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Preliminaries: part 1

 Disclosures

The views expressed in this tutorial are my own. 

– I am not speaking for my employer.

– I am not speaking for the OpenMP ARB

 I take my tutorials VERY seriously:

Help me improve … let me know if you have ideas 
on how to improve this content. 
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Preliminaries: Part 2

 Our plan ... Active learning!

We will mix short lectures with short exercises.

 Please follow these simple rules

Do the exercises I assign and then change things 
around and experiment.

– Embrace active learning!

Don’t cheat:  Do Not look at the solutions before 
you complete an exercise … even if you get really 
frustrated.
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Our Plan: Day 1

Topic Exercise concepts

Intro to parallel 
programming

No exercise Basic concepts and the jargon 
of parallel programming

OMP Intro Install sw, 
hello_world

Parallel regions

Creating threads Pi_spmd_simple Parallel,  default data 
environment, runtime library 
calls

Synchronization Pi_spmd_final False sharing, critical, atomic

Parallel loops Pi_loop,   Matmul For, schedule, reduction, 

The rest of 
worksharing and 
synchronization

No exercise Single, sections, master, 
runtime libraries, environment 
variables, synchronization, 
etc.

Data Environment Molecular Dyn. Data environment details,  
software optimization

Break

Lunch
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Our Plan: day 2

Topic Exercise concepts

Review material from 
yesterday

No exercise Make sure parallel, 
worksharing and the data 
environment are understood 
by all.

OpenMP tasks Linked list (tasks) 
Linked list (no tasks)

OpenMP tasks

Memory model Producer-Consumer The need for flush

A survey of parallel 
programming 
models

No exercise Cilk, MPI, OpenCL, TBB, etc.
Break
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Outline

 Intro to parallel programming

 An Introduction to OpenMP

 Creating threads

 Basic Synchronization

 Parallel loops (intro to worksharing)

 The rest of worksharing and synchronization

 Data Environment

 OpenMP tasks

 The OpenMP Memory model

 A survey of parallel programming models



Agenda – parallel theory 
 How to sound like a parallel programmer

 An overly brief look at parallel architecture

 Understanding design patterns for parallel 
programming
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The foundation of parallel computing

 Concurrency: when multiple tasks are active and able to 
make progress (in principle) at the same time.
 Concurrency is a general idea – even on single processor 

systems inside the OS.

 Two ways to use concurrency
 Parallel computing – when concurrency is used to make a job run 

faster.  
 The problem being solved “makes sense”  as a serial program … for 

example, A parallel molecular dynamics program. 

 Concurrent computing – when the concurrency is used to 
manage availability or reduce latencies for multiple agents.   
 The “job” in question is fundamentally concurrent … there is no 

reasonable serial analog … for example,  a print server.
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An Example of Parallel Computing

Load Data Compute T1 Consume Results Compute TN

…

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent  tasks on one processor

Ideally Cut 

runtime by ~1/P 

(Note: Parallelism 

only speeds-up the 

concurrent part)

…

Timepar(P) = Tload + (N/P)*Ttask + Tconsume

Compute N independent  tasks with P processors

Load Data

Compute T1

Compute TN

Consume Results 



Talking about performance

 Speedup: the increased 
performance from running on P 
processors.  
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 Perfect Linear Speedup:
happens when no parallel 
overhead and algorithm is 
100% parallel.  

 Super-linear Speedup: typically 
due to cache effects … i.e. as P 
grows, aggregate cache size 
grows so more of the problem 
fits in cache 



Amdahl’s Law
 What is the maximum speedup you can expect from a parallel program?

 Approximate the runtime as a part that can be sped up with additional 
processors and a part that is fundamentally serial. 
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 If you had an unlimited number of processors:

 If serial_fraction is a and parallel_fraction is (1- a) then the speedup is: 
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Implications of Amdahl’s Law
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Granularity

 Granularity is the ratio of compute time to 
communication time
 Hardware: raw compute rate vs. communication rate or 

memory latency

 Software: Consider time spent in local computations vs. 
time spent updating state between computing agents.
 Single channel Seismic codes and rendering programs are 

coarse grained.

