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THPTHP
➢ If your HPC program uses lots of anonymous 
memory (i.e. malloc) you absolutely need THP

➢ Performance and scalability boost for Virt & HPC
➢ To be sure hugepages are allowed in hardware 
use:

➢ posix_memalign(&ptr, 2*1024*1024, 
2*1024*1024*N)
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QEMU THP alignmentQEMU THP alignment
@@ -2902,9 +2914,15 @@ ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char 
*name,
                                    PROT_EXEC|PROT_READ|PROT_WRITE,
                                    MAP_SHARED | MAP_ANONYMOUS, -1, 0);
 #else
-            new_block->host = qemu_vmalloc(size);
+#ifdef PREFERRED_RAM_ALIGN
+           if (size >= PREFERRED_RAM_ALIGN)
+                   new_block->host = qemu_memalign(PREFERRED_RAM_ALIGN, size);
+           else
+#endif
+                   new_block->host = qemu_vmalloc(size);
 #endif
             qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+            qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
         }
     }
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kbuild benchkbuild bench
build time: lower is betterbuild time: lower is better
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kbuild “EPT off”kbuild “EPT off”
build time: lower is betterbuild time: lower is better
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9.10% increase in build   time

3.45% decrease in      build time

15.84% increase in       build time

Base result

21.17% increase

0.11% increases 

25.20% increase

28.48% increase
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Phoronix test suitePhoronix test suite
➢ http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2

➢ IS.C test of NASA's OpenMP-based performance 
boost more than 20%

➢ No virt
➢ On thinkpad T16 notebook

➢ Core 2 Duo T9300
➢ 4GB of RAM

➢ A bigger boost is expected on server/virt

http://www.phoronix.com/scan.php?page=article&item=linux_transparent_hugepages&num=2


  

mremap(5GB) latency usecmremap(5GB) latency usec
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THP on patch THP off patch THP on THP off
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MulticoreMulticore
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➢ The only one not really giving any new problem 
compared to traditional SMP



  

HyperthreadingHyperthreading

Copyright © 2011 Red Hat Inc.

➢ Fairness problems
➢ Some CPUs may run faster than others

➢ Performance issues
➢ If you have 4 HT and you use 2 cpus that are in 

the same physical core
➢ The scheduler has SIBLINGS class and is aware

➢ CPU bindings may prevent the scheduler to do 
its job

➢ Especially troubling with virtual machines if the 
hyperthreading CPU topology isn't visible by 
the guest OS



  

Hard NUMA bindingsHard NUMA bindings
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➢ /dev/cpuset
➢ taskset wrapper
➢ sched_setaffinity/pthread_setaffinity_np
➢ set_mempolicy/sys_mbind

➢ MPOL_DEFAULT
➢ MPOL_BIND
➢ MPOL_PREFERRED
➢ MPOL_INTERLEAVE

➢ F_STATIC/RELATIVE_NODES
➢ move_pages



  

NUMA topologyNUMA topology
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➢ Available in /sys/devices/system/node
./possible
./online
./has_normal_memory
./has_cpu
./node0
./node0/cpumap
./node0/cpulist
./node0/meminfo
./node0/numastat
./node0/distance
./node0/vmstat
./node0/scan_unevictable_pages
./node0/compact
./node0/cpu0
./node0/cpu1
./node0/cpu2
./node0/cpu3
./node0/cpu4
./node0/cpu5
./node0/cpu12
./node0/cpu13
./node0/cpu14
./node0/cpu15
./node0/cpu16
./node0/cpu17
./node0/hugepages
./node0/hugepages/hugepages-2048kB
./node0/hugepages/hugepages-2048kB/nr_hugepages
./node0/hugepages/hugepages-2048kB/free_hugepages
./node0/hugepages/hugepages-2048kB/surplus_hugepages



  

Scheduler domainsScheduler domains

Copyright © 2011 Red Hat Inc.

