OpenGL application, Shader written in Cg language.

Pioneering GPGPU
Promising results and useful hints

● Sparse Linear Algebra.

● Nvidia (NV30) GeForce FX,
Cg shaders.

● 500 MHz GPU ~2 times
faster than 3GHz Pentium 4

● Hints on how to improve Gc
for scientific computing.

Stanimire Tomov, Michael McGuigan, Robert Bennett, Gordon Smith,
John Spiletic, Benchmarking and implementation of probability-
based simulations on programmable graphics cards, Computers
& Graphics, Volume 29, Issue 1, February 2005, Pages 71-80,
ISSN 0097-8493, 10.1016/j.cag.2004.11.

● Monte Carlo simulations

● Ising and Percolation models

● Measured 3.5 Gflops out of
16 Gflops peak

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schr\&\#246;oder. 2003.
Sparse matrix solvers on the GPU: conjugate gradients and multigrid.
ACM Trans. Graph. 22, 3 (July 2003), 917-924. DOI=10.1145/882262.882364
http://doi.acm.org/10.1145/882262.882364

GPGPU Devices: Nvidia Tesla

● 2007: starting from G80 family, Nvidia release the Tesla
Unified Graphics and Computing Architecture

 TPC:
texture/processor
cluster.

SM: streaming
multiprocessor.

SP: streaming
processor.

ROP: raster
operation processor.

Tex: texture

Lindholm, E.;Nickolls, J.;Oberman, S.; NVIDIA Tesla: A Unified Graphics
and Computing Architecture; IEEE Micro Magazine - March-April 2008.

Nvidia Tesla Architecure (G80)

● Scalable processor array

● 128 streaming processor
(SP) cores distributed in

● 16 streaming
multiprocessor (SM)
organized in

● 8 indipendent
texture/processor clusters
(TPCs)

Streaming Multiprocessor Architecture (G80)

● Instruction cache.

● MT issue: multithreaded instr
fetch & execute unit.

● Read only constant cache.

● 16 KB R/W shared memory.

● SP throughput: 1 multiply-
add instruction per cycle.

● SFU: transcendental
functions + 4 FP multipliers.

@1.5 GHz → 36 Gflops.

Streaming Processor Multithreading (G80)

● HW support to manage up to 768 concurrent threads:

● Lightweight thread creation.

● Zero-overhead thread scheduling.

● Fast barrier synchronization.

● Each thread retains its own state and can follow an independent
code path.

● SIMT model - Single Instruction Multiple Thread:

● Threads are created and managed in groups of 32 (a warp).

● G80 SM manages up to 24 warps.

● Warp threads start together from the same program address, but
then may explore different code paths.

● Maximum efficiency with minimum thread path divergence.

Thread Scheduling/Execution

● Each Thread Blocks is divided in 32-thread Warps

– This is an implementation decision, not part of the CUDA
programming model

● Warps are scheduling units in SM

● If 3 blocks are assigned to an SM and each Block
has 256 threads, how many Warps are there in an
SM?

– Each Block is divided into 256/32 = 8 Warps

– There are 8 * 3 = 24 Warps

– At any point in time, only one of the 24 Warps will be selected
for instruction fetch and execution.

…
t0 t1 t2 …

t31

…
…

t0 t1 t2 …
t31

…Block 1 Warps Block 2 Warps

SP

SP

SP

SP

SFU

SP

SP

SP

SP

SFU

Instruction Fetch/Dispatch

Instruction L1 Data L1
Streaming Multiprocessor

Shared Memory

© David Kirk/NVIDIA and Wen-meiW. Hwu, 2007-2010
ECE 408, University of Illinois, Urbana-Champaign

SM Warp Scheduling

● SM hardware implements zero overhead
Warp scheduling

● Warps whose next instruction has its
operands ready for consumption are
eligible for execution.

● Eligible Warps are selected for execution
on a prioritized scheduling policy

● All threads in a Warp execute the same
instruction when selected

● 4 clock cycles needed to dispatch the same
instruction for all threads in a Warp in G80

● If one global memory access is needed
for every 4 instructions

● A minimal of 13 Warps are needed to
fully tolerate 200-cycle memory latency

warp 8 instruction 11

SM multithreaded
Instruction scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

.

.

.

time

warp 3 instruction 96

© David Kirk/NVIDIA and Wen-meiW.
Hwu, 2007-2010 ECE 408, University of
Illinois, Urbana-Champaign

Time

Thread

Local Memory

Grid 0

. .
.

Global
Memory

. .
.

Grid 1

Thread Block

Shared
Memory

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2009

Execution and Memory Granularity

● Local memory: private per-
thread memory for registers
spill and stack.

● Shared memory: data
sharing between threads in
the same block

● Global memory: where
sequential grids
communicate and share
large data sets.

