
24 October, 2011 ESC11 - Peter Elmer, Princeton University 1

Introduction

Concepts of Performance and
Efficiency

24 October, 2011 ESC11 - Peter Elmer, Princeton University 2

School Goals

In this presentation I am going to give a basic
introduction to the topic of performance/efficiency
for scientific applications and give you an overview
of the topics you will see over the course of
the week.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 3

Performance
 What do we mean by the software performance and efficiency of “large

scale scientific applications”? Different points of view:
 An individual scientific user may be interested in:

 Time to completion (from “start” to results)
 Computing center admins, experiments/projects, grid providers, etc. may

be more interested in:
 Total throughput (for all users of the system)
 Efficiency in the use of the resources (Is it all used? Or sitting idle?)
 Total resource utilization by a user, experiment, etc.
 The scalability of the throughput as new resources are added

 A funding agency (the “money man”) may be interested in:
 The total cost of the system (or cost/year)
 The predictability of the cost evolution of the system
 Efficiency in the use of the resources (Is it all used? Or sitting idle?)

First lets explore the basic model of the last 10-15 years....

24 October, 2011 ESC11 - Peter Elmer, Princeton University 4

Single user

Buy a new computer (CPU, memory, disk, etc.), in general each new generation
of machines usually brought a performance gain, even when simply rerunning
existing binary programs.

Make modifications to the program to make it run faster.

A single user working on a desktop workstation had until a few years ago a couple
of simple options to improve their “time to completion”:

The machine perhaps sat idle when the user was away (on vacation, etc.), so
the throughput wasn't being maximized, but at this scale it isn't critical.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 5

High Energy Physics (HEP)
HEP computing is embarrassingly
(data) parallel: N independent
instances of an application can be
started as simple unix processes,
each one processing an independent
sets of events. No real
communication is needed between
the separate processes.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 6

Clusters (and Grids)
Any individual user can reduce
time to completion by using
a larger set of machines, if
the application is parallelizable

The cluster administrator can
improve throughput by adding
new or additional machines or
improve time to completion for
individual users by giving them
access to more of the common
resources

The throughput of the system
is however not necessarily
improved because users
parallelize their applications

Both the throughput and the time
to completion can be improved if changes
can be made to make the application run faster

24 October, 2011 ESC11 - Peter Elmer, Princeton University 7

Trivial Example
 Suppose that a particular Geant4 simulation takes 1 minute

per event, plus a (one-time) job startup time of 5 minutes
 A single user wants to simulate 10000 total events
 In a single job, the “time to completion” is 10005 minutes and

the total resource utilization (counting towards total
throughput) is 10005 CPU-minutes

 If the job is run as 10000 separate jobs, each doing 1 event,
the user could (in principle) have a “time to completion” of 6
minutes, but the total resource utilization is now 60000 CPU-
minutes

 Similar considerations apply to the “serial” and “parallelizable”
portions of a particular application or workflow

24 October, 2011 ESC11 - Peter Elmer, Princeton University 8

Grids (and Clouds)

CMS

Atlas Pooling of ever
larger sets of
resources provides
individuals with even
better opportunities
to reduce their total
“time to completion”.

However the global
accounting for what
one has used is still
there, to satisfy the
needs of admins,
experiments/projects
and the money man.

Thus there is still a
need to focus on
improvements to the
actual application.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 9

Scaling

!

When using large sets of resources
one can also run into scaling limits
where adding more or newer resources
doesn't result in more throughput.

An example of an “external” constraint
is I/O: access to disk or other storage,
databases, etc. If this is insufficient, the
use of CPU resources (for example)
may be very inefficient. Note that such
problems can be due to both inadequate
hardware as well as poorly behaving
Applications.

Scaling issues can also come out from
difficulties in making a given application
sufficiently parallelizable to exploit the
resources available.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 10

Lessons – circa 2005
 Much of the performance (both in “time to completion” and

“throughput”) boiled down to the art of improvements in the
single application performance.

 “Time to completion” could be improved by trivial parallelism
and the use of ever larger pools of shared resources (i.e. large
clusters and the grid).

 As the HEP problem, at least, is “embarrassingly parallel” and
no particular effort needs to be spent on achieving parallelism.
In fact “parallelism” wasn't even a term one often needed to
use.

 Careful attention to I/O with storage systems is needed to
insure scaling and single point scaling bottlenecks (e.g.
databases, catalogs) should be avoided or carefully managed.

 These things are still true today, but from ~2005 an additional
fly in the ointment appeared....

