
Development procedures
and tools

Benedikt Hegner
(CERN)

• Imagine hundreds of developers doing thousands of
changes to the code base

•How to track what was changed when and why?

• Imagine you have some code you are optimizing for
performance

• You recall yesterday your code was better
• But the code is already gone...

• Revision control systems are there to help you:
• svn, git, hg, ...

• Please give it a few minutes and try:
• http://aymanh.com/subversion-a-quick-tutorial

Revision control

http://aymanh.com/subversion-a-quick-tutorial
http://aymanh.com/subversion-a-quick-tutorial

• The final goal of writing code should be a release
• Correct
• Self-consistent
• Actually existing (not “in 5 years there will be...”)

• In the LHC experiments we have hundreds of
people contributing semi-independently. How to sync
their activities?

• Basically two models
• Milestone based
• Time based

• Of course hot fix releases here and there...

Release Models

• A big chunk of functionality to be provided
• Not 100% sure when that will be completed
• Everything else relies on the changes

• Once all functionality is there, cut the release

• Works for prototypes or well-defined big migrations

• Doesn’t work for code in maintenance mode

Milestone based releases

• Define a time table of ‘release trains’

• Everything ready for a certain release deadline
gets integrated

• Missed the deadline? Take the next release!

• Works well if there is a huge set of independent
subsystems which all have their own schedule

• Requires more releases than a milestone based
model

Time based releases

• Reality is a mixture of both concepts

• Full Releases are time based

• Individual subsystems set roadmaps for functionality
• Once ready go into next available release

• Limiting factor is usually a wrong or too tight
coupling of systems

In reality

• Don’t defer building the release up to the very last
moment

• Provide and test snapshot at least once a night
(a.k.a. nightly or integration build)

• Add updates as soon as they are considered ready

• In theory, every integration build should be
releasable

• ... and a release only a snapshot at a certain day

• There is a special role to ensure that all this is
happening - the release manager

Release integration process

Testing

• The code is not yet correct when the compiler
accepts it..

•Developers usually test the latest functionality they
implemented, but don’t check that old things aren’t
broken

• Unit testing ensures you don’t break old things

• Make the testing as easy as possible
• Otherwise you will always skip that testing step!

• Many good tools around there
• You’ll try one later in an exercise

Unit testing

Unit testing
• You can put the testing to the very
extreme
 Test Driven Design

• Encode the “contract” your code
needs to fulfill and then develop
against this

• Split writing tests and code among
different people

• You need a nasty test writer!

• Be sure that you separate interface
tests from implementation specific
tests

• Important for refactoring!

• Testing with unit tests is only a small piece

• Doing full workflows once in a while (i.e. daily) to
check for consistency across components

• Release validation checking various use cases
• at CMS offline releases have to survive a release
validation production & procedure

• If you skip this procedure, Murphy’s law will hit you
right away

Testing at bigger scale

• Unit tests and others check code for proper
runtime behaviour
• If code isn’t getting executed during the tests it is
not getting tested

• coverage tools help you to spot such problems
(http://lcgapp.cern.ch/spi/aaLibrarian/nightlies/x86_64-slc5-gcc43-cov/dev.Thu_CORAL-preview-x86_64-slc5-gcc43-cov/index.html)

• Static code analyzers help there
• Don’t care about how likely a certain execution
branch is. Just tries every single one.

• Live demo:
• https://coverity.cern.ch/projects/index.htm

Static code analyzers

http://lcgapp.cern.ch/spi/aaLibrarian/nightlies/x86_64-slc5-gcc43-cov/dev.Thu_CORAL-preview-x86_64-slc5-gcc43-cov/index.html
http://lcgapp.cern.ch/spi/aaLibrarian/nightlies/x86_64-slc5-gcc43-cov/dev.Thu_CORAL-preview-x86_64-slc5-gcc43-cov/index.html
https://coverity.cern.ch/projects/index.htm
https://coverity.cern.ch/projects/index.htm

• If you want to really ensure that there is testing,
automatize it

• Again, there are nice tools out there
• The first you should look at is Jenkins

• Might e.g. be triggered by checkins to the
repository

• The same setup can be used for the integration
builds

Continuous integration tools

• One of the many mistakes done in development is
playing around with features but never converging

• So how to define and keep track of goals:
• on paper (private)
• on whiteboard (office / small group)
• central places

• There are tools at CERN to support you
• Savannah now
• Jira in the not too far future

• Live demo...
• https://savannah.cern.ch/

Back to release planning... setting goals

https://savannah.cern.ch
https://savannah.cern.ch

An extreme - SCRUM

• Of course we should to document the code
properly

• There are many tools helping you there

• Code cross-referencing
• LXR, OpenGrok

• Documentation creation tools
• E.g. doxygen

• Live demo...
• http://opengrok.web.cern.ch/opengrok

Documentation

http://opengrok.web.cern.ch/opengrok
http://opengrok.web.cern.ch/opengrok

Exercise:

Start with the example code
provided

Put it in revision control

Fix the problem

And use the revision control
while doing that.

That’s it :-)

