Physical SW design
- some vocabulary -

Benedikt Hegner
(CERN)

Many thanks to Vincenzo Innocente

Level of complexity matters!

Architecting a dog house

¢ Small problems can be solved with simple techniques

e For large problems you need to use different techniques
that are in general more complex and with upfront costs

Architecting a dog house

¢ Can be build by one person
e Requires

¢ Minimal modelling

e Simple process

e Simple tools

o |ittle risk

Architecting a house

¢ Built most efficiently and
timely by a team

e Requires
¢ Modeling
¢ Well-defined process
e Powerful tools

Architecting a high rise
¢ Built by many companies

e Requires
¢ Modeling
¢ Simple plans, evolving blueprints
e Scale models
e Engineering plans
e Well-defined process
e Architectural team
¢ Political planning
¢ [nfrastructure planning
¢ Time-tabling and scheduling
¢ Selling space
® Heavy equipment

Performance

e “More computing sins are committed in the name of
efficiency (without necessarily achieving it) than for any
other single reason - including blind stupidity”

(William Wulf (AT&T Professor))

e Overall efficiency is what matters
¢ Runtime + Development Time

e Overall design should take performance considerations
very much into account, but not down to individual code

¢ You have to understand and check (!) where you have
an individual performance problem

® Reminder:
e Fast code is nice, incorrect output useless...

But how to get development / design started ?
® Programming does not start at the keyboard but at the
whiteboard
¢ \What should the project actually do in the end

e Come up with an initial idea of how the program should
be structured

e Start filling the ‘boxes’ in a prototype

e Throw it away and do the real one...

Throw your prototype away!

Don’t be married to your code!

UML

UML

¢ Unified Modeling Language (UML) is a standardized
general-purpose modeling language

¢ |[ncludes a set of graphical notation techniques to create
visual models of software-intensive systems

e Supports the entire software development lifecycle
e Supports diverse applications areas
¢ |s based on experience and needs of the user community

e Supported by many tools

UML

Structure diagrams
¢ Class

e Component

¢ Deployment

¢ Object

e Package

Behaviour diagrams
o Activity

e State machine

e |Use case

Interaction diagrams
¢ Communication
¢ |Interaction

Class diagram

e Captures the vocabulary
of a system

¢ Built and refined

throughout development
e Name models and
concepts in the system
e Specify collaborations
e Specify DB schemas

———& Company aggregation

cla;s_ 1 ’. PN ¢

l . [mm— multiplicity 1 | .'1/2}me
. .___.-"'-
Department Locatiorp Office

name : Name [1 address : String
0.1 voice : Number
. constraint |
role —1— it
< {subset} association % g('mf.&l'hzcmon
\, -
member | 1..* 1| manager l Headquarters J
Person
name : Name _—— attributes
employeelD : Integer ¢
title : String __— Operations
getPhoto(p: Photo) / .
getSoundBite() é Contactinformation
getContaCtlnformation()'- - > address : Stnng

getPersonalRecords()

~
L8

b o
(N] interface
Y PersonnelRecord \
dependency | taxID : e
employmentHistory &
salary ISecurelnformation

Object diagram

c: Company

/<\\

d1 : Department d2 : Department

' : =~ name = “Sales” \ oname = “R&D"
e Shows instances and links / e o 7 R&D
e Built during analysis and / el \\
dESIg N obje;ct ¢ 93 : Department / attrib:te value
name = “US Sales”
o |llustrate data structures |\ + ,/ R
manager N

/
/
\+ - Contactinformation
address = “1472 Miller St.”

® SpGley SnapShOtS \ p : Person

= Erin &
~~¢ Name = “Ernn

employeelD = 4362

title = “VP of Sales”

Sequence diagram

e Captures dynamic behaviour (time-oriented)

® Purpose
¢ Model flow of control
e |[lustrate typical scenarios

. Interaction
object
\le t:Thread . Toolkit
al:run(3). o lifeline
/0 " ()> '
(| run() " callbackLoop()
sequence | . :_\ _ creation
label message / R
call P p: Peer
focus of control — handleExpose& ';
recursion —_|
N i .":‘:-:—: return
«destroy» ' ; <

destruction

Statechart diagram

e Captures dynamic behaviour (time-oriented)

® Purpose
¢ Model object lifecycle

e Model reactive objects (user interfaces, devices, etc)