24 October, 2011 ESC11 - Peter Elmer, Princeton University 11

The fly in the ointment – after 2005
 Around 2005 there was a significant change in the evolution

of commodity proceessors, as will be described in detail in
the talks later this morning.

 Prior to that we could expect that each subsequent
generation of processor would be faster than the previous
generation, primarily due to clock frequency scaling.

 However starting around 2005, technical limits (in particular
power) led to a plateau in the increase in clock frequencies.

 Since Moore's Law continues unabated, the CPU producers
have turned instead to exploiting the increasing number of
transistors by providing multiple “cores” within a single CPU

 Instead of getting a processor that is twice is fast at the same
price, for example, one effectively gets two processor units.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 12

Hardware evolution
(Through ~2005)

Machines purchased 3
years ago
Each box has 1GB
and perf = P

Machines purchased 1.5
years ago
Each box has 1GB
and perf = 2.0 P

Machines purchased
this year
Each box has 1GB
and perf = 4.0 P

24 October, 2011 ESC11 - Peter Elmer, Princeton University 13

Hardware evolution
(Treating cores as independent processors)

Machines purchased 3
years ago
Each box has 1GB
and each core perf = P

Machines purchased 1.5
years ago (dual cores)
Each box has 2GB
and each core perf ~ P

Machines purchased
this year (quad cores)
Each box has 4GB
and each core perf ~ P

24 October, 2011 ESC11 - Peter Elmer, Princeton University 14

Expectations (with multi/manycore)
 While treating multicore CPU's as if they are simply N

independent processors has worked for small numbers of
cores, it is expected that this will not scale forever.

 Memory needs are not amortized with each generation of
purchases, but instead increase as ~ Moore's Law

 A number of scaling issues arise from an exponentially
increasing number of active (and independent) proceses in the
systems: I/O, access to services (databases), job and file
management

 Performance within a single multicore CPU may not scale
perfectly due to memory hierarchy

 Conclusion: the trivial “event” data parallelism is not enough,
we need to find other types of parallelism in our applications in
order to exploit multi/manycore CPU's.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 15

Lessons – after 2005
 Much of the performance (both in “time to completion” and

“throughput”) boiled down to the art of improvements in the
single application performance.

 “Time to completion” could be improved by trivial parallelism
and the use of ever larger pools of shared resources (i.e. large
clusters and the grid).

 Even though HEP problem, at least, is “embarrassingly
parallel” on events, that is probably insufficient to fully exploit
multi/manycore CPU's. Additional parallelism must be found
and exploited to avoid scaling issues and reduced efficiency.

 Careful attention to I/O with storage systems is needed to
insure scaling and single point scaling bottlenecks (e.g.
databases, catalogs) should be avoided or carefully managed.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 16

The Art of Application Performance
 What kinds of things are relevant to improve the performance

of a single application?

 A number of ingredients affect the realizable performance:
 Hardware – CPU, Memory subystem, I/O
 Software – Application code, compiler and operating system
 Algorithms – Knuth/CS, Scientific, Parallelisation

24 October, 2011 ESC11 - Peter Elmer, Princeton University 17

Amdahl's Law
 The improvement in the total time due to improvements to one

part is limited by the amount that part is used
 A similar restatement is: when parallelizing one part of an

application, you can never do better than the remaining serial
part.

Time

Serial
 Part

Parallelizable
 Part

24 October, 2011 ESC11 - Peter Elmer, Princeton University 18

High Level Algorithm choices
 Often the things which most directly determine the

performance are simple choices made as to what the program
is actually doing, i.e. the high level algorithms.

 For example, if you are running a simulation: are you
simulating only the relevant things? Is the level of detail
greater than what is needed or needed for all parts of the
simulation?

 Such high level considerations can often result in large factors
in the time to completion (or resources needed) for any given
task.

 It is important to ask such questions near the beginning, and
confirm via profiling that the main performance drivers have
been identified, before rolling up one's sleeves and diving into
the more technical performance tuning.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 19

Profiling tools
 You probably want to make sure that the time you dedicate to

working on software performance and efficiency will help
 To do this you should be making decisions based on

performance profiles for your application(s)
 In this school you will use several example profiling tools:

 Igprof – simply statistical profiler and memory profiler
 Valgrind – general memory debugger/profile
 A variety of Linux system tools
 Perfmon – CPU performance counters

 In your experiment, institute or project you may use others
 The important thing is to use profilers as a guide to where the

problems/opportunities are, don't guess!