 Unstructured mesh codes tend to be fine grained

Key rule: Granularity demanded by software must be met 
or bettered by hardware.  Fine grained applications do not 

run well on coarse grained systems.



Load Balancing
 Load Balancing:  The distribution of  work among the 

processors of a parallel computer:
 static load balancing: distribution deterministic and setup at 

program startup.

 dynamic load balancing: distribution changes as the calculation 
proceeds.

Overall performance depends on the processor 

that takes the longest time.

Top Performance requires that all processors 

are equally loaded.
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Fooling the masses with performance results 
on parallel computers
 Compare 32 bit results on the machine you like (e.g. a GPU) to 64 bit 

results on the machine you “don’t like” (e.g. a CPU).

 Present results for a highly tuned inner kernel and then suggest the 
results reflect performance for the full application.

 Use aggressive tuning (assembly code) on the system you like.

 Report speedups comparing a great parallel algorithm to a poor serial 
algorithm (or call the parallel algorithm running on one core your serial 
algorithm).

 Exclude memory movement costs … warm your caches and load local 
memory before starting the clock (a common trick by people pushing 
GPGPU programming and accelerators).

Inspired by David Bailey’s classic paper “Twelve Ways to Fool the Masses when giving performance results on parallel 

computers”, Supercomputing Review, Aug 1991, pp. 54-55. http://crd.lbl.gov/~dhbailey/dhbpapers/twelve-ways.pdf
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recap

 So now you know how to sound like a parallel 
programmer.

 Essential issues are:
 Finding enough concurrency to meet desired scalability targets.

 Balance the load carefully since the slowest core determines the 
overall runtime.

 Minimize serial fraction in your problem and keep parallel 
overhad low … or Amdahl’s law will get you.

 Learn how to use performance results to mislead people (a useful 
skill when annual review time comes around).

 Parallel software is the key challenge
 Find concurrency

 Structure your algorithm to exploit concurrency

 Express concurrency in source code

 Run on a parallel computer. 



Agenda – parallel theory 
 How to sound like a parallel programmer

 An overly brief look at parallel architecture

 Understanding design patterns for parallel 
programming
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How do we connect cores together?

 A symmetric multiprocessor (SMP) consists of a collection 
of processors that share a single address space:

 Multiple processing elements.

 A shared address space with “equal-time” access for each processor.

 The OS treats every processor the same

Proc3Proc2Proc1 ProcN

Shared Address Space
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How realistic is this model?

 Some of the old 
supercomputer 
mainframes followed this 
model, 

 But as soon as we added caches to 
CPUs, the SMP model fell apart.

 Caches … all memory is equal, but 
some memory is more equal than 
others.

A CPU with lots of cache …
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NUMA issues on a Multicore Machine 
2-socket Clovertown Dell PE1950

2 threads, 2 cores, 

sharing a cache

2 thrds, 2 cores, 1 sock, 

no shared cache

A single 

quad-core 

chip is a 

NUMA 

machine!

Source Dieter an Mey, IWOMP’07 face to face meeting

2 thrds, 2 cores, 2 sockets

$ $

Xeon® 5300  

Processor block 

diagram

Third party names are the property of their owners.
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Put these into a larger system and it 
only get’s worse

Proc0 Proc1

Memory
(0)

Proc2 Proc3

Memory
(1 )

NODE 0 NODE 1

• Memory access takes longer if memory is remote. 

• For example, on an SGI Altix:
•Proc0 to local memory (0) 207 cycles

•Proc0 to remote memory (1) 409 cycles

Source: J. Marathe & F. Mueller, Gelato ICE, April 2007.

• Consider a typical NUMA computer:
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Surviving NUMA: initializing data  

 Keep data close to where it 
is needed:

 Bind threads to cores.

