Development procedures
and tools

Benedikt Hegner
(CERN)



Revision control

¢ [magine hundreds of developers doing thousands of
changes to the code base
eHow to track what was changed when and why?

¢ Imagine you have some code you are optimizing for
performance

¢ You recall yesterday your code was better

e But the code is already gone...

® Revision control systems are there to help you:
® svn, git, hg, ...

¢ Please give it a few minutes and try:
e http://aymanh.com/subversion-a-quick-tutorial



http://aymanh.com/subversion-a-quick-tutorial
http://aymanh.com/subversion-a-quick-tutorial

Release Models

e The final goal of writing code should be a release
e Correct
e Self-consistent
e Actually existing (not “in 5 years there will be...”)

¢ |n the LHC experiments we have hundreds of
people contributing semi-independently. How to sync
their activities?

¢ Basically two models
¢ Milestone based

e Time based

e Of course hot fix releases here and there...



Milestone based releases

e A big chunk of functionality to be provided

e Not 100% sure when that will be completed
¢ Everything else relies on the changes

¢ Once all functionality is there, cut the release

e Works for prototypes or well-defined big migrations

e Doesn’t work for code in maintenance mode



Time based releases

e Define a time table of ‘release trains’

e Everything ready for a certain release deadline
gets integrated

e Missed the deadline? Take the next release!

e Works well if there is a huge set of independent
subsystems which all have their own schedule

® Requires more releases than a milestone based
model



In reality

e Reality is a mixture of both concepts
¢ Full Releases are time based
¢ Individual subsystems set roadmaps for functionality

e Once ready go into next available release

e | imiting factor is usually a wrong or too tight
coupling of systems



Release integration process

¢ Don’t defer building the release up to the very last

moment
¢ Provide and test snapshot at least once a night
(a.k.a. nightly or integration build)

¢ Add updates as soon as they are considered ready
¢ |[n theory, every integration build should be

releasable
¢ ... and a release only a snapshot at a certain day

e There is a special role to ensure that all this is
happening - the release manager




Testing



Unit testing

e The code is not yet correct when the compiler
accepts it..

eDevelopers usually test the latest functionality they
implemented, but don’t check that old things aren’t
broken

¢ Unit testing ensures you don’t break old things

e Make the testing as easy as possible
e Otherwise you will always skip that testing step!

e Many good tools around there
e You'll try one later in an exercise



Unit testing

® You can put the testing to the very
extreme
Test Driven Design

w
T4
O
a
I
4
w
i
©

¢ Encode the “contract” your code
needs to fulfill and then develop
against this

TEST DRIVEN DESIGN?
I TRIED, BUT I DIDN'T FIND ANY TEST
THEY DID NOT FAIL.

e Split writing tests and code among
different people A
® You need a nasty test writer! R

¢ Be sure that you separate interface
tests from implementation specific
tests

¢ [mportant for refactoring!



Testing at bigger scale

e Testing with unit tests is only a small piece

¢ Doing full workflows once in a while (i.e. daily) to
check for consistency across components

e Release validation checking various use cases
¢ at CMS offline releases have to survive a release
validation production & procedure

e |[f you skip this procedure, Murphy’s law will hit you
right away



Static code analyzers

¢ Unit tests and others check code for proper

runtime behaviour
¢ |f code isn’t getting executed during the tests it is

not getting tested
e coverage tools help you to spot such problems

(http://lcqaop.cern.ch/soi/aaLibrarian/niqhtlies/x86 64-slc5-acc43-cov/dev.Thu_CORAL-preview-x86 64-slc5-qcc43—cov/index.htm|)

e Static code analyzers help there
e Don’t care about how likely a certain execution

branch is. Just tries every single one.

¢ | ive demo:
e hittps://coverity.cern.ch/projects/index.htm



http://lcgapp.cern.ch/spi/aaLibrarian/nightlies/x86_64-slc5-gcc43-cov/dev.Thu_CORAL-preview-x86_64-slc5-gcc43-cov/index.html
http://lcgapp.cern.ch/spi/aaLibrarian/nightlies/x86_64-slc5-gcc43-cov/dev.Thu_CORAL-preview-x86_64-slc5-gcc43-cov/index.html
https://coverity.cern.ch/projects/index.htm
https://coverity.cern.ch/projects/index.htm

Continuous integration tools

¢ [f you want to really ensure that there is testing,
automatize it

e Again, there are nice tools out there
¢ The first you should look at is Jenkins

e Might e.g. be triggered by checkins to the
repository

¢ The same setup can be used for the integration
builds



Back to release planning... setting goals

¢ One of the many mistakes done in development is
playing around with features but never converging

¢ So how to define and keep track of goals:
® on paper (private)
¢ on whiteboard (office / small group)
e central places

e There are tools at CERN to support you
e Savannah now
¢ Jira in the not too far future

¢ Live demo...
¢ https://savannah.cern.ch/



https://savannah.cern.ch
https://savannah.cern.ch

An extreme - SCRUM

ProductBacklog SprintBacklog 1
» Client prioritized product - Features assignedto Working Code Ready
features Sprint forDeployment
« Estimated by team Time-boxed
» Team Commitment Test/Develop
' Jfl
ProductBacklog Backlogtasks
SprintPlanning Meeting Daily Scrum Meetings | SprintReviewMeeting
« Review Product Backlog « Donesincelastmeeting « Demofeaturestoall
« Estimate Sprint Backlog « Planfortoday « Retrospective onthe Sprint
« Commit « Roadblocks/Accelerators? Adjustments




Documentation

e Of course we should to document the code
properly

e There are many tools helping you there

e Code cross-referencing
e |XR, OpenGrok

e Documentation creation tools
e £.g. doxygen

¢ Live demo...
e http://opengrok.web.cern.ch/opengrok


http://opengrok.web.cern.ch/opengrok
http://opengrok.web.cern.ch/opengrok

Exercise:

Start with the example code
provided

Put it in revision control
Fix the problem

And use the revision control
while doing that.



That’s it :-)

ANATOMY OF A GROUP MEETING PRESENTATION

P\)‘bd all-nighter. er: To come firat onl
finished slides 5 naichtful iral year. only
mirvies before :e:‘ﬁmw Wil person aclually

mee impress advisor. m‘r‘g acf:nfoon.
‘ whal's going on.

slarted.

JORGE. CHAM © 2006 www.phdcomics.com