➢ Available in /sys/devices/system/node
./possible
./online
./has_normal_memory
./has_cpu
./node0
./node0/cpumap
./node0/cpulist
./node0/meminfo
./node0/numastat
./node0/distance
./node0/vmstat
./node0/scan_unevictable_pages
./node0/compact
./node0/cpu0
./node0/cpu1
./node0/cpu2
./node0/cpu3
./node0/cpu4
./node0/cpu5
./node0/cpu12
./node0/cpu13
./node0/cpu14
./node0/cpu15
./node0/cpu16
./node0/cpu17
./node0/hugepages
./node0/hugepages/hugepages-2048kB
./node0/hugepages/hugepages-2048kB/nr_hugepages
./node0/hugepages/hugepages-2048kB/free_hugepages
./node0/hugepages/hugepages-2048kB/surplus_hugepages



  

KVM NUMA awarenessKVM NUMA awareness

Copyright © 2011 Red Hat Inc.

➢ I.e. making Linux NUMA aware
➢ The Linux Scheduler currently is blind about the 
memory placement of the process

➢ MPOL_DEFAULT allocates memory from the local 
node of the current CPU

➢ It all works well if the process isn't migrated by the 
scheduler to a different NUMA node later

➢ Or if the memory gets full in the local node and 
the memory allocation spills on other nodes

➢ Short lived tasks (like gcc) are handled pretty well



  

NODE #1NODE #0

KVM startup on CPU #0KVM startup on CPU #0
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CPU #0 CPU #1

RAM #0 RAM #1

KVM



  

NODE #1NODE #0

KVM allocates from RAM #0KVM allocates from RAM #0
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CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Fast 
access

No NUMA hard bindings and MPOL_DEFAULT policy



  

NODE #1NODE #0

Scheduler CPU migrationScheduler CPU migration
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CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Make -j Make -j



  

NODE #1NODE #0

““make -j” load goes awaymake -j” load goes away
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CPU #0 CPU #1

RAM #0 RAM #1

KVM

Guest ram

Slow

The Linux Scheduler is blind at this point: KVM may 
stay in CPU #1 forever



  

The scheduler is memory blindThe scheduler is memory blind

Copyright © 2011 Red Hat Inc.

➢ Short lived tasks are ok
➢ Long lived tasks like KVM can suffer badly from 
using remote memory for extended periods of 
times

➢ Because they live longer, they're more likely to 
be migrated if there's some CPU overcommit

➢ It's fairly cheap for the CPU to follow the memory
➢ We would like the CPU to follow the memory

➢ CPU placement based on memory placement
➢ We would like to achieve the same performance of 
the NUMA bindings without having to use them



  

Scheduler domainsScheduler domains
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0-24

0-5,12-17 6-11,18-23

0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

Example of a common 2 nodes, 2 sockets, 12 cores, 24 threads system



  

