

Hyperthreading + Multicore Hyperthreading + Multicore
+ NUMA+ NUMA

Red Hat, Inc.

Andrea Arcangeli
aarcange at redhat.com

Architectures, tools and methodologies for developing efficient
large

scale scientific computing applications

Bertinoro, Italy

28 Oct 2011
Copyright © 2011 Red Hat Inc.

http://www.redhat.com/

THPTHP
➢ If your HPC program uses lots of anonymous
memory (i.e. malloc) you absolutely need THP

➢ Performance and scalability boost for Virt & HPC
➢ To be sure hugepages are allowed in hardware
use:

➢ posix_memalign(&ptr, 2*1024*1024,
2*1024*1024*N)

Copyright © 2011 Red Hat Inc.

QEMU THP alignmentQEMU THP alignment
@@ -2902,9 +2914,15 @@ ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char
*name,
 PROT_EXEC|PROT_READ|PROT_WRITE,
 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
 #else
- new_block->host = qemu_vmalloc(size);
+#ifdef PREFERRED_RAM_ALIGN
+ if (size >= PREFERRED_RAM_ALIGN)
+ new_block->host = qemu_memalign(PREFERRED_RAM_ALIGN, size);
+ else
+#endif
+ new_block->host = qemu_vmalloc(size);
 #endif
 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+ qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
 }
 }

Copyright © 2011 Red Hat Inc.

kbuild benchkbuild bench
build time: lower is betterbuild time: lower is better

Copyright © 2011 Red Hat Inc.

bare metal THP on

bare metal THP off

KVM guest THP on host THP on EPT on

KVM guest THP off host THP on EPT on

KVM guest THP off host THP off EPT on

KVM guest THP on host THP on EPT off

KVM guest THP off host THP on EPT off

KVM guest THP off host THP off EPT off

0 50 100 150 200 250 300 350

198.33% increase

254.43% increase

260.15% increase

base

x seconds

24.81% increase in build time

12.71% increase in build time

5.67% increase in build time

4.06% increase in build time

bare metal THP on

bare metal THP off

KVM guest THP on host THP on EPT on

KVM guest THP off host THP on EPT on

KVM guest THP off host THP off EPT on

KVM guest THP on host THP on EPT off

KVM guest THP off host THP on EPT off

KVM guest THP off host THP off EPT off

0 2 4 6 8 10 12 14 16 18 20

seconds

kbuild “EPT off”kbuild “EPT off”
build time: lower is betterbuild time: lower is better

Copyright © 2011 Red Hat Inc.

9.10% increase in build time

3.45% decrease in build time

15.84% increase in build time

Base result

21.17% increase

0.11% increases

25.20% increase

28.48% increase

Copyright © 2011 Red Hat Inc.

Phoronix test suitePhoronix test suite
➢ http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2

➢ IS.C test of NASA's OpenMP-based performance
boost more than 20%

➢ No virt
➢ On thinkpad T16 notebook

➢ Core 2 Duo T9300
➢ 4GB of RAM

➢ A bigger boost is expected on server/virt

http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2

mremap(5GB) latency usecmremap(5GB) latency usec

Copyright © 2011 Red Hat Inc.

THP on patch THP off patch THP on THP off
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

mremap 5GB latency usec

MulticoreMulticore

Copyright © 2011 Red Hat Inc.

➢ The only one not really giving any new problem
compared to traditional SMP

HyperthreadingHyperthreading

Copyright © 2011 Red Hat Inc.

➢ Fairness problems
➢ Some CPUs may run faster than others

➢ Performance issues
➢ If you have 4 HT and you use 2 cpus that are in

the same physical core
➢ The scheduler has SIBLINGS class and is aware

➢ CPU bindings may prevent the scheduler to do
its job

➢ Especially troubling with virtual machines if the
hyperthreading CPU topology isn't visible by
the guest OS

Hard NUMA bindingsHard NUMA bindings

Copyright © 2011 Red Hat Inc.

➢ /dev/cpuset
➢ taskset wrapper
➢ sched_setaffinity/pthread_setaffinity_np
➢ set_mempolicy/sys_mbind

➢ MPOL_DEFAULT
➢ MPOL_BIND
➢ MPOL_PREFERRED
➢ MPOL_INTERLEAVE

➢ F_STATIC/RELATIVE_NODES
➢ move_pages

NUMA topologyNUMA topology

Copyright © 2011 Red Hat Inc.