State Machine

final state —
stgte -
‘—\ off /r tran?mon nested state
//‘ .//// onH005//// /// gu%Fj
|' = Y
initial state | cle Working/ J \
/ keepAlive / check() — ready(3) [signalOK]
internal transition __,,_ Connecting
ofch;ok / reclaimConnection() [Connected]

event

action

Software Design

e System Architecture
e Component Design
e (Class Design

]
Architectural Design
Scope: Processors, Node Package
packages, tasks
Mechanistic Design Class
Scope: Groups of
collaborating classes \
Class
Detailed Design
Scope: Classes Class

Class

attribute

operation

Architectural Design

e Capture major interfaces between subsystems and
packages early

e Be able to visualize and reason about the design in a

common notation
e Common vocabulary, running scenarios

e Be able to break the work into smaller pieces that can
be developed concurrently by different teams

e Acquire an understanding of non-functional constrains
e Programming languages, concurrency, database, GUI,
component re-use

Architecture Defined

e Definition of [software] architecture [1]

e Set or significant decisions about the organization of the
software system

e Selection of the structural elements and their interfaces
which compose the system

® Their behavior -- collaboration among the structural
elements

e Composition of these structural and behavioral

[1] . Jacobson, et al. “The Unified Software development Process”, Addison Wesley 1999

Architecture Defined (2)

e Software architecture also involves
e Usage
¢ Functionality
¢ Performance
® Re-use
e Comprehensibility
e Economic and technology constraints and tradeoffs

Importance of re-use

¢ Put extra effort into building high quality components

e Be more efficient by re-using these components
¢ Many obstacles to overcome

¢ too broad functionality / lack of flexibility in components
e organisational - reuse requires a broad overview to

ensure unified approach
e we tend to split into domains each independently

managed
ecultural

e don’t trust others to deliver what we need
e fear of dependency on others

¢ fail to share information with others
e developers fear loss of creativity

eRe-use doesn’t happen automatically, but needs to be
worked for actively

What to consider when designing something?

e Scenario is a brief description of an interaction of a
stakeholder with a system

What to consider when desighing something? (2)

e User scenarios
e What if | want to run a new track fit algorithm?
e What if | need to use the newest calibration?

eDeployment engineer
e What if we need to port the software to i0S?
e \What if we embed the software in real-time systems?

e Manager
¢ \What if we need to support some standard data formats
e What if we integrate a commercial GUI system

Architectural Workflow

e Select scenarios: criticality and risk

¢ [dentify main classes and their responsibility
¢ Distribute behavior on classes

e Structure in subsystems, layers,

define interfaces

¢ Define distribution and concurrency

e Derive tests from use cases

¢ Implement architectural prototype

e Evaluate architecture

e|terate

You'd be amazed how many of these
one can map on UML diagrams!

Now moving to Physical Design...

Physical Design Concepts

¢ | arge-scale software development requires more than

just logical design issues
¢ Distribution of logical entities (classes, functions, etc.) on

physical entities (files, directories, etc.)
¢ The physical design is the skeleton of the system

¢ The quality of physical design dictates from the cost of
maintenance to run-time performance
¢ Additional the potential for re-use
¢ “Component” is the fundamental unit of design
¢ they have a dependency relationship

¢ ogical design addresses architectural issues; physical
design addresses organizational issues

Logical View Physical View

Edgelter Nodelter
(0 (0

® O

B
4 y

Components

e | ogical design emphasizes interaction of classes and
functions in single seamless space
¢ |t can be viewed as a ‘sea’ of classes and functions
¢ [t does not take into account physical entities such as
files and libraries

e A Component would embody a subset of logical design
that makes sense to exists as an independent and
cohesive unit

e Typically a Component would consists of a single header
file (.h) and implementation files (.cxx)

Packages

e Typically in HEP we put each C++ class in a different file
(naming convention & convenience)

¢ A Package is a collection of components organized as a
physically cohesive unit

e A Package is therefore a collection of Classes and

functions that implements some functionality

ePhysically a Package is a collection of header files and
implementation files organized in some directory structure

¢ Package is the basic unit in the HEP software
development process

¢ Packages usually depend on other packages

Package as a development unit

e For convenience a Package is developed by one or few
developers
e Concurrent development is essential for large projects

e |t is the basic development unit (at least in the HEP
communities)

® |t can checked-out and versioned (tagged)

e [t can be tested
e |t can be documented

e Both ATLAS and CMS have a few thousand packages

Package contents

e Public Header Files (.h)
e Private Header files (.h)
e Shareable Libraries (.s0)
¢ | inker Libraries
e Component Libraries (plug-ins, i.e. no symbols
exported)
¢ Other modules (e.g. Python extension modules)
® Programs
e Documentation Files (.html, .doc, ...)