 Iniitialize the data so its 
near the core that will 
use it.

 Test problem: Jacobi from 
www.openmp.org, with 
2000x2000 matrix.

 Hardware: a 4-socket 
machine with dualcore 
Opteron processors with 
processor binding enabled.

0

500

1000

1500

2000

2500

3000

1 2 thrd 4 thred 8 thred

1st touch

master init

MFLOPS vs. number of threads

Third party names are the property of their owners.

Source Dieter an Mey, IWOMP’07 face to face meeting



Modern GPGPU Architecture

• Generic many core GPU
• Less space devoted to 

control logic and caches
• Large register files to 

support multiple thread 
contexts

• Low latency hardware 
managed thread switching

• Large number of ALU per 
“core” with small user 
managed cache per core 

• Memory bus optimized for  
bandwidth

On Board System Memory 

150 GBPS

150 GBPS
Sim

p
le A

LU
s

CacheSource: Advanced topics in heterogeneous 
computing with OpenCL, SC10 Benedict R. Gaster



AMD GPU Hardware Architecture

• AMD 5870 – Cypress

• 20  SIMD engines

• 16 SIMD units per core

• 5 multiply-adds per 
functional unit (VLIW 
processing)

• 2.72 Teraflops Single 
Precision

• 544 Gigaflops Double 
Precision

Source:  Introductory OpenCL 
SAAHPC2010, Benedict R. Gaster



Nvidia GPUs - Fermi Architecture 

• GTX 480 - Compute 2.0 
capability

– 15 cores or Streaming 
Multiprocessors (SMs)

– Each SM features 32 CUDA 
processors

– 480  CUDA processors

• Global memory  with ECC

Source: NVIDIA’s Next 
Generation CUDA 
Architecture Whitepaper

Register File 32768 x 32bit

Warp Scheduler 

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Dispatch Unit

Instruction Cache

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

LDST

SFU

SFU

SFU

SFU

Interconnect Memory

L1 Cache / 64kB Shared Memory

L2 Cache

Warp Scheduler 

Dispatch Unit

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Core Core

Dispatch Port

Operand Collector

FP Unit Int Unit

Result Queue

CUDA Core



Hardware view of SCC

• 48 P54C cores, 6x4 mesh, 2 cores per tile

• 45 nm, 1.3 B transistors, 25 to 125 W

• 16 to 64 GB DRAM using 4 DDR3 MCs

• 2 Tb/s bisection bandwidth @ 2 Ghz

R = router,  MC = Memory Controller,  

P54C = second generation Pentium® core, CC = cache cntrl.

Technology
45nm 
Process

Transistors
Die: 1.3B 
Tile: 48M

Die Area 567.1mm2

P54C
16KB L1-D$
16KB L1-I$

256KB 
unified 

L2$

Mesh
I/F

To 
Router

P54C
16KB L1-D$
16KB L1-I$

256KB 
unified 

L2$

Message 
Passing
Buffer 
16 KB

RR

Tile Tile

Tile

Tile Tile

Tile

Tile

Tile

R

Tile

Tile

R

Tile

Tile

R

Tile Tile

Tile

R

Tile

R

to PCI

Tile

Tile

R

Tile

Tile

R

Tile Tile

Tile

R

Tile

R

R RR RR R

RRR RR R

RMC

MC MC

MC
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Moving “beyond the single board”

 Parallel computers are classified in terms of streams of 
data and streams of instructions:

 MIMD Computers: Multiple streams of instructions acting on multiple 
streams of data.

 SIMD Computers: A single stream of instructions acting on multiple 
streams of data.

 Parallel Hardware comes in many forms:
 On chip: Instruction level parallelism (e.g. IPF)

 Multiprocessor: Multiple processors inside a single computer.