/proc/schedstat/proc/schedstat
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version 15
timestamp 4294923310
cpu0 0 0 30689 5581 6746 3453 4433191001 409355508 7428
domain0 001001 1469 1469 0 0 0 0 0 1469 16 16 0 0 0 0 0 16 2623 2618 3 2778 2 0 0 2618 0 0 0 0 0 0 0 0 0 1229 26 0
domain1 03f03f 1452 1448 4 1450 0 0 0 1448 3 3 0 0 0 0 0 0 2621 2568 53 35054 0 0 4 2564 0 0 0 0 0 0 0 0 0 757 115 0
domain2 ffffff 293 293 0 0 0 0 1 292 1 1 0 0 0 0 0 0 2621 2503 117 69133 1 0 8 2495 0 0 0 0 0 0 0 0 0 1183 13 0
cpu1 0 0 6901 3432 2776 446 223141188 3127007 3468
domain0 002002 1002 998 4 4708 0 0 0 998 3 3 0 0 0 0 0 3 1055 1028 27 18616 0 0 0 1028 0 0 0 0 0 0 0 0 0 174 1 0
domain1 03f03f 993 983 9 11884 1 0 0 983 3 3 0 0 0 0 0 0 1055 1017 37 24802 1 0 1 1016 0 0 0 0 0 0 0 0 0 640 4 0
domain2 ffffff 217 217 0 0 0 0 0 41 0 0 0 0 0 0 0 0 1054 908 146 77215 0 0 5 903 0 0 0 0 0 0 0 0 0 1515 2 0
cpu2 0 0 2998 1498 1549 96 71761221 1380590 1500
domain0 004004 304 304 0 81 0 0 0 304 0 0 0 0 0 0 0 0 301 300 1 593 0 0 0 300 0 0 0 0 0 0 0 0 0 11 0 0
domain1 03f03f 256 243 12 11254 1 1 0 243 0 0 0 0 0 0 0 0 301 269 31 16642 1 0 1 268 0 0 0 0 0 0 0 0 0 301 0 0
domain2 ffffff 102 102 0 0 0 0 0 2 0 0 0 0 0 0 0 0 300 242 57 16244 1 0 0 242 0 0 0 0 0 0 0 0 0 1140 0 0
cpu3 0 0 2882 1441 1395 73 58279507 928100 1441
domain0 008008 232 232 0 0 0 0 0 232 0 0 0 0 0 0 0 0 163 162 1 88 0 0 0 162 0 0 0 0 0 0 0 0 0 4 0 0
domain1 03f03f 211 204 7 6752 0 0 0 204 0 0 0 0 0 0 0 0 163 139 24 16387 0 0 0 139 0 0 0 0 0 0 0 0 0 413 0 0
domain2 ffffff 92 92 0 0 0 0 0 0 0 0 0 0 0 0 0 0 163 136 26 9417 3 0 1 135 0 0 0 0 0 0 0 0 0 904 0 0
cpu4 0 0 142 74 52 46 22458588 281180 68
domain0 010010 170 170 0 0 0 0 0 170 1 1 0 0 0 0 0 1 70 70 0 0 0 0 0 70 0 0 0 0 0 0 0 0 0 0 0 0
domain1 03f03f 147 140 7 6725 0 0 0 140 1 1 0 0 0 0 0 0 70 63 6 4219 1 0 0 63 0 0 0 0 0 0 0 0 0 3 0 0
domain2 ffffff 86 86 0 0 0 0 0 1 0 0 0 0 0 0 0 0 69 66 3 1884 0 0 0 66 0 0 0 0 0 0 0 0 0 2 0 0
cpu5 0 0 136 71 53 45 22263992 312805 65
domain0 020020 181 181 0 0 0 0 0 181 0 0 0 0 0 0 0 0 67 67 0 0 0 0 0 67 0 0 0 0 0 0 0 0 0 2 0 0
domain1 03f03f 161 153 8 6956 0 0 0 153 0 0 0 0 0 0 0 0 67 62 4 3518 1 0 0 62 0 0 0 0 0 0 0 0 0 3 0 0
domain2 ffffff 88 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 63 3 5400 0 0 0 63 0 0 0 0 0 0 0 0 0 2 0 0
cpu6 0 0 9520 4338 4539 1848 515457042 24326084 5180
domain0 040040 1123 1123 0 0 0 0 0 1123 3 3 0 0 0 0 0 3 1469 1468 1 65 0 0 0 1468 0 0 0 0 0 0 0 0 0 232 11 0
domain1 fc0fc0 914 908 1 10780 8 0 0 908 0 0 0 0 0 0 0 0 1469 1445 22 21487 2 0 1 1444 0 0 0 0 0 0 0 0 0 1441 88 0
domain2 ffffff 222 215 7 5809 0 0 0 215 1 1 0 0 0 0 0 1 1467 1374 92 109754 1 0 2 1372 0 0 0 0 0 0 0 0 0 1017 5 0
[..]



  

Hard bindings and hypervisorsHard bindings and hypervisors
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➢ Cloud nodes powered by virtualization hypervisors
➢ Dynamic load

➢ VM started/shutdown/migrated
➢ Variable amount of vRAM and vCPUs

➢ A job manager can do a static placement
➢ But not as efficient to tell which vCPUs are 

idle and which memory is important for 
each process/thread at any given time

➢ The host kernel probably can do better at 
optimizing a dynamic workload



  

How bad is remote RAM? (bench)How bad is remote RAM? (bench)
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#define SIZE (6UL*1024*1024*1024)
#define THREADS 24

void *thread(void * arg)
{

char *p = arg;
int i;
for (i = 0; i < 3; i++) {

if (memcmp(p, p+SIZE/2, SIZE/2))
printf("error\n"), exit(1);

}
return NULL;

}
[..]

if ((pid = fork()) < 0)
perror("fork"), exit(1);

[..]
#ifdef 1

if (sched_setaffinity(0, sizeof(cpumask), &cpumask) < 0)
perror("sched_setaffinity"), exit(1);