Tesla GT200 & Fermi GF100
Devices

Tesla GT200

● GT200:

● 30 SM, each:

– 8 SP, 1 DP
– 64KB Register File
– 16KB Shared Mem
– 32 Entry Warp

Scheduler
– A thread can reserve

4-128 32 bits registers
– 8 FMADs and 8

FMULs per cycle

Fermi GF100

•3 billion transistors

•512 CUDA Cores

•Better DP performance

•ECC Memory support

•L1 & L2 Cache

•Concurrent Kernels (up
to 16)

•Faster Context
Switching (10x)

•Unified Address Space,
enabling C++

Fermi GF100
SM Architecture

● 32 CUDA cores

● 128 KB Register File

● 48 or 16 KB of Shared
Memory

● 16 or 48 KB of L1 cache

● FMA (single and double
precision) IEEE 754-2008

● Re-designed integer ALU
optimized for 64 bit
operations

● Dual Warp Scheduler
©Nvidia

Development Tools

● 2004: brook streaming language (Nvidia, ATI)

● 2007: Nvidia CUDA

● 2008: OpenCL()

You don't necessarily need to learn a new language to start
using GPUs:

● Numerical Packages: MATLAB, Mathematica,...

● Libraries

● C CUDA and libraries examples

CUDA Programming Model
Expressing Parallelism

● built around a scalable array of
multithreaded Streaming
Multiprocessors (SMs)

● 2D Grid of thread blocks
(coarse grain parallelism)

● 3D array of threads in a block
(fine grain parallelism)

● Thread blocks are distributed
to Stream Multiprocessors for
execution (possibly many)

● Threads belonging to the
same block get executed
concurrently in the SM.

CUDA Memory Model

● cpu/gpu code different access
to memories

● CUDA API

● cudaMalloc() on cpu:
allocates objects in Gpu
global memory

● cudaFree()
● cudaMemcpy()

– CPU to GPU
– GPU to CPU
– CPU to CPU
– GPU to GPU

CUDA C Example

__global__: kernel definition
blockIdx, threadIdx: built_in variables
<<<dimgrid,dimblock>>>: 2D dimension
of grid of blocks, 3D dimension of thread array

lCUDA Toolkit includes several libraries:

●Standard C Math Library (LIBM)
●Dense Linear Algebra (cuBLAS)
●Sparse Linear Algebra (cuSPARSE)
●Pseudo and Quasi random number generators (cuRAND)
●Fast Fourier Transform (cuFFT)
●Image & Signal Processing (NPP)
●STL-like Parallel Algorithms Template Library (Thrust)

Linkable from C/C++ and Fortran.

Libraries

cuBLAS

● Implementation of BLAS (Basic
Linear Algebra Subprograms).

● Single, double, complex and
double complex data types (S, D,
C, Z).

● All 152 standard BLAS routines.

● Column-major storage.

● Helper functions (memory
allocation, data transfer).

● Support for CUDA streams.

● V4.0 supports multiple GPUS and
concurrent kernels.

©Nvidia

Libraries

Several open source and commercial* libraries:

• MAGMA: Linear Algebra

• CULA Tools*: Linear Algebra

• OpenVidia: Computer Vision

• OpenCurrent: CFD

• CUSP: Sparse Linear Solvers

• Gromacs, AMBER, NAMD: molecular dynamics

• CUDA-meme: gene sequencing

• NAG*: Computational Finance

• Many others...

• Surprisingly: GPUs are very good for search algorithms: availability of hw
resources lead to new algorithmic developments exploiting them

MAGMA: Matrix Algebra for GPU
and Multicore Architectures

● LAPACK style

● multicore+GPU
systems

● heuristic
autotuning:
generation of
multiple code
variants, selecting
the fastest ones
through
benchmarking.

● QR, LU
factorization

Horton, M., Tomov, S., Dongarra, J. "A Class of Hybrid LAPACK Algorithms for Multicore and GPU Architectures," Symposium for Application Accelerators in High Performance
Computing (SAAHPC'11), Knoxville, TN, July 19-20, 2011.

CPU/GPU Task Partitioning

● C ← αA B + βC

● DGEMM(A, B, C) = DGEM(A, B
1
, C

1
) ∪ DGEMM(A, B

2
, C

2
)

● T
GPU

(M, K, N
1
) = 8(KM + KN

1
+MN

1
)/B

H2D
+ 2KMN

1
/G

GPU
+ 8MN

1
/B

D2H

● T
CPU

(M, K, N
2
) = 2KMN

2
/ G

CPU

GPU CPU

Massimiliano Fatica. 2009. Accelerating linpack with CUDA on heterogenous clusters. In
Proceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU-2). ACM, New York, NY, USA, 46-51. DOI=10.1145/1513895.1513901
http://doi.acm.org/10.1145/1513895.1513901

O(N2) O(N3)

CPU/GPU Task Partitioning

● Optimal Partitioning:

T
GPU

(M, K, N
1
) = T

CPU
(M, K, N

2
)

● Omitting O(N2) data transfer:

N
1
/N = G

GPU
/(G

CPU
+G

GPU
)

// Copy A from CPU memory to GPU memory devA

status = cublasSetMatrix (m, k , sizeof(A[0]), A, lda, devA, m_gpu);

// Copy B1 from CPU memory to GPU memory devB

status = cublasSetMatrix (k ,n_gpu, sizeof(B[0]), B, ldb, devB, k_gpu);

// Copy C1 from CPU memory to GPU memory devC

status = cublasSetMatrix (m, n_gpu, sizeof(C[0]), C, ldc, devC, m_gpu);

// Perform DGEMM(devA,devB,devC) on GPU

// Control immediately return to CPU

cublasDgemm('n', 'n', m, n_gpu, k, alpha, devA, m,devB, k, beta, devC, m);

// Perform DGEMM(A,B2,C2) on CPU

dgemm_cpu('n','n',m,n_cpu,k, alpha, A, lda,B+ldb*n_gpu, ldb, beta,C+ldc*n_gpu, ldc);

// Copy devC from GPU memory to CPU memory C1

status = cublasGetMatrix (m, n, sizeof(C[0]), devC, m, C, *ldc);

Lattice QCD

Lattice QCD

Lattice QCD

• The NA62 at CERN aims at measuring the Branching Ratio of
the ultra-rare decay K→πνν(bar) (BR~10-10)
• The experiment requires a selective and efficient online
selection for the events of interest for the measurement.
• The trigger is structured in 3 levels (L0-L1-L2): the first level
is synchronous (hardware) with a fixed latency (1 ms), while
the other levels are implemented in software.
• The initial rate of 10 MHz has to be reduced to 10 kHz for
final acquisition on tapes.

[G.Lamanna, M.Sozzi]

The use of GPUs to build “high
quality” primitives can be exploited
to define highly selective trigger
conditions.

RO
board

L0TP

L1
PC

GPU

L1TP

L2
PC

GPU

GPU

1 MHz 100 kHz

RO
board

L0
GPU

L0TP

10 MHz 10 MHz

1 MHz

Max 1 ms latency

• In the software levels, based on PC,
the use of GPUs is “trivial”.

• In the hardware level it’s important
to have a small and stable latency,
in order to ensure a “real-time”
processing.

[G.Lamanna, M.Sozzi]

The faster algorithm for the L0, in TESLA
C1060, identify a single tin in 50 ns
At L1 the multiple rings search need few
tens of us, using a special parallel
algorithm (called Almagest) developed for
optimization on GPU.

• As first exercise we
implemented a fast
rings pattern
recognition for the
RICH detector.

[G.Lamanna, M.Sozzi]

Since the L0 works in “real-time” all the contributions to the total latency
have to be considered:

Buffering time

Transfer time through ethernet

Transfer time from NIC to RAM

Copy of the data between RAM and GPU

Processing time

Copy of the results from GPU to RAM

(Time from NIC to
RAM)

(Packet processing time in linux
kernel)

[G.Lamanna, M.Sozzi]

The stability of transfer and execution times is studied in order to understand
the deterministic behaviour of the system

[G.Lamanna, M.Sozzi]

Our GPU cluster node:
• A dual-socket multi-core CPU
• 2 Nvidia M20XX GPUs
• one APEnet+ card

Our case study:
• 64^3x128 lattice
• Wilson fermions
• SP

A cluster for LQCD...
APE group

APEnet+ HW

router

7x7 ports switch

toru
s

link

toru
s

link

toru
s

link

toru
s

link

toru
s

link

toru
s

link

TX/RX
FIFOs &

Logic

routing
logic

arbiter

X
+

X
-

Y
+

Y
-

Z
+

Z
-

PCIe X8
Gen2 core

NIOS II
processor

collective
communicatio

n block

memory
controller

DDR3
Module

128@250MHz bus

PCIe X8 Gen2 8@5 Gbps

100/1000 Eth
port

A
ltera S

tratix IV

FPGA blocks

• 3D Torus, scaling up to
thousands of nodes

• packet auto-routing
• 6 x 34+34 Gbps links
• Fixed costs: 1 card + 3

cables
• PCIe X8 gen2

• peak BW 4+4 GB/s
• A Network Processor

• Powerful zero-copy
RDMA host interface

• On-board processing
• Experimental direct

GPU interface
• SW: MPI (high-level), RDMA

API (low-level)

APE group

The traditional flow

Network CPU GPU

Director

kernel

calc

CPU memory GPU memory

transfer

APE group

Optimized network

APEnet+ CPU GPU

Director

kernel

CPU memory GPU memory

transfer Direct GPU access

APE group

Summary

● Heterogeneous ManyCore era has come:

the sooner you jump in, the better.