 Multicomputer: networks of computers working together.
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Hardware for parallel computing

Symmetric 

Multiprocessor 

(SMP)

Non-uniform 

Memory 

Architecture  

(NUMA)

Massively 

Parallel 

Processor  

(MPP)

Cluster

Single Instruction 

Multiple Data (SIMD)*

*SIMD has failed as a way to organize large scale computers with multiple processors. 

It has succeeded, however, as a mechanism to increase instruction level parallelism in 

modern microprocessors (MMX, SSE, AVX, etc.).

Multiple Instruction 

Multiple Data (MIMD)

Parallel Computers

Shared Address Space Disjoint Address Space

Distributed 

Computing
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Examples: SIMD MPP
Thinking machines 

CM-2: The Classic 

Symmetric SIMD 

supercomputer (mid-

80’s):

Description: Up to 64K bit-

serial processing elements.

Strength: Supports 

deterministic programming 

models … single thread of 

control for ease of 

understanding.

Weakness: Poor  floating point 

performance.  Programming 

model was not general 

enough.  TMC struggled 

throughout the 90’s and filed 

for bankruptcy in 1994.
Third party names are the property of their owners.

“… we want to build a computer that 

will be proud of us”, Danny Hillis



30

Examples: Symmetric Multi-Processor

Cray 2: The Classic 

Symmetric Multi-

Processor (mid-80’s):

Description: multiple Vector 

processors connected to a 

custom high speed memory.  

500 MFLOP processors.

Strength: Simple memory 

architecture makes this the 

easiest supercomputer in 

history to program.  Truly an 

SMP (no caches).

Weakness: Poor  scalability. 

VERY expensive due to the 

fact that everything (memory 

to processors) were custom.

Third party names are the property of their owners.
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Examples: Massively Parallel Processors

Paragon MP: The Classic 

MPP (early-90’s):

Description: 3 i860 CPU’s (a vector 

inspired microprocessor)  

connected by a custom mesh 

interconnect.  40 MFLOP 

processors*.

Strength: A massively scalable 

machine (3000+ processors).  The 

lights were pretty, but useful 

helping to show bottlenecks in the 

code.

Weakness: Hard to program (NX 

message passing and later MPI). 

Expensive due to low volume 

microprocessor, custom back-

plane and packaging.

Third party names are the property of their owners.
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Examples: Cluster

NCSA’s Itanium cluster: 

(early-00’s):

Description: 160 dual IPF nodes 

connected by a Myracom network. 

3.2 GFLOP per processors.

Strength: Highly scalable, nothing 

custom so hardware costs are 

reasonable.

Weakness: Hard to program ( MPI).  

Lack of application software. Cluster 

middleware is fragile and still 

evolving. 

Third party names are the property of their owners.
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Examples: distributed computing (e.g. GRID)

Intel’s Cure@home 

program.

Description: Thousands of home 

PC’s donated to solve important 

problems.

Strength: Highly scalable – the 

ultimiate costs performance since it 

uses compute-cycles that would 

otherwise be wasted.

Weakness: Only coarse grained 

embarrassingly parallel algorithms 

can be used.   Security constraints 

difficult to enforce. 

Target Protein

Third party names are the property of their owners.



Agenda – parallel theory 
 How to sound like a parallel programmer

 An overly brief look at parallel architecture

 Understanding design patterns for parallel 
programming
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Getting started with parallel algorithms

• Concurrency is a general concept 

– … multiple activities that can occur and make progress 

at the same time.

• A parallel algorithm is any algorithm that uses 

concurrency to solve a problem of a given size in 

less time

• Scientific programmers have been working with 

parallelism since the early 80’s

– Hence we have almost 30 years of experience to draw 

on to help us understand parallel algorithms.
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A formal discipline of design
• Christopher Alexander’s approach to (civil) 

architecture:
– A design pattern “describes a problem which 

occurs over and over again in our environment, 
and then describes the core of the solution to that 
problem, in such a way that you can use this 
solution a million times over, without ever doing it 
the same way twice.“ Page x, A Pattern 
Language, Christopher Alexander

• A pattern language is an organized  way of 
tackling an architectural problem using 
patterns

• The gang of 4 used patterns to bring order 
to the chaos of object oriented design.