#endif
if (set_mempolicy(MPOL_BIND, &nodemask, 3) < 0)

perror("set_mempolicy"), printf("%lu\n", nodemask), exit(1);
bzero(p, SIZE);
for (i = 0; i < THREADS; i++)

if (pthread_create(&pthread[i], NULL, thread, p) != 0)
perror("pthread_create"), exit(1);

for (i = 0; i < THREADS; i++)
if (pthread_join(pthread[i], NULL) != 0)

perror("pthread_join"), exit(1);



  

mempolicy + setaffinity localmempolicy + setaffinity local
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Best possible CPU/RAM NUMA placement
All CPUs only work on local RAM



  

mempolicy + setaffinity remotemempolicy + setaffinity remote
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

sched_setaffinity sched_setaffinity

mempolicy mempolicy

Worst possible CPU/RAM NUMA placement
All CPUs only work on remote RAM



  

Only mempolicyOnly mempolicy
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

Only RAM NUMA binding with mempolicy()
The host CPU scheduler can move all threads anywhere
The CPU scheduler has no memory awareness



  

Mempolicy + CPU-follow-memoryMempolicy + CPU-follow-memory
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0,12 1,13 2,14 3,15 4,162,14 5,17 7,19 8,206,18 9,21 10,223,15 11,23

RAM 0 RAM 1

parent process
spawns N threads

child process
spawns N threads

mempolicy mempolicy

The host CPU scheduler understand the parent process
has most of the RAM allocated in NODE 0 and the child in NODE 1
No scheduler hints from userland
Mempolicy() doesn't have any scheduler effect



  

1 thread x 2 processes1 thread x 2 processes
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mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 2 4 6 8 10 12 14 16 18

seconds
% error

Only 2 CPUs used, 2 nodes 2 sockets 12 cores 24 threads



  

12 threads x 2 processes12 threads x 2 processes
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mempolicy + sched_setscheduler local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 5 10 15 20 25

seconds
% error

All 24 CPUs maxed out, 2 nodes 2 sockets 12 cores 24 threads



  

24 threads x 2 processes24 threads x 2 processes
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mempolicy + sched_setaff inity local

mempolicy + sched_setaff inity remote

only mempolicy

mempolicy + CPU-follow-memory (autonuma)

0 10 20 30 40 50 60 70

seconds
% error

Double CPU overcommit, 2 nodes 2 sockets 12 cores 24 threads



  

CPU-follow-memoryCPU-follow-memory
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➢ Implemented as a proof of concept
➢ For now only good enough to proof that it 

performs equivalent to sched_setaffinity()
➢ CPU-follow-memory not enough

➢ We still run a sys_mempolicy!
➢ Must be combined with memory-follow-CPU
➢ When there are more threads than CPUs in the 
node things are more complex

➢ “mm” tracking not enough: vma/page per-
thread tracking needed (not trivial to get that 
info without page faults)



  

memory-follow-CPUmemory-follow-CPU
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➢ Converge the RAM of the process into the node 
where it's running on by migrating it in the 
background

➢ If CPU-follow-memory doesn't follow memory 
because of too high load in the preferred nodes

➢ Migrate the memory of the process to the node 
where the process is really running on and 
converge there

➢ Have CPU-follow-memory temporarily ignore 
the current memory placement and follow 
CPU instead until we converged



  

Auto NUMA memory migrationAuto NUMA memory migration
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➢ We need to find a process that has RAM in NODE 
1 and wants to converge into NODE 0, in order to 
migrate the RAM of another process from NODE 0 
to NODE 1

➢ This will keep the memory pressure balanced
➢ Pagecache/swapcache/buffercache may be 

migrated as fallback but active process 
memory should be preferred to get double 
benenfit

➢ Memory-follow-CPU migrations should 
concentrate on processes with high CPU utilization 

➢ The migrated memory ideally should be in the 
working set of the process



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU wants to migrate the RAM of Process A 
from NODE0 to NODE 1

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU need to find another process
with memory on NODE 1 that wants to migrate to NODE 0
Process B is ideal

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

RAM Process A

RAM Process B

NODE 1

RAM Process A

RAM Process B

memory-follow-CPU migrates the memory...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

Auto NUMA memory migrationAuto NUMA memory migration
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NODE 0

A

RAM Process B

NODE 1

RAM Process A

B

memory-follow-CPU repeats...

