
Design example
HEP Offline SW

Benedikt Hegner
(CERN)

• Large number of physicists and engineers participating
actively in the data analysis and for extended period of time

•Widely distributed computing environment

•Huge quantity of data that has to be distributed and
shared by all members of each experiment

LHC Computing Characteristics

Data Flow Processing and Stages

• Design should take into account the >15 years lifetime of
the LHC

• Resilient designs, technology choices will evolve over time

• The standard language for physics applications software
in all four LHC experiments is C++

• Language choice may change in the future or multi-
language could be introduced

• Operate seamlessly in a distributed environment and also
be functional in ‘disconnected’ local environments

• Modularity of components with well-defined interfaces
and interchangeability of implementations

LHC Software Requirements

One of the Principal Design Choices

• Clear separation between data and algorithms

• Data store-centered (“blackboard”) architectural style

• Well defined component “interfaces” with plug-in
capabilities

• Objects serialized with ROOT to disk

Source
Output

Module

Digitizer Tracker
NTrack

Filter
Vertexer

Event

PATH keep?

yes

• Concept of sequences to group
various interdependent modules
together

• Avoid recalling same module on
same data
• Different instances of same
module possible

• Event filtering
• Avoid passing all events
through all the processing chain

• Module dependencies are a
directed acyclic graph

Complex Control Sequences

Event
Input/Output Algorithm

Filter
Decision

Single
Instances

Complex Control Sequences (2)

import FWCore.ParameterSet.Config as cms

process = cms.Process("EXAMPLE")
process.source = cms.Source("EmptySource")
process.maxEvents = cms.untracked.PSet(input = cms.untracked.int32(100))

process.thingy = cms.EDProducer("ThingProducer")

process.test = cms.EDAnalyzer("ThingConsumer",
 input = cms.untracked.InputTag("thingy")
)

process.p = cms.Path(process.thingy * process.test)

Behavior / bottlenecks can be �estimated� even now!

Average module processing
duration (single threaded)
is well known!

Module dependencies are known!
time!

39!

So can’t we run our modules in parallel?

Tracking!
Electron and
muon finding!

Not worth with current tracking algorithms.!

40!

Unfortunately it doesn’t work too well with our current SW

So we need to parallelize
around and inside it

• OOP as dreamed of in the books:
• It combines data and algorithms into a single entity
• It ensures that the developer does not need to code up
the control flow explicitly.

• We already violate this with the ‘blackboard pattern’
• The stored objects are mainly only data
• We define the control flow explicitly
• Data transformations happen in modules

• Leaves room to switch to data oriented design

What about more efficient data structures?

Source
Output

Module

Digitizer Tracker
NTrack

Filter
Vertexer

Event

PATH keep?

yes

• We have to choose with more thought when to follow which
programming paradigm

•Many identical data chunks & high throughput => data oriented
•Small number of objects & heterogenous data => object oriented

• For a lot of the use cases we have to redesign our data formats
to become much dumber

• expert operation

• Analysis and other cases much more heterogenous
• “data-to-smart object” translation layer to ease the use?

• Parallelizing frameworks and algorithms

What’s ahead of us?

That’s it :-)