Public Interface of a Package

e Everything declared in its set of public header files
e Regardless of access privilege (public, protected,
private)
¢ Any change would cause a re-compilation of clients

¢ The less information is put on header files the better
e Favor forward declarations of types used as references
and pointers

Package Products

¢ Linker Libraries
e Traditional libraries. They export a number of symbols

e Component or plug-in libraries
¢ These libraries are loaded at run-time on demand by the
application (framework)
e Typically they do not export any symbol. In some cases
a single global one

® Programs, Tests
e Either direct executables or plug-ins

e Documentation
e Additional framework files
¢ Configuration files, plugin databases, etc.

Package Dependencies

e A package Y DependsOn a package X if X is needed in order to
compile or link Y
e Compile-time dependency if one or more .h files in X are
needed for compilation
¢ | ink-time dependency if one or more libraries in X are needed
for linking
e Run-time dependency if a program/library in package Y
requires X for running

¢ |[n general compile-time dependency implies link-time
dependency and this implies run-time dependency
e Templates defeat this general rule! [y }

¢ The DependsOn relation is transitive DependsOn

S

Package Dependencies (2)

¢ A package defining a function will have a physical dependency
to any other package defining a type used in the function

e The logical relationship HasA and IsA translates into a physical
dependency

¢ Dependencies limit
o flexibility
¢ case of maintenance
¢ reuse of components or parts

¢ Dependency management tries to control dependencies

e The more central a package is the more stable it should be
e Common sense, but frequently violated

Package Dependencies (3)

~

e

d

v
f
\

-

K

0]

/
n

.

sometimes package dependencies don’t

match logical dependencies

Don’t make obvious mistakes...

A= Mﬁ\i
. J . J {iﬂ

clean up cyclic dependencies

Compile time dependencies

¢ Cyclic dependencies would prevent
building the package. End of story.

e Tools such as Doxygen allows to monitor
dependencies

¢ Thinning header files will

speedup building process

eExternal include guards, or

redundant include guards,

were suggested by John Lakos

Fifndef FILENAME H
#include "Filename.h"
#endif // FILENAME H

Link/Load-Time time dependencies

¢ The use of dynamic libraries converts link-time
dependencies to load-time ones

¢ Tools such Idd allow to monitor link dependencies
® Try ldd on one of the examples you played with this morning

e Performance is strongly affected by the number and the
size of dependent libraries

e|nterest to keep the them under control

e Reduce the number of needed libraries
® re-packaging, re-engineering

¢ Remove unnecessary libraries

e Control package dependencies; use --as-needed flag

Compile and Link Times

e Compile and link times are unproductive

¢ |[n a project with N modules compile and link time can
grow like N2 (assuming every package is tested) when
dependencies are not controlled

¢ | 0ss of productivity

¢ | ong turnaround times — slow development

¢ Dependency management essential in large projects

Run-Time Dependencies

¢ These dependencies are due typically to the plug-in
mechanism, dictionary loading, Python extension modules,

etc.

e Frameworks make extensive use of run-time
dependencies

e Moving compile and link time dependencies to run-time

dependencies is not a bad move
¢ Only needed functionality will be loaded

e Packaging and installation of ‘plug-ins’ is non-trivial

Plugins

¢ Program extensions to provide a certain, usually very

specific function "on demand”

e Applications/frameworks support plug-ins for many

reasons (in HEP)

¢ to enable third-party developers to create capabilities

to extend an application
¢ to support features yet unforeseen
e to reduce the size of the

Host Application

basic application

Services
Interface

1

Services

1

Manager

-
-
I Iug‘ln -t
-

Plug-In

Plug-in

Interface

Plugins (2)

e At least three possibilities for packaging plug-ins
e (C) is the one that creates less coupling
e (A) and (B) forces a dependency between the library
and the framework

G Library A i Library A Framework f Library A 1)
Plug-in | Package | Plug-in
F;amlfwork (A) (B) [Library A J

ackage Library A
/ [Plug-in J > </

Framework Library A
Package

(C)

Software Release

e Experiments do not release individual packages
e Each individual package is ‘tagged’ by developer

e Experiments release complete ‘projects’
¢ made of a collection of ‘tags’ for each package
¢ “Tag collector” tools helping here

e Again - proper package dependency is essential for ease
of release preparation

¢ You can even measure how good/bad you do by using
dependency metrices

And now a little break...