➢ Available in /sys/devices/system/node
./possible
./online
./has_normal_memory
./has_cpu
./node0
./node0/cpumap
./node0/cpulist
./node0/meminfo
./node0/numastat
./node0/distance
./node0/vmstat
./node0/scan_unevictable_pages
./node0/compact
./node0/cpu0
./node0/cpu1
./node0/cpu2
./node0/cpu3
./node0/cpu4
./node0/cpu5
./node0/cpu12
./node0/cpu13
./node0/cpu14
./node0/cpu15
./node0/cpu16
./node0/cpu17
./node0/hugepages
./node0/hugepages/hugepages-2048kB
./node0/hugepages/hugepages-2048kB/nr_hugepages
./node0/hugepages/hugepages-2048kB/free_hugepages
./node0/hugepages/hugepages-2048kB/surplus_hugepages

Scheduler domainsScheduler domains

Copyright © 2011 Red Hat Inc.

➢ Available in /sys/devices/system/node
./possible
./online
./has_normal_memory
./has_cpu
./node0
./node0/cpumap
./node0/cpulist
./node0/meminfo
./node0/numastat
./node0/distance
./node0/vmstat
./node0/scan_unevictable_pages
./node0/compact
./node0/cpu0
./node0/cpu1
./node0/cpu2
./node0/cpu3
./node0/cpu4
./node0/cpu5
./node0/cpu12
./node0/cpu13
./node0/cpu14
./node0/cpu15
./node0/cpu16
./node0/cpu17
./node0/hugepages
./node0/hugepages/hugepages-2048kB
./node0/hugepages/hugepages-2048kB/nr_hugepages
./node0/hugepages/hugepages-2048kB/free_hugepages
./node0/hugepages/hugepages-2048kB/surplus_hugepages

KVM NUMA awarenessKVM NUMA awareness

Copyright © 2011 Red Hat Inc.

➢ I.e. making Linux NUMA aware
➢ The Linux Scheduler currently is blind about the
memory placement of the process

➢ MPOL_DEFAULT allocates memory from the local
node of the current CPU

➢ It all works well if the process isn't migrated by the
scheduler to a different NUMA node later

➢ Or if the memory gets full in the local node and
the memory allocation spills on other nodes

➢ Short lived tasks (like gcc) are handled pretty well

NODE #1NODE #0

KVM startup on CPU #0KVM startup on CPU #0

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

NODE #1NODE #0

KVM allocates from RAM #0KVM allocates from RAM #0

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Fast
access

No NUMA hard bindings and MPOL_DEFAULT policy

NODE #1NODE #0

Scheduler CPU migrationScheduler CPU migration

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Make -j Make -j

NODE #1NODE #0

““make -j” load goes awaymake -j” load goes away

Copyright © 2011 Red Hat Inc.

CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Slow

The Linux Scheduler is blind at this point: KVM may
stay in CPU #1 forever

The scheduler is memory blindThe scheduler is memory blind

Copyright © 2011 Red Hat Inc.

➢ Short lived tasks are ok
➢ Long lived tasks like KVM can suffer badly from
using remote memory for extended periods of
times

➢ Because they live longer, they're more likely to
be migrated if there's some CPU overcommit

➢ It's fairly cheap for the CPU to follow the memory
➢ We would like the CPU to follow the memory

➢ CPU placement based on memory placement
➢ We would like to achieve the same performance of
the NUMA bindings without having to use them

Scheduler domainsScheduler domains

Copyright © 2011 Red Hat Inc.

0-24

0-5,12-17 6-11,18-23

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

Example of a common 2 nodes, 2 sockets, 12 cores, 24 threads system

/proc/schedstat/proc/schedstat

Copyright © 2011 Red Hat Inc.

