
Basic C++ performance issues

Author: Sebastien Binet
Institute: LAL/IN2P3

Date: 2011-10-24

() October 23, 2011 1 / 48

Overview

Constructors and destructors

Temporaries

Cost of virtual functions

Cost of exceptions

If and when to inline functions

Standard library containers

Templates

() October 23, 2011 2 / 48

Common vocabulary - goal

C++ performance has many aspects
I execution speed
I code size
I data size
I memory footprint at run-time
I time and space consumed by the edit/compile/link cycle

C++ is a large language with many features, idioms and constructs
I constructors/destructors, exceptions, templates, late-binding,

overloading, RAII, ...
I knowing (or having a rough idea of) the cost of these features is

important for building a (re-)usable efficient application
F model of time and space overheads of various C++ language features

() October 23, 2011 3 / 48

Classes and inheritance

C++ supports object-oriented programming

involves (possibly deep) inheritance hierarchies of classes

operations performed on classes and class hierarchies

space and time overheads of using classes instead of structs ?

() October 23, 2011 4 / 48

Representation overhead

C++ class with no virtual function
I no space overhead wrt a good old C struct
I WYSIWYG
I non-virtual functions do NOT take any space in an object
I ditto for static data
I ditto for static function

struct C

{

int i;

int j;

int k;

};

class Cxx

{ public:

int i;

int j;

int k;

};

() October 23, 2011 5 / 48

Representation overhead

class Polymorphic

{

virtual void f1();

virtual void f2();

int i;

int j;

int k;

};

a polymorphic class (with at least one virtual function)
I per-object overhead of 1 pointer (vptr)
I per-class overhead of a virtual function table

F 1 or 2 words per virtual function
I per-class overhead of a type information object (RTTI)

F O(10) bytes
F name string (identifying the class)
F couple of words of more infos
F couple of words for each base class

() October 23, 2011 6 / 48

Basic classes operations

cost of calling non-virtual, non-static, non-inline member function

compared to calling a freestanding function with one extra pointer

basic fct call timings

non-virtual

px->f(1) 0.016

g(ps,1) 0.016

non-virtual

x.g(1) 0.016

g(&s,1) 0.016

static fct mbr

X::h(1) 0.013

h(1) 0.013

() October 23, 2011 7 / 48

Virtual functions

calling a virtual function

calling a function through a pointer stored in an array

virtual fct call timings

virtual

px->f(1) 0.019

x.f(1) 0.016

ptr-to-fct

p[1](ps,1) 0.016

p[1](&s,1) 0.018

() October 23, 2011 8 / 48

Virtual functions of class templates

new C++ support structures (vtbl) for each specialization

pure replication of code at the instruction level

workarounds
I use non-template helper functions
I factor out non-parametric functionalities into a non-templated base

class

void foo_helper_fct(...);

template<class T> class Foo

{...};

class Base { void dostuff(); };

template<class T> class Derived : public Base

{...};

() October 23, 2011 9 / 48

Inlining

calling a function has a cost
for simple functions, it may be pure overhead
inlining: directly copy callee’s body at call site

timings

non-inline

px->g(1) 0.016

x.g(1) 0.016

inline

px->k(1) 0.006

x.k(1) 0.005

macro

K(ps,1) 0.005

K(&s,1) 0.005
() October 23, 2011 10 / 48

Multiple inheritance

more complicated binary layout of instances

for each call, need to adjust the this pointer to get the right
substructure

I caller applies an offset to this from the vtbl
I or use a thunk: man-in-the-middle fragment of code

timings

SI, non-virtual px->g(1) 0.016

Base1, non-virtual pc->g(1) 0.016

Base2, non-virtual pc->gg(1) 0.017

SI, virtual px->f(1) 0.019

Base1, virtual pa->f(1) 0.019

Base2, virtual pa->ff(1) 0.024

() October 23, 2011 11 / 48

Virtual base classes

additional overhead wrt simple multiple inheritance
I position of base class subobject not known at compile time
I needs one additional indirection

timings

SI, non-virtual px->g(1) 0.016

VBC, non-virtual pd->gg(1) 0.021

SI, virtual px->f(1) 0.019

VBC, virtual pa->f(1) 0.025

() October 23, 2011 12 / 48

Exception handling

systematic and robust way to cope with errors

traditional alternatives
I returning error codes
I setting error states indicators (errno)
I calling error handling functions
I escaping into error handling code using longjmp
I passing along a pointer to a state object w/ each call

double f1(int a) { return 1.0 / a; }

double f2(int a) { return 2.0 / a; }

double f3(int a) { return 3.0 / a; }

// no error handling

double g(int x, int y, int z)

{ return f1(x) + f2(y) + f3(z); }

() October 23, 2011 13 / 48

Exception handling

with error handling

int error_state = 0;

double f1(int a) {

if (a <= 0) {

error_state = 42;

return 0;