• The book “over night” turned object 
oriented design from “an art” to a 
systematic design discipline.
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Can Design patterns bring order to parallel 

programming?

• The book “Patterns for Parallel 
Programming” contains a 
design pattern language to 
capture how experts think 
about parallel programming.

• It is an attempt to be to parallel 
programming what the GOF 
book was to object oriented 
programming.

• The patterns were mined from 
established practice in 
scientific computing … hence 
its a useful set of patterns but 
not complete (e.g. its weak on 
graph algorithms).
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Basic approach from the book

• Identify the concurrency in your problem:

– Find the tasks, data dependencies and any other 

constraints.

• Develop a strategy to exploit this concurrency:

– Which elements of the parallel design will be used to 

organize your approach to exploiting concurrency.

• Identify and use the right algorithm pattern to turn 

your strategy into the design of a specific algorithm.

• Choose the supporting patterns to move your design 

into source code.

– This step is heavily influenced by the target platform
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Original Problem Tasks, shared and local data

Find Concurrency

Supporting 

patterns 

Corresponding source code

Program SPMD_Emb_Par ()

{

TYPE *tmp, *func();

global_array Data(TYPE);

global_array Res(TYPE);

int N = get_num_procs(); 

int id = get_proc_id();

if (id==0) setup_problem(N,DATA);

for (int I= 0; I<N;I=I+Num){

tmp = func(I);

Res.accumulate( tmp);

}

}

Program SPMD_Emb_Par ()

{

TYPE *tmp, *func();

global_array Data(TYPE);

global_array Res(TYPE);

int N = get_num_procs(); 

int id = get_proc_id();

if (id==0) setup_problem(N,DATA);

for (int I= 0; I<N;I=I+Num){

tmp = func(I);

Res.accumulate( tmp);

}

}

Program SPMD_Emb_Par ()

{

TYPE *tmp, *func();

global_array Data(TYPE);

global_array Res(TYPE);

int N = get_num_procs(); 

int id = get_proc_id();

if (id==0) setup_problem(N,DATA);

for (int I= 0; I<N;I=I+Num){

tmp = func(I);

Res.accumulate( tmp);

}

}

Program SPMD_Emb_Par ()

{

TYPE *tmp, *func();

global_array Data(TYPE);

global_array Res(TYPE);

int Num = get_num_procs(); 

int id = get_proc_id();

if (id==0) setup_problem(N, Data);

for (int I= ID; I<N;I=I+Num){

tmp = func(I, Data);

Res.accumulate( tmp);

}

}

Units of execution + new shared data 

for extracted dependencies

Concurrency in Parallel software:
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Strategies for exploiting concurrency

• Given the results from your “finding concurrency” 

analysis, there are many different ways to turn 

them into a parallel algorithm.

• In most cases, one of three Distinct Strategies are 

used

– Agenda parallelism: The collection of tasks that are to 

be computed.

– Result parallelism: Updates to the data.

– Specialist parallelism: The flow of data between a fixed 

set of tasks.

Ref: N. Carriero and D. Gelernter, How to Write Parallel Programs: A First Course, 1990.
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The Algorithm Design Patterns

Result 

Parallelism

Geometric

Decomposition

Task 

Parallelism

Divide and 

Conquer

Recursive 

Data

Specialist 

Parallelism

Pipeline Event Based 

Coordination

Agenda 

Parallelism

Data 

Parallelism

Embarrassingly 

Parallel

Separable 

Dependencies

Start with a basic concurrency decomposition

• A problem decomposed into a set of tasks

• A data decomposition aligned with the set of tasks … designed to minimize 

interactions between tasks and make concurrent updates to data safe.

• Dependencies and ordering constraints between groups of tasks.



42

Implementation strategy Patterns
(Supporting Structures)

Patterns that support Implementing Algorithm strategies as code.