version 15
timestamp 4294923310
cpu0 0 0 30689 5581 6746 3453 4433191001 409355508 7428
domain0 001001 1469 1469 0 0 0 0 0 1469 16 16 0 0 0 0 0 16 2623 2618 3 2778 2 0 0 2618 0 0 0 0 0 0 0 0 0 1229 26 0
domain1 03f03f 1452 1448 4 1450 0 0 0 1448 3 3 0 0 0 0 0 0 2621 2568 53 35054 0 0 4 2564 0 0 0 0 0 0 0 0 0 757 115 0
domain2 ffffff 293 293 0 0 0 0 1 292 1 1 0 0 0 0 0 0 2621 2503 117 69133 1 0 8 2495 0 0 0 0 0 0 0 0 0 1183 13 0
cpu1 0 0 6901 3432 2776 446 223141188 3127007 3468
domain0 002002 1002 998 4 4708 0 0 0 998 3 3 0 0 0 0 0 3 1055 1028 27 18616 0 0 0 1028 0 0 0 0 0 0 0 0 0 174 1 0
domain1 03f03f 993 983 9 11884 1 0 0 983 3 3 0 0 0 0 0 0 1055 1017 37 24802 1 0 1 1016 0 0 0 0 0 0 0 0 0 640 4 0
domain2 ffffff 217 217 0 0 0 0 0 41 0 0 0 0 0 0 0 0 1054 908 146 77215 0 0 5 903 0 0 0 0 0 0 0 0 0 1515 2 0
cpu2 0 0 2998 1498 1549 96 71761221 1380590 1500
domain0 004004 304 304 0 81 0 0 0 304 0 0 0 0 0 0 0 0 301 300 1 593 0 0 0 300 0 0 0 0 0 0 0 0 0 11 0 0
domain1 03f03f 256 243 12 11254 1 1 0 243 0 0 0 0 0 0 0 0 301 269 31 16642 1 0 1 268 0 0 0 0 0 0 0 0 0 301 0 0
domain2 ffffff 102 102 0 0 0 0 0 2 0 0 0 0 0 0 0 0 300 242 57 16244 1 0 0 242 0 0 0 0 0 0 0 0 0 1140 0 0
cpu3 0 0 2882 1441 1395 73 58279507 928100 1441
domain0 008008 232 232 0 0 0 0 0 232 0 0 0 0 0 0 0 0 163 162 1 88 0 0 0 162 0 0 0 0 0 0 0 0 0 4 0 0
domain1 03f03f 211 204 7 6752 0 0 0 204 0 0 0 0 0 0 0 0 163 139 24 16387 0 0 0 139 0 0 0 0 0 0 0 0 0 413 0 0
domain2 ffffff 92 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 163 136 26 9417 3 0 1 135 0 0 0 0 0 0 0 0 0 904 0 0
cpu4 0 0 142 74 52 46 22458588 281180 68
domain0 010010 170 170 0 0 0 0 0 170 1 1 0 0 0 0 0 1 70 70 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0
domain1 03f03f 147 140 7 6725 0 0 0 140 1 1 0 0 0 0 0 0 70 63 6 4219 1 0 0 63 0 0 0 0 0 0 0 0 0 3 0 0
domain2 ffffff 86 86 0 0 0 0 0 1 0 0 0 0 0 0 0 0 69 66 3 1884 0 0 0 66 0 0 0 0 0 0 0 0 0 2 0 0
cpu5 0 0 136 71 53 45 22263992 312805 65
domain0 020020 181 181 0 0 0 0 0 181 0 0 0 0 0 0 0 0 67 67 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 2 0 0
domain1 03f03f 161 153 8 6956 0 0 0 153 0 0 0 0 0 0 0 0 67 62 4 3518 1 0 0 62 0 0 0 0 0 0 0 0 0 3 0 0
domain2 ffffff 88 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 63 3 5400 0 0 0 63 0 0 0 0 0 0 0 0 0 2 0 0
cpu6 0 0 9520 4338 4539 1848 515457042 24326084 5180
domain0 040040 1123 1123 0 0 0 0 0 1123 3 3 0 0 0 0 0 3 1469 1468 1 65 0 0 0 1468 0 0 0 0 0 0 0 0 0 232 11 0
domain1 fc0fc0 914 908 1 10780 8 0 0 908 0 0 0 0 0 0 0 0 1469 1445 22 21487 2 0 1 1444 0 0 0 0 0 0 0 0 0 1441 88 0
domain2 ffffff 222 215 7 5809 0 0 0 215 1 1 0 0 0 0 0 1 1467 1374 92 109754 1 0 2 1372 0 0 0 0 0 0 0 0 0 1017 5 0
[..]

Hard bindings and hypervisorsHard bindings and hypervisors

Copyright © 2011 Red Hat Inc.