}

return 1.0 / a;

}

double g(...) {

double xx = f1(x);

if (error_state) {...}

...

return xx+yy+zz;

}

with EH

struct Err {...};

double f1(int a) {

if (a <= 0)

throw Error(42);

return 1.0 / a;

}

double g(...) {

try {

return f1(x)+f2(y)

+f3(z);

} catch (Err& err) {

... }

}
() October 23, 2011 14 / 48

Exception handling

3 sources of overhead
I data and code associated with try blocks
I data and code associated with the normal execution of additional fcts
I data and code associated with throw expressions

implementation issues
I context setup of try blocks for associated catch clauses
I catch clause needs some kind of type identification
I clean-up of handled exceptions (memory mgt)
I ctors/dtors of non-trivial objects
I ...

2 main implementation techniques
I the ’code’ approach
I the ’table’ approach

both need some kind of RTTI (thus code/data increase)

() October 23, 2011 15 / 48

Exception handling

the ’code’ approach
I dynamically maintain auxiliary data structures

F to manage execution contexts
F to track the list of objects to be unwound (in case an exception

occured)

I associated stack and run-time costs can be significant
I even when no exception is thrown, bookkeeping is performed

the ’table’ approach (g++)
I read-only tables are generated

F to determine the current execution context
F to locate catch clauses
F to track the list of objects to be unwound

I all bookkeeping is pre-computed
I no run-time cost if no exception is thrown (zero cost overhead for

normal execution path)

() October 23, 2011 16 / 48

Templates

template overheads
I for each new specialization, generation of a new instantiation of code
I can lead to unexpectedly large amount of code and data

F EH, vtbl, ...

I canonical experiment:
F instantiate 100 std::list<T*> for some fixed T type
F instantiate 1 std::list<T*> for 100 T different types
F measure programs’ size

I optimization:
F recognize that all different specializations project onto the same

generated machine code
F can be done by the compiler
F or by a clever STL implementation
F ie: implement (under the hood) all std::list<T*> in terms of void*

I compilation time

() October 23, 2011 17 / 48

Templates vs inheritance

templates are usually more runtime efficiency friendly

deep inheritance trees incur overhead:
I ctors/dtors
I pointer indirection / virtual functions

() October 23, 2011 18 / 48

Programmer directed optimizations

usual disclaimer:

don’t do it:
I early (performance) optimization is the root of all evil
I spend that time on unit tests (make sure the code is right),

documentation and new features

think twice before applying performance any optimization tips

make it thrice

in the following:

a few rules of thumb

cover usual gotchas

() October 23, 2011 19 / 48

Constructors & Destructors

C++ creates instances of classes with ctors
I allocate memory
I initialize fields

... and cleans-up/relinquishes resources with dtors

/* in good old C */ | // in C++

{ | {

struct S s; | S s;

S_init(&s); | // compute s...

/* compute s... */ | }

S_cleanup(&s);

}

in an ideal world: no overhead introduced by ctor/dtor
in practice:

I overhead because of inheritance
I overhead because of composition

overhead: perform computations which may be rarely needed
() October 23, 2011 20 / 48

Object construction

in ctors prefer to use initializers
I no need to do the work twice

UsuallyOk::UsuallyOk(...) : m_1(42), m_2(str) {...}

UsuallyBad::UsuallyBad(...)

{ m_1 = ...; m_2 = str; }

define variables as close to use-site than possible

define variables when ready to initialize (no ctor+assign)

X x1 = 42; X x2; x2 = 42;

passing arguments to a function by value is...
I cheap for built-ins
I potentially expensive for class types
I prefer passing by const-ref or address

void f(const std::string&);

void g(const T*);

() October 23, 2011 21 / 48

Implicit conversions & temporaries

Calling a function with the ’wrong’ arg.’s type implies type conversion

may require work at run-time

void f1(double);

f1(7.0); // no conversion but copy

f1(7); // conversion: f1(double(7));

void f2(const double&);

f2(7.0); // no conversion

f2(7); // const double tmp =7; f2(tmp);

void f3(std::string); std::string s = "foo";

f3(s); // no conversion but copy

f3("bar"); // f3(std::string("bar"))

void f4(const std::string&);

f4(s); // no conversion, no copy

f4("f"); // const std::string tmp("f"); f4(tmp);

() October 23, 2011 22 / 48

Explicit constructors

consider the class definition:

class Rational

{

friend Rational operator+(const Rational&,

const Rational&);

public:

Rational(int a=0, int b=1) : num(a), den(b) {}

private:

int num; // Numerator

int den; // Denominator

};

() October 23, 2011 23 / 48

Explicit constructors

and the following snippet:

Rational r;

// ...

r = 100;

no assignment operator with int so the above will be “translated” to:

Rational tmp(100);

r.operator=(tmp);

tmp.~Rational();

usually a good idea to define ctors which can be called with one
argument, as explicit:

explicit Rational(int a=0, int b=1) : num(a), den(b) {}

also good to overload operator=(T)

() October 23, 2011 24 / 48

Default constructors

class X

{

A a;

B b;

virtual void fct();

};

class Y : public X

{

C c;

D d;

};

class Z : public Y

{

E e;

F f;

public:

Z() {}

};

Z z;

compiler-generated default constructors are inline

substantial (!) amount of machine code can be inserted each time a Z

is constructed...