Program Structure

Task-queue

SPMD

Loop Parallelism

Fork/Join

Data Structures

Shared Data

Shared Queue

Partitioned Array

Index-map

Actors

Partitioned Graph

Shared Map



Our approach for today … 
 Once you understand the basic patterns, you can 

implement them in any language … the parallel 
programming language we use just doesn‟t matter 
that much

 We will use OpenMP to explore these patterns and 
help you become “expert” parallel programmers.

 Why OpenMP?

 Its easy to learn … you quickly move form learning 
constructs to writing code.

 Its everywhere … OK, its everywhere as long as you focus 
on shared memory machines.
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Outline

 Intro to parallel programming

 An Introduction to OpenMP

 Creating threads

 Basic Synchronization

 Parallel loops (intro to worksharing)

 The rest of worksharing and synchronization

 Data Environment

 OpenMP tasks

 The OpenMP Memory model

 A survey of parallel programming models

/storage/software/tim/omp.tar
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OpenMP* Overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL  REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok) 

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP  SINGLE PRIVATE(X)

C$OMP SECTIONS 

C$OMP MASTER
C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP  BARRIER

OpenMP:  An API for Writing Multithreaded 
Applications

A set of compiler directives and library 
routines  for parallel application programmers

Greatly simplifies writing multi-threaded (MT) 
programs in Fortran, C and C++

Standardizes last 20 years of SMP practice

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.
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OpenMP pre-history

 OpenMP based upon SMP directive 
standardization efforts PCF and aborted ANSI 
X3H5 – late 80’s

Nobody fully implemented either standard

Only a couple of partial implementations

 Vendors considered proprietary API’s to be a 
competitive feature: 

Every vendor had proprietary directives sets

Even KAP, a “portable” multi-platform parallelization 
tool used different directives on each platform

PCF – Parallel computing forum        KAP – parallelization tool from KAI.
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History of OpenMP

SGI

Cray

Merged, 

needed 

commonality 

across 

products

KAI ISV - needed 

larger market

was tired of 

recoding for 

SMPs.  Urged 

vendors to 

standardize.

ASCI

Wrote a 

rough draft 

straw man 

SMP API

DEC

IBM

Intel

HP

Other vendors 

invited to join

1997
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OpenMP Release History

OpenMP

Fortran 1.1

OpenMP

C/C++ 1.0

OpenMP

Fortran 2.0

OpenMP

C/C++ 2.0

1998

20001999

2002

OpenMP

Fortran 1.0

1997

OpenMP

2.5

2005

A single 

specification 

for Fortran, C 

and C++

OpenMP

3.0

Tasking, 

other new 

features

2008

OpenMP

3.1

2011

A few more 

features and 

bug fixes



49

OpenMP Basic Defs: Solution Stack

OpenMP Runtime library

OS/system support for shared memory and threading

Directives,

Compiler
OpenMP library

Environment 

variables

Application

End User

Shared Address Space

Proc3Proc2Proc1 ProcN
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OpenMP core syntax

 Most of the constructs in OpenMP are compiler 
directives.

#pragma omp construct [clause [clause]…]

Example

#pragma omp parallel num_threads(4)

 Function prototypes and types in the file:  

#include <omp.h>

 Most OpenMP* constructs apply to a 
“structured block”.

Structured block: a block of one or more statements 
with one point of entry at the top and one point of 
exit at the bottom. 

It’s OK to have an exit() within the structured block.
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Exercise 1, Part A: Hello world
Verify that your environment works
 Write a program that prints “hello world”.

int main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}



52

Exercise 1, Part B: Hello world
Verify that your OpenMP environment works
 Write a multithreaded program that prints “hello world”.

void main()

{

int ID = 0;

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

#pragma omp parallel

{

}

#include “omp.h”

Switches for compiling and linking

gcc -fopenmp gcc

pgcc -mp  pgi

icl /Qopenmp intel(windows)

icc –openmp intel (linux)
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Exercise 1: Solution
A multi-threaded “Hello world” program

 Write a multithreaded program where each 
thread prints “hello world”.