➢ Cloud nodes powered by virtualization hypervisors
➢ Dynamic load

➢ VM started/shutdown/migrated
➢ Variable amount of vRAM and vCPUs

➢ A job manager can do a static placement
➢ But not as efficient to tell which vCPUs are

idle and which memory is important for
each process/thread at any given time

➢ The host kernel probably can do better at
optimizing a dynamic workload

How bad is remote RAM? (bench)How bad is remote RAM? (bench)

Copyright © 2011 Red Hat Inc.

#define SIZE (6UL*1024*1024*1024)
#define THREADS 24

void *thread(void * arg)
{

char *p = arg;
int i;
for (i = 0; i < 3; i++) {

if (memcmp(p, p+SIZE/2, SIZE/2))
printf("error\n"), exit(1);

}
return NULL;

}
[..]

if ((pid = fork()) < 0)
perror("fork"), exit(1);

[..]
#ifdef 1

if (sched_setaffinity(0, sizeof(cpumask), &cpumask) < 0)
perror("sched_setaffinity"), exit(1);

#endif
if (set_mempolicy(MPOL_BIND, &nodemask, 3) < 0)

perror("set_mempolicy"), printf("%lu\n", nodemask), exit(1);
bzero(p, SIZE);
for (i = 0; i < THREADS; i++)

if (pthread_create(&pthread[i], NULL, thread, p) != 0)
perror("pthread_create"), exit(1);

for (i = 0; i < THREADS; i++)
if (pthread_join(pthread[i], NULL) != 0)

perror("pthread_join"), exit(1);

mempolicy + setaffinity localmempolicy + setaffinity local

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Best possible CPU/RAM NUMA placement
All CPUs only work on local RAM

mempolicy + setaffinity remotemempolicy + setaffinity remote

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Worst possible CPU/RAM NUMA placement
All CPUs only work on remote RAM

Only mempolicyOnly mempolicy

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

Only RAM NUMA binding with mempolicy()
The host CPU scheduler can move all threads anywhere
The CPU scheduler has no memory awareness

Mempolicy + CPU-follow-memoryMempolicy + CPU-follow-memory

Copyright © 2011 Red Hat Inc.

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

The host CPU scheduler understand the parent process
has most of the RAM allocated in NODE 0 and the child in NODE 1
No scheduler hints from userland
Mempolicy() doesn't have any scheduler effect

1 thread x 2 processes1 thread x 2 processes

Copyright © 2011 Red Hat Inc.

mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 2 4 6 8 10 12 14 16 18

seconds
% error

Only 2 CPUs used, 2 nodes 2 sockets 12 cores 24 threads

12 threads x 2 processes12 threads x 2 processes

Copyright © 2011 Red Hat Inc.

mempolicy + sched_setscheduler local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 5 10 15 20 25

seconds
% error

All 24 CPUs maxed out, 2 nodes 2 sockets 12 cores 24 threads

24 threads x 2 processes24 threads x 2 processes

Copyright © 2011 Red Hat Inc.

mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 10 20 30 40 50 60 70

seconds
% error

Double CPU overcommit, 2 nodes 2 sockets 12 cores 24 threads

CPU-follow-memoryCPU-follow-memory

Copyright © 2011 Red Hat Inc.

➢ Implemented as a proof of concept
➢ For now only good enough to proof that it

performs equivalent to sched_setaffinity()
➢ CPU-follow-memory not enough

➢ We still run a sys_mempolicy!
➢ Must be combined with memory-follow-CPU
➢ When there are more threads than CPUs in the
node things are more complex

➢ “mm” tracking not enough: vma/page per-
thread tracking needed (not trivial to get that
info without page faults)

memory-follow-CPUmemory-follow-CPU

Copyright © 2011 Red Hat Inc.

➢ Converge the RAM of the process into the node
where it's running on by migrating it in the
background

➢ If CPU-follow-memory doesn't follow memory
because of too high load in the preferred nodes

➢ Migrate the memory of the process to the node
where the process is really running on and
converge there

➢ Have CPU-follow-memory temporarily ignore
the current memory placement and follow
CPU instead until we converged

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

➢ We need to find a process that has RAM in NODE
1 and wants to converge into NODE 0, in order to
migrate the RAM of another process from NODE 0
to NODE 1

➢ This will keep the memory pressure balanced
➢ Pagecache/swapcache/buffercache may be

migrated as fallback but active process
memory should be preferred to get double
benenfit

➢ Memory-follow-CPU migrations should
concentrate on processes with high CPU utilization

➢ The migrated memory ideally should be in the
working set of the process

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU wants to migrate the RAM of Process A
from NODE0 to NODE 1

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU need to find another process
with memory on NODE 1 that wants to migrate to NODE 0
Process B is ideal

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU migrates the memory...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

Auto NUMA memory migrationAuto NUMA memory migration

Copyright © 2011 Red Hat Inc.