() October 23, 2011 25 / 48

Temporary objects

probably the most acute problem wrt performance and efficiency.

preventing creation of temporaries benefits
I run-time speed

F creating temporaries takes CPU cycles
F destroying them, too !

I memory footprint

understand how and when compilers generate temporary objects
I initializing objects
I passing parameters to functions
I returning values from functions

() October 23, 2011 26 / 48

Temporaries & initialization

quick example:

{

std::string s1 = "Hello";

std::string s2 = "World";

std::string s3;

s3 = s1 + s2; // s3 is now: "HelloWorld"

}

where the last statement is equivalent to:

{

std::string _temp;

operator+(_temp, s1, s2); // pass _temp by reference

s3.std::string::operator=(_temp); // assign _temp to s3

_temp.std::string::~string(); // destroy _temp

}

on top of that, the string concatenation function may itself create
temporaries.

() October 23, 2011 27 / 48

Temporaries, loops and type mismatch

what’s wrong with that code (short of being midly useful) ?

Complex operator+(const Complex& rhs,

const Complex& lhs);

Complex a, b;

for (int i=0; i<100; ++i) a = i*b + 1.0;

temporary generated to represent the complex 1+0j

lift the constant expression out of the loop

Complex one(1.0);

for (int i=0; i<100; ++i) a = i*b + one;

a clever optimizer might do it for you (YMMV)

() October 23, 2011 28 / 48

Eliminate temporaries with [some-op]=()

the following snippet generates 3 temporaries:

std::string s1,s2,s3,s4;

std::string s5 = s1 + s2 + s3 + s4;

the following does not:

std::string s5 = s1;

s5 += s2;

s5 += s3;

s5 += s4;

() October 23, 2011 29 / 48

Pass by value

avoid writing APIs which use this pattern

void f(T t) { /* do something with t*/ }

{

T t;

f(t);

}

// is equivalent to:

{

T t;

T _temp;

_temp.T::T(t); // copy construct _temp from t

f(_temp); // pass _temp by reference

_temp.T::~T(); // destroy _temp

}

() October 23, 2011 30 / 48

Return by value

another source of temporaries is function return value:

std::string fct()

{

std::string s;

... // compute ’s’

return s;

}

// the following snippet:

{

std::string p;

// ...

p = fct();

}

// is equivalent to: (pseudo-code)

{

std::string p;

// ...

std::string _temp;

// pass _temp by reference

fct(_temp);

// assign _temp to p

p.std::string::operator=(_temp);

// destroy _temp

_temp.std::string::~string();

}

() October 23, 2011 31 / 48

Return value - corollary

so we don’t like (performance-wise) functions which return objects

class T

{

public:

T operator++(int i); // foo++

T operator++(); // ++foo

...

};

prefer prefix over postfix increment operator

for (std::vector<T>::iterator

it = vec.begin(),

end= vec.end();

it != end; ++it) { // <-- and NOT: it++

//...

}

() October 23, 2011 32 / 48

Return value optimization (RVO)

one way to side-step inefficiency of return by value: write ’C-like’
APIs:

T fct();

T t;

//...

t = fct();

void compute_t(T& t);

T t;

compute_t(t);

another way is to enable the compiler to apply RVO...

() October 23, 2011 33 / 48

RVO

class Complex {

public:

Complex(double re=0., double im=0.);

double re, im;

};

Complex operator+(const Complex& a, const Complex& b) {

Complex res;

res.re = a.re + b.re;

res.im = a.im + b.im;

return res;

}

Complex c1,c2,c3;

c3 = c1 + c2;

() October 23, 2011 34 / 48

RVO

without any optimization, the emitted (pseudo)code would look like:

Complex _tmp;

_add_complex(_tmp, c1, c2);

c3.operator=(_tmp);

_tmp.~Complex();

void _add_complex(Complex &_tmp,

const Complex &a, const Complex &b) {

Complex ret;

//... as previously

_tmp.operator=(ret);

ret.~Complex();

return;

}

how to remove all these temporaries and their associated c/dtors ?