#include “omp.h”

void main()

{

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default 

number of threads

Runtime library function to 

return a thread ID.End of the Parallel region
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OpenMP Overview:
How do threads interact?

 OpenMP is a multi-threading, shared address 
model.

– Threads communicate by sharing variables.

 Unintended sharing of data causes race 
conditions:

– race condition: when the program’s outcome 
changes as the threads are scheduled differently.

 To control race conditions:

– Use synchronization to protect data conflicts.

 Synchronization is expensive so:

– Change how data is accessed to minimize the need 
for synchronization. 
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 A survey of parallel programming models
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OpenMP Programming Model: 

Fork-Join Parallelism: 

Master thread spawns a team of threads as needed.

Parallelism added incrementally until performance goals 
are met: i.e. the sequential program evolves into a 
parallel program.

Parallel Regions
Master 

Thread 

in red

A Nested 

Parallel 

region

Sequential Parts
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Thread Creation: Parallel Regions

 You create threads in OpenMP* with the parallel 
construct.

 For example, To create a 4 thread Parallel region:

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 

executes  a 

copy of the 

code within 

the 

structured 

block

Runtime function to 

request a certain 

number of threads

Runtime function 

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Thread Creation: Parallel Regions

 You create threads in OpenMP* with the parallel 
construct.

 For example, To create a 4 thread Parallel region:

double A[1000];

#pragma omp parallel num_threads(4)

{

int ID = omp_get_thread_num();

pooh(ID,A);

}

 Each thread calls pooh(ID,A) for ID = 0 to 3

Each thread 

executes  a 

copy of the 

code within 

the 

structured 

block

clause to request a certain 

number of threads

Runtime function 

returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Thread Creation: Parallel Regions example

 Each thread executes the 
same code redundantly.

double A[1000];

omp_set_num_threads(4);

#pragma omp parallel

{

int ID = omp_get_thread_num();

pooh(ID, A);

}

printf(“all done\n”);omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single 

copy of A 

is shared 

between all 

threads.

Threads wait  here  for all threads to 

finish before proceeding (i.e. a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board
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Exercises 2 to 4:  
Numerical Integration


4.0

(1+x2)
dx = 

0

1

 F(xi)x  
i = 0

N

Mathematically, we know that:

We can approximate the 

integral as a sum of 

rectangles:

Where each rectangle has 

width x and height F(xi) at 

the middle of interval i.

4.0

2.0

1.0

X
0.0
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Exercises 2 to 4: Serial PI Program

static long num_steps = 100000;

double step;

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}
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Exercise 2

 Create a parallel version of the pi program 
using a parallel construct.

 Pay close attention to shared versus private 
variables.

 In addition to a parallel construct, you will need 
the runtime library routines

int omp_get_num_threads();

int omp_get_thread_num();

double omp_get_wtime();

Time in Seconds since a fixed 

point in the past

Thread ID or rank

Number of threads in the 

team
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Discussed 

later

Synchronization

 High level synchronization:

– critical

– atomic

– barrier

– ordered

 Low level synchronization

– flush

– locks (both simple and nested)

Synchronization is used 

to impose order 

constraints and to 

protect access to shared 

data
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Synchronization: critical  

 Mutual exclusion: Only one thread at a time 
can enter a critical region.

float res;

#pragma omp parallel

{     float B;   int i, id, nthrds;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for(i=id;i<niters;i+nthrds){

B =  big_job(i);

#pragma omp critical

consume (B, res);

}

}

Threads wait 

their turn –

only one at a 

time calls 

consume()
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Synchronization: Atomic

 Atomic provides mutual exclusion but only 
applies to the update of a memory location (the 
update of X in the following example)

#pragma omp parallel

{ 

double tmp, B;

B =  DOIT();

#pragma omp atomic 

X += big_ugly(B);

}

#pragma omp parallel

{ 

double tmp, B;

B =  DOIT();

tmp = big_ugly(B);

#pragma omp atomic 

X +=  tmp;

}

Atomic only protects the 

read/update of X
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Exercise 3

 In exercise 2, you probably used an array to 
create space for each thread to store its partial 
sum.