NODE 0

A

RAM Process B

NODE 1

RAM Process A

B

memory-follow-CPU repeats...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)

knumadknumad

Copyright © 2011 Red Hat Inc.

➢ CPU-follow-memory is currently entirely fed with
information from a knumad kernel daemon that
scans the process memory in the background

➢ It could be changed to static accounting to help
short lived tasks too

➢ There's a time-lag from when memory is first
allocated and when CPU-follow-memory
notices (this explains the slight slower perf)

➢ Initially, when no memory information exists
yet, MPOL_DEFAULT is used

➢ knumad may later drive memory-follow-CPU too
➢ Working set estimation is possible

Anonymous memoryAnonymous memory

Copyright © 2011 Red Hat Inc.

➢ knumad only considers not shared anonymous
memory

➢ For KVM it is enough
➢ This will likely have to change
➢ It'll be harder to deal with CPU/RAM placement

of shared memory

Per-thread informationPer-thread information

Copyright © 2011 Red Hat Inc.

➢ The information in the pagetables is per-process
➢ To know which part of the process memory each
thread is accessing there are various ways

➢ … or old ways like forcing page faults
➢ Migrate-on-fault does that
➢ Migrate-on-fault heavyweight with THP
➢ Migrating memory in the background

should be better than migrate-on-fault
because it won't always hang the process
during migrate_pages()

Another way: soft NUMA bindingsAnother way: soft NUMA bindings

Copyright © 2011 Red Hat Inc.

➢ Instead of setting hard numbers like 0-5,12-17 and
node 0 manually we could create a soft API:

 numa_group_id = numa_group_create();

 numa_group_mem(range, numa_group_id);

 numa_group_task(tid, numa_group_id);

➢ This would allow to easily create a vtopology for
the guest by changing QEMU

➢ It would not require special tracking as QEMU
would specify which vCPUs belong to which
vNODE to the host kernel.

➢ But if the guest spans more than one host node,
all guest apps should use this API too...

Soft NUMA bindingsSoft NUMA bindings

Copyright © 2011 Red Hat Inc.

➢ I think a full automatic way should be tried first...
➢ Full automatic NUMA awareness requires more

intelligence on the kernel side
➢ Cons of soft NUMA bindings:

➢ APIs must be maintained forever
➢ APIs don't solve the problem of applications not

NUMA aware
➢ Not easy for programmer to describe to the

kernel which memory each thread is going to
access more frequently

➢ Trivial for QEMU, but not so much for other
users

LockingLocking

Copyright © 2011 Red Hat Inc.

➢ Kernel
➢ RCU/SRCU
➢ Seqlock
➢ Spinning Mutex
➢ Ticket spinlocks (FIFO)
➢ rw spinlocks
➢ rw semaphores

➢ Userland
➢ pthread_mutex_lock/unlock/trylock

➢ futex
➢ RCU userland

`perf` profiling of translate.o`perf` profiling of translate.o
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

THP always bare metal (base result)

 40746051351 cycles (+- 5.597%)
 36394696366 instructions # 0.893 IPC (+- 0.007%)
 9602461977 dTLB-loads (+- 0.006%)
 45123574 dTLB-load-misses (+- 0.614%)

 13.920436128 seconds time elapsed (+- 5.600%)

THP never bare metal (9.10% slower)

 44492051930 cycles (+- 5.189%)
 36757849113 instructions # 0.826 IPC (+- 0.001%)
 9693482648 dTLB-loads (+- 0.004%)
 63675970 dTLB-load-misses (+- 0.598%)

 15.188315986 seconds time elapsed (+- 5.194%)

Copyright © 2010 Red Hat Inc.

gitgit

Copyright © 2011 Red Hat Inc.

➢ Crypto hash on whole repo contents
➢ Gpg sig on the hash through tags
➢ Data de-duplicating storage backend
➢ Very efficient and compact
➢ Powerful fronthand options (rebase -i, commit -i,
cherry-pick, clone –reference, qgit4, git log --graph
etc..)

➢ Kernel hacker user interface...

Q/AQ/A
➢ You're very welcome!

Copyright © 2011 Red Hat Inc.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