() October 23, 2011 35 / 48

RVO

rewrite the add function to remove the local named temporary

use an unnamed temporary to help the compiler:

Complex operator+(const Complex &a, const Complex &b) {

double re = a.re + b.re;

double im = a.im + b.im;

return Complex(re, im);

}

note that complicated functions with multiple return statements are
harder to elect for RVO

RVO is not mandatory
I done at the discretion of the compiler
I inspection of generated code + trial&error

() October 23, 2011 36 / 48

inlining basics

replaces a function call with a verbatim copy of the function at
call-site

I kind of like a C-macro

works around the overhead of calling functions.

2 ways to express intent of inlining a function

class FourMom {

float m_px, m_py, m_pz, m_ene;

public:

// implicit inlining:

// definition provided w/ declaration

float px() const { return m_px; }

void set_px(float px);

};

// use inline keyword

inline void FourMom::set_px(float px) { m_px = px; }

() October 23, 2011 37 / 48

inlining basics

at source-code level, inlined functions are used like any other function:

int main(int, char**)

{

FourMom mom;

mom.set_px(20.*GeV);

std::cout << "px: " << mom.px()

<< std::endl;

return 0;

}

code expanded inline at call site:
I call site must know the definition of the function
I compilation coupling
I potential compilation time increase

() October 23, 2011 38 / 48

cross-call optimizations

int main(int, char**)

{

FourMom mom;

mom.set_px(20.*GeV);

std::cout << "px: " << mom.px()

<< std::endl;

return 0;

}

inlining is most nutritious with cross-call optimizations

() October 23, 2011 39 / 48

cross-call optimizations

int main(int, char**)

{

FourMom mom;

mom.m_px = 20.*GeV;

std::cout << "px: " << mom.m_px

<< std::endl;

return 0;

}

inlining is most nutritious with cross-call optimizations

() October 23, 2011 40 / 48

cross-call optimizations

int main(int, char**)

{

FourMom mom;

mom.m_px = 20.*GeV;

std::cout << "px: " << mom.m_px

<< std::endl;

return 0;

}

inlining is most nutritious with cross-call optimizations

int main(int, char**)

{

std::cout << "px: " << 20.

<< std::endl;

return 0;

}

() October 23, 2011 41 / 48

why not inline

code expansion
I disk space
I memory size
I cache size, increase cache fault
I code size

compilation coupling

recursive methods

() October 23, 2011 42 / 48

Standard Template Library (STL)

a powerful combination of containers and generic algorithms

performance guarantees of the asymptotic complexity of containers
and algorithms:

I an approximation of algorithm performance - big-O notation
I O(N), O(N*N),...

choosing the right container is based on the type of frequent and
critical operations applied on it

I various trade-offs
I no one true best container
I only best compromise for task at hand

containers manage storage space for their elements

provide methods to access elements, directly or through iterators

() October 23, 2011 43 / 48

std::vector

a sequence container

organize data into a strictly linear arrangement

contiguous storage

good locality of reference

allow O(1) random access

inefficient at removing/inserting elements other than at the end: O(N)

do not forget to give adequate hint size before push_back calls:

std::vector<T> v;

v.reserve(n);

v.push_back(make_t());

prefer to use container::empty() instead of
container::size()==0

() October 23, 2011 44 / 48

std::list

a sequence container

doubly linked list

efficient insertion and removal anywhere in the container: O(1)

efficient at moving (blocks of) elements within the container or
between containers (O(1))

() October 23, 2011 45 / 48

associative containers

std::map<K,V,Cmp,Alloc>
I unique key-values
I elements follow a strict weak ordering (at all time)
I efficient access of elements by key (logarithmic complexity)
I logarithmic complexity for insertion

std::tr1::unordered_map<K,V,Hash,Pred,Alloc> (hash map)
I unique key-values
I constant time insertion/access

() October 23, 2011 46 / 48

better than STL ?

STL is generic

if you know something about the problem’s domain, you can squeeze
some perfs wrt STL.

e.g. compare strings of a known format “aaaa1” and “aaaa2”

the STL is an uncommon combination of abstraction, flexibility and
efficiency (curtosy of generic programming)

depending on your application, some containers are more efficient
than others for a particular usage pattern

unless you know something about the problem domain that STL
doesn’t, it is unlikely you will beat STL by a wide enough margin

outperforming STL is still possible in some specific scenarios

() October 23, 2011 47 / 48

Concluding remarks

C++ is a wide and powerful language, difficult to really master entirely

be wary of using fancy constructs and features
I when in doubt, choose simplicity

pay attention to compiler warnings

strive for warning-free builds

innocently looking C++ code can be treacheous

profile before sprinkling your code with optimizations

remember the code the C++ compiler automatically generates for you

remember the trade-offs of inlining

Remember, with great power, comes great responsibility

() October 23, 2011 48 / 48

