
Physical SW design
- some vocabulary -

Benedikt Hegner
(CERN)

Many thanks to Vincenzo Innocente

Level of complexity matters!

• Small problems can be solved with simple techniques

• For large problems you need to use different techniques
that are in general more complex and with upfront costs

Architecting a dog house

• Can be build by one person
• Requires

• Minimal modelling
• Simple process
• Simple tools

• Little risk

Architecting a dog house

• Built most efficiently and
 timely by a team

• Requires
• Modeling
• Well-defined process
• Powerful tools

Architecting a house

• Built by many companies

• Requires
• Modeling
• Simple plans, evolving blueprints
• Scale models
• Engineering plans
• Well-defined process
• Architectural team
• Political planning
• Infrastructure planning
• Time-tabling and scheduling
• Selling space
• Heavy equipment

Architecting a high rise

Performance
• “More computing sins are committed in the name of
efficiency (without necessarily achieving it) than for any
other single reason - including blind stupidity”
(William Wulf (AT&T Professor))

• Overall efficiency is what matters
• Runtime + Development Time

• Overall design should take performance considerations
very much into account, but not down to individual code

• You have to understand and check (!) where you have
an individual performance problem

• Reminder:
• Fast code is nice, incorrect output useless...

But how to get development / design started ?

• Programming does not start at the keyboard but at the
whiteboard

• What should the project actually do in the end

• Come up with an initial idea of how the program should
be structured

• Start filling the ‘boxes’ in a prototype

• Throw it away and do the real one...

Throw your prototype away!

Don’t be married to your code!

UML

UML

• Unified Modeling Language (UML) is a standardized
general-purpose modeling language

• Includes a set of graphical notation techniques to create
visual models of software-intensive systems

• Supports the entire software development lifecycle

• Supports diverse applications areas

• Is based on experience and needs of the user community

• Supported by many tools

UML

• Structure diagrams
• Class
• Component
• Deployment
• Object
• Package

• Behaviour diagrams
• Activity
• State machine
• Use case

• Interaction diagrams
• Communication
• Interaction

Class diagram

• Captures the vocabulary
of a system
• Built and refined
throughout development

• Name models and
concepts in the system
• Specify collaborations
• Specify DB schemas

Object diagram

• Shows instances and links
• Built during analysis and
design

• Illustrate data structures
• Specify snapshots

Sequence diagram

• Captures dynamic behaviour (time-oriented)
• Purpose

• Model flow of control
• Illustrate typical scenarios

Statechart diagram

• Captures dynamic behaviour (time-oriented)
• Purpose

• Model object lifecycle
• Model reactive objects (user interfaces, devices, etc)

Software Design

• System Architecture
• Component Design
• Class Design

Architectural Design

• Capture major interfaces between subsystems and
packages early

• Be able to visualize and reason about the design in a
common notation

• Common vocabulary, running scenarios

• Be able to break the work into smaller pieces that can
be developed concurrently by different teams

• Acquire an understanding of non-functional constrains
• Programming languages, concurrency, database, GUI,
component re-use

Architecture Defined

• Definition of [software] architecture [1]

• Set or significant decisions about the organization of the
software system
• Selection of the structural elements and their interfaces
which compose the system
• Their behavior -- collaboration among the structural
elements
• Composition of these structural and behavioral

[1] I. Jacobson, et al. “The Unified Software development Process”, Addison Wesley 1999

Architecture Defined (2)

• Software architecture also involves
• Usage
• Functionality
• Performance
• Re-use
• Comprehensibility
• Economic and technology constraints and tradeoffs

Importance of re-use

• Put extra effort into building high quality components
• Be more efficient by re-using these components
• Many obstacles to overcome

• too broad functionality / lack of flexibility in components
• organisational - reuse requires a broad overview to
ensure unified approach

• we tend to split into domains each independently
managed

•cultural
• don’t trust others to deliver what we need
• fear of dependency on others
• fail to share information with others
• developers fear loss of creativity

•Re-use doesn’t happen automatically, but needs to be
worked for actively

What to consider when designing something?

System

What if…

What if…

What if…
What if…

What if…

• Scenario is a brief description of an interaction of a
stakeholder with a system

What to consider when designing something? (2)

• User scenarios
• What if I want to run a new track fit algorithm?
• What if I need to use the newest calibration?

•Deployment engineer
• What if we need to port the software to iOS?
• What if we embed the software in real-time systems?

• Manager

• What if we need to support some standard data formats
• What if we integrate a commercial GUI system

Architectural Workflow

• Select scenarios: criticality and risk
• Identify main classes and their responsibility
• Distribute behavior on classes
• Structure in subsystems, layers,
define interfaces
• Define distribution and concurrency
• Derive tests from use cases
• Implement architectural prototype
• Evaluate architecture

•Iterate

You’d be amazed how many of these
one can map on UML diagrams!

Now moving to Physical Design...