24 October, 2011 ESC11 - Peter Elmer, Princeton University 20

Hardware – CPU architecture/Memory
 We of course compute on actual physical “computers” and

thus their evolving capabilities are the most basic component
of the achievable performance of some application

 Moore's Law – number of transitors available per unit cost
doubles every 1.5 years

 A number of factors conspired to make it possible for many
years (1990's through ~2005) to take applications (often
without recompiling!) and run them on the next generation of
hardware and see a performance gain out-of-the-box.

 This easy ride is over, however. Without changes many
applications will not run faster on newer hardware (and many
at times actually run slower).

 In addition to “multicore”, exploiting fully CPU's is a challenge.
 Understanding the basics of how to best exploit the hardware

going forward will be the topic of several lectures this week.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 21

Operating Systems
 For the most part Linux is the primary operating system

considered in these presentations
 The capabilities of the operating system and its runtime

environment have can have an important impact on
performance, for example:
 Virtual Memory subsystem – using or abusing this can affect

performance
 Shared libraries and/or other details of “code packaging”

can have an impact on performance
 Math libraries – by default you may be taking the math

library (libm) from the system, unless you've made a
conscious decision to do otherwise

24 October, 2011 ESC11 - Peter Elmer, Princeton University 22

Compilers
 The compiler is clearly one of the most important tools for

achieving optimum code performance
 Unless we want to hand-code everything in assembly, we

rely on it to take our code, written in a high-level language
like C++, and produce the fastest code possible.

 Usually we also want it to accomplish that in the shortest
time possible, to use as little memory as possible doing it, to
produce the smallest code possible, etc.

 Note however that compilers cannot always find and
optimize things that a human might immediately recognize.
In particular compilers are (usually) conservative and will
choose code that is guaranteed to be correct over code that
might be wrong in some cases.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 23

GNU compiler collection (gcc)
 The workhorse open source compiler, used by most of us,

most of the time, these days...
 Front ends for C, C++, Fortran (Ada, Objective-C(++),

Java and others)
 Back ends for x86, x86_64 (Alpha, ARM, ia-64, PowerPC,

Sparc and many others)
 Most software today is easily configured to build with gcc
 Although most of work on linux/x86(_64) today, or at most

MacOSX/x86_64, at least in non-DAQ environments, the
wide availability of gcc for different OS/CPU combinations
once eased porting C/C++ from one to another.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 24

GCC version timeline/features
 GCC 3.4.0 - 18 Apr, 2004

 GCC 3.4.6 - 06 Mar, 2006 (~RHEL4/SL4 default)

 GCC 4.0.0 - 20 Apr, 2005

 GCC 4.1.0 - 28 Feb, 2006
 GCC 4.1.2 - 13 Feb, 2007 (~RHEL5/SL5 default)

 GCC 4.3.0 - 05 Mar, 2008
 GCC 4.3.2 - 27 Aug, 2008
 GCC 4.3.4 - 04 Aug, 2009

 GCC 4.4.0 - 21 Apr, 2009
 GCC 4.4.1 - 22 Jul, 2009

 GCC 4.5.0 - 14 Apr, 2010
 GCC 4.5.1 31 Jul, 2010

 GCC 4.6.0 – 25 Mar, 2011
 GCC 4.6.1 – 27 Jun, 2011

Tree SSA

C++0x
OpenMP 2.5

OpenMP 3.0

Autovectorization

DSO Symbol
 Visibility

New Register
 Allocator

New framework for
loop optimizations

Various banner improvements in recent gcc4.x compiler versions.
(See Release notes for full list, though!)

Link Time
Optimizer

24 October, 2011 ESC11 - Peter Elmer, Princeton University 25

LLVM/Clang Compiler
 Recent open source compiler project, aiming to build a set

of modular compiler components
 The initial versions replace the optimizer and code

generation of gcc, but still reuse the gcc front-end/parser
(compatible compiler options!)

 A separate project (Clang) aims to replace gcc front-end
for C/C++/Objective-C. As of version 2.8, this claims to be
“feature complete” relative to ISO C++ 1998 and 2003.