CPU 0
Process B running

(CPU-follow-memory)

CPU 1
Process A running

(CPU-follow-memory)



  

knumadknumad
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➢ CPU-follow-memory is currently entirely fed with 
information from a knumad kernel daemon that 
scans the process memory in the background

➢ It could be changed to static accounting to help 
short lived tasks too

➢ There's a time-lag from when memory is first 
allocated and when CPU-follow-memory 
notices (this explains the slight slower perf)

➢ Initially, when no memory information exists 
yet, MPOL_DEFAULT is used

➢ knumad may later drive memory-follow-CPU too
➢ Working set estimation is possible



  

Anonymous memoryAnonymous memory
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➢ knumad only considers not shared anonymous 
memory

➢ For KVM it is enough
➢ This will likely have to change
➢ It'll be harder to deal with CPU/RAM placement 

of shared memory



  

Per-thread informationPer-thread information
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➢ The information in the pagetables is per-process
➢ To know which part of the process memory each 
thread is accessing there are various ways

➢ … or old ways like forcing page faults
➢ Migrate-on-fault does that
➢ Migrate-on-fault heavyweight with THP
➢ Migrating memory in the background 

should be better than migrate-on-fault 
because it won't always hang the process 
during migrate_pages()



  

Another way: soft NUMA bindingsAnother way: soft NUMA bindings
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➢ Instead of setting hard numbers like 0-5,12-17 and 
node 0 manually we could create a soft API:

  numa_group_id = numa_group_create();

 numa_group_mem(range, numa_group_id);

 numa_group_task(tid, numa_group_id);

➢ This would allow to easily create a vtopology for 
the guest by changing QEMU

➢ It would not require special tracking as QEMU 
would specify which vCPUs belong to which 
vNODE to the host kernel.

➢ But if the guest spans more than one host node, 
all guest apps should use this API too...



  

Soft NUMA bindingsSoft NUMA bindings
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➢ I think a full automatic way should be tried first...
➢ Full automatic NUMA awareness requires more 

intelligence on the kernel side
➢ Cons of soft NUMA bindings:

➢ APIs must be maintained forever
➢ APIs don't solve the problem of applications not 

NUMA aware
➢ Not easy for programmer to describe to the 

kernel which memory each thread is going to 
access more frequently

➢ Trivial for QEMU, but not so much for other 
users



  

LockingLocking
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➢ Kernel
➢ RCU/SRCU
➢ Seqlock
➢ Spinning Mutex
➢ Ticket spinlocks (FIFO)
➢ rw spinlocks
➢ rw semaphores

➢ Userland
➢ pthread_mutex_lock/unlock/trylock

➢ futex
➢ RCU userland



  

`perf` profiling of translate.o`perf` profiling of translate.o
24-way SMP (12 cores, 2 sockets) 16G RAM host, 24-vcpu 15G RAM guest

THP always bare metal (base result)

        40746051351  cycles                     ( +-   5.597% )
        36394696366  instructions             #      0.893 IPC     ( +-   0.007% )
         9602461977  dTLB-loads                 ( +-   0.006% )
           45123574  dTLB-load-misses           ( +-   0.614% )

       13.920436128  seconds time elapsed   ( +-   5.600% )

THP never bare metal (9.10% slower)

        44492051930  cycles                     ( +-   5.189% )
        36757849113  instructions             #      0.826 IPC     ( +-   0.001% )
         9693482648  dTLB-loads                 ( +-   0.004% )
           63675970  dTLB-load-misses           ( +-   0.598% )

       15.188315986  seconds time elapsed   ( +-   5.194% )

Copyright © 2010 Red Hat Inc.



  

gitgit
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➢ Crypto hash on whole repo contents
➢ Gpg sig on the hash through tags
➢ Data de-duplicating storage backend
➢ Very efficient and compact
➢ Powerful fronthand options (rebase -i, commit -i, 
cherry-pick, clone –reference, qgit4, git log --graph 
etc..)

➢ Kernel hacker user interface...



  

Q/AQ/A
➢ You're very welcome!

Copyright © 2011 Red Hat Inc.
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