Physical Design Concepts

• Large-scale software development requires more than
just logical design issues

• Distribution of logical entities (classes, functions, etc.) on
physical entities (files, directories, etc.)
• The physical design is the skeleton of the system

• The quality of physical design dictates from the cost of
maintenance to run-time performance
•Additional the potential for re-use
• “Component” is the fundamental unit of design

• they have a dependency relationship

•Logical design addresses architectural issues; physical
design addresses organizational issues

Graph.cxx

EdgeIter

Node

NodeIter

Graph

Edge

Graph.h includes

Physical View Logical View

Components

• Logical design emphasizes interaction of classes and
functions in single seamless space

• It can be viewed as a ‘sea’ of classes and functions
• It does not take into account physical entities such as
files and libraries

• A Component would embody a subset of logical design
that makes sense to exists as an independent and
cohesive unit

• Typically a Component would consists of a single header
file (.h) and implementation files (.cxx)

Packages
• Typically in HEP we put each C++ class in a different file
(naming convention & convenience)

• A Package is a collection of components organized as a
physically cohesive unit

• A Package is therefore a collection of Classes and
functions that implements some functionality

•Physically a Package is a collection of header files and
implementation files organized in some directory structure

• Package is the basic unit in the HEP software
development process

• Packages usually depend on other packages

Package as a development unit

• For convenience a Package is developed by one or few
developers

• Concurrent development is essential for large projects

• It is the basic development unit (at least in the HEP
communities)

• It can checked-out and versioned (tagged)
• It can be tested
• It can be documented

• Both ATLAS and CMS have a few thousand packages

Package contents

• Public Header Files (.h)
• Private Header files (.h)
• Shareable Libraries (.so)

• Linker Libraries
• Component Libraries (plug-ins, i.e. no symbols
exported)
• Other modules (e.g. Python extension modules)

• Programs
• Documentation Files (.html, .doc, …)

Public Interface of a Package

• Everything declared in its set of public header files
• Regardless of access privilege (public, protected,
private)
• Any change would cause a re-compilation of clients

•The less information is put on header files the better
• Favor forward declarations of types used as references
and pointers

Package Products

• Linker Libraries
• Traditional libraries. They export a number of symbols

• Component or plug-in libraries
• These libraries are loaded at run-time on demand by the
application (framework)
• Typically they do not export any symbol. In some cases
a single global one

• Programs, Tests
• Either direct executables or plug-ins

• Documentation
• Additional framework files
• Configuration files, plugin databases, etc.

Package Dependencies

•A package Y DependsOn a package X if X is needed in order to
compile or link Y

• Compile-time dependency if one or more .h files in X are
needed for compilation
• Link-time dependency if one or more libraries in X are needed
for linking
• Run-time dependency if a program/library in package Y
requires X for running

• In general compile-time dependency implies link-time
dependency and this implies run-time dependency

•Templates defeat this general rule!

•The DependsOn relation is transitive

Y

X

DependsOn

Package Dependencies (2)

• A package defining a function will have a physical dependency
to any other package defining a type used in the function

• The logical relationship HasA and IsA translates into a physical
dependency

• Dependencies limit
• flexibility
• ease of maintenance
• reuse of components or parts

• Dependency management tries to control dependencies

• The more central a package is the more stable it should be
• Common sense, but frequently violated

Package Dependencies (3)

a

b c

d e

f

g

i

h

j

k

o n

l

m

a

b c

d

f

g

i

h

j

k

o n

l

m

sometimes package dependencies don’t
match logical dependencies

Don’t make obvious mistakes...

a

b d

c
a

b d

c

clean up cyclic dependencies

Compile time dependencies

• Cyclic dependencies would prevent
building the package. End of story.
•Tools such as Doxygen allows to monitor
dependencies
•Thinning header files will
speedup building process
•External include guards, or
redundant include guards,
were suggested by John Lakos

#ifndef FILENAME_H_
#include "Filename.h"
#endif // FILENAME_H_

Link/Load-Time time dependencies

• The use of dynamic libraries converts link-time
dependencies to load-time ones

• Tools such ldd allow to monitor link dependencies
• Try ldd on one of the examples you played with this morning

• Performance is strongly affected by the number and the
size of dependent libraries

•Interest to keep the them under control

• Reduce the number of needed libraries
• re-packaging, re-engineering

• Remove unnecessary libraries

• Control package dependencies; use --as-needed flag

Compile and Link Times

• Compile and link times are unproductive

• In a project with N modules compile and link time can
grow like N2 (assuming every package is tested) when
dependencies are not controlled

• Loss of productivity

• Long turnaround times → slow development

• Dependency management essential in large projects

Run-Time Dependencies

• These dependencies are due typically to the plug-in
mechanism, dictionary loading, Python extension modules,
etc.

• Frameworks make extensive use of run-time
dependencies

• Moving compile and link time dependencies to run-time
dependencies is not a bad move

• Only needed functionality will be loaded

• Packaging and installation of ‘plug-ins’ is non-trivial

Plugins

• Program extensions to provide a certain, usually very
specific function "on demand”

• Applications/frameworks support plug-ins for many
reasons (in HEP)

• to enable third-party developers to create capabilities
to extend an application
• to support features yet unforeseen
• to reduce the size of the
basic application

Plugins (2)

• At least three possibilities for packaging plug-ins
• (C) is the one that creates less coupling
• (A) and (B) forces a dependency between the library
and the framework

Library A
Plug-in

Library A

Framework
Package

Library A
Plug-in

Library A

Framework
Package

Library A
Plug-in

Library A

Framework
Package

(A) (B)

(C)

Software Release

• Experiments do not release individual packages
• Each individual package is ‘tagged’ by developer

• Experiments release complete ‘projects’
• made of a collection of ‘tags’ for each package
• “Tag collector” tools helping here

• Again - proper package dependency is essential for ease
of release preparation

• You can even measure how good/bad you do by using
dependency metrices

And now a little break...