 Targets both static compilation as well as just-in-time (JIT)
compilation

 Sponsorship (in particular) by Apple

24 October, 2011 ESC11 - Peter Elmer, Princeton University 26

Intel Compiler (icc)
 Intel's showcase Fortran/C/C++ compiler(s)
 Arguably focused on demonstrating the best possible

performance to be obtained from their processors
 Independent compiler (language syntax, code quality)
 Generates code for all of the Intel processors, plus in

principle other x86/x86_64 compatible, i.e. AMD, processors
 Available for Linux/MacOSX/Windows, proprietary license
 The default behaviour for floating point may or may not be

what is desired (see presentations about floating point this
week)

24 October, 2011 ESC11 - Peter Elmer, Princeton University 27

C++ programming
 In the lectures at this school you will see primarily C++ as it is

the most common programming language used for the
performance-intensive scientific applications, especially in
HEP. (Perhaps a bit of C will make an appearance, too.)

 C++ can be an extraordinarily powerful language, but it is also
a very complex language.

 Single lines of seemingly innocuous code can hide major
performance problems when compiled into machine code and
executed.

 Understanding the “gotchas” of C++ programming is an
important ingredient to writing performant applications (if you
are using C++, of course)

 A fun google game: try searching for “I hate XXX” for various
values of XXX...

24 October, 2011 ESC11 - Peter Elmer, Princeton University 28

Benchmarks
 It should be clear that in a complex environment (CPU,

compiler, OS) the best benchmark you can make is simply to
run the actual application, with real inputs and configured to
make real outputs.

 At times “kernels” can be useful, i.e. small portions of code
extracted from a real application after being identified by
profiling as performance critical.

 Artificial benchmarks (e.g. specXXX) are less interesting for
performance work, except perhaps as means of exploring and
understanding the capabilities of processors.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 29

Lecturers
 Sverre Jarp (CERN Openlab)
 Sebastien Binet (LAL) - LHC/Atlas
 Vincenzo Vagnoni (Bologna) – LHC/LHCb
 Peter Elmer (Princeton) - LHC/CMS
 Lassi Tuura (FNAL) - LHC/CMS
 Vincenzo Innocente (CERN) - LHC/CMS
 Niko Neufeld (CERN)
 Tim Mattson (Intel)
 Andrea Arcangeli (Redhat)
 Alessandro Lonardo (Rome)

24 October, 2011 ESC11 - Peter Elmer, Princeton University 30

Monday
After these two introductory talks today, the first focus is on the hardware
and in particular modern processors. We will you a short overview
of tools you will use this week and then dive into the first basic
topic for scientific computing, floating point computation. There will be
an evening lecture on GPU's for scientific computing.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 31

Tuesday
On Tuesday we will cover the other two basic issues, memory management
and use and efficient C++ programming. There will be an evening lecture
on high throughput DAQ systems:

24 October, 2011 ESC11 - Peter Elmer, Princeton University 32

Wednesday
Wednesday is devoted to exercises related to the basic topics covered in the
first two days. This will be the opportunity to explore the topics more in depth
relative to the smaller exercises seen during the lectures themselves.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 33

Thursday

On Thursday we switch to more advanced and special topics: parallel
programming and I/O:

24 October, 2011 ESC11 - Peter Elmer, Princeton University 34

Friday
On Friday we will continue with parallel programming in the morning (and
an evening lecture on linux on multicore), plus the special topic of software
design and development models.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 35

By the end of the week...
 … you should have a good working knowledge of performance

issues related to:
 The evolution of CPU architectures
 The memory subsystem
 C++ programming
 Vectorization and floating point
 Efficient I/O
 Parallelization

 And you will have seen various related tools and done
exercises for all of these topics.

 It is a very large number of topics for a few days, but you
should be well positioned after this week to understand and
improve the performance of your own applications.

24 October, 2011 ESC11 - Peter Elmer, Princeton University 36

Saturday

And of course at the end we would like feedback on whether we have succeeded
plus there is a final examination to allow you to test your knowledge...

24 October, 2011 ESC11 - Peter Elmer, Princeton University 37

Code lifetimes
 Large scientific projects by definition will extend over many

years and sometimes decades
 Technologies change over time and in any regime where

underlying laws are exponential (i.e. Moore's Law), the one
thing you can guarantee is that new challenges will arise...

24 October, 2011 ESC11 - Peter Elmer, Princeton University 38

Code evolution - BaBar

24 October, 2011 ESC11 - Peter Elmer, Princeton University 39

Code evolution - BaBar

24 October, 2011 ESC11 - Peter Elmer, Princeton University 40

Code Evolution – CDF Run II

24 October, 2011 ESC11 - Peter Elmer, Princeton University 41

Code Evolution – CDF Run II

24 October, 2011 ESC11 - Peter Elmer, Princeton University 42

Conclusions

Have a productive week!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