 If array elements happen to share a cache line, 
this leads to false sharing.

– Non-shared data in the same cache line so each 
update invalidates the cache line … in essence 
“sloshing independent data” back and forth 
between threads.

 Modify your “pi program” from exercise 2 to 
avoid false sharing due to the sum array.
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Discussed later

SPMD vs. worksharing

 A parallel construct by itself creates an SPMD 
or  “Single Program Multiple Data” program … 
i.e., each thread redundantly executes the 
same code.

 How do you split up pathways through the 
code between threads within a team?

This is called worksharing

– Loop construct

– Sections/section constructs

– Single construct

– Task construct …. Available in OpenMP 3.0
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The loop worksharing Constructs

 The loop worksharing construct splits up loop 
iterations among the threads in a team

#pragma omp parallel

{

#pragma omp for 

for (I=0;I<N;I++){

NEAT_STUFF(I);

}

}

Loop construct 

name:

•C/C++: for

•Fortran: do

The variable I is made “private” to each 

thread  by default.  You could do this 

explicitly with a “private(I)” clause
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Loop worksharing Constructs
A motivating example

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1)iend = N;

for(i=istart;I<iend;i++)   { a[i] = a[i] + b[i];}

}

#pragma omp parallel 

#pragma omp for   

for(i=0;I<N;i++)   { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel 

region

OpenMP parallel 

region and a 

worksharing for 

construct
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loop worksharing constructs:
The schedule clause

 The schedule clause affects how loop iterations are mapped onto 
threads

 schedule(static [,chunk])

– Deal-out blocks of iterations of size “chunk” to each thread.

 schedule(dynamic[,chunk])

– Each thread grabs “chunk” iterations off a queue until all iterations 
have been handled.

 schedule(guided[,chunk])

– Threads dynamically grab blocks of iterations. The size of the block 
starts large and shrinks down to size “chunk” as the calculation 
proceeds.

 schedule(runtime)

– Schedule  and chunk size taken from the OMP_SCHEDULE 
environment variable (or the runtime library).

 schedule(auto)

– Schedule is left up to the runtime to choose (does not have to be any 
of the above).
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Schedule Clause When To Use

STATIC Pre-determined and 
predictable by the 
programmer

DYNAMIC Unpredictable, highly 
variable work per 
iteration

GUIDED Special case of dynamic 
to reduce scheduling 
overhead

AUTO When the runtime can 
“learn” from previous 
executions of the same 
loop

loop work-sharing constructs:
The schedule clause

Least work at 

runtime : 

scheduling 

done at 

compile-time

Most work at 

runtime : 

complex 

scheduling 

logic used at 

run-time
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Combined parallel/worksharing construct

 OpenMP shortcut: Put the “parallel” and the 
worksharing directive on the same line

double  res[MAX];  int i;

#pragma omp parallel 

{

#pragma omp for

for (i=0;i< MAX; i++) {

res[i] = huge();

} 

}

These are equivalent 

double  res[MAX];  int i;

#pragma omp parallel for

for (i=0;i< MAX; i++) {

res[i] = huge();

} 
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Working with loops
 Basic approach

Find compute intensive loops

Make the loop iterations independent .. So they can 
safely execute in any order without loop-carried 
dependencies

Place the appropriate OpenMP directive and test

int i, j, A[MAX];

j = 5;

for (i=0;i< MAX; i++) {

j +=2;

A[i] = big(j); 

} 

int i,  A[MAX];

#pragma omp parallel for

for (i=0;i< MAX; i++) {

int j = 5 + 2*(i+1);

A[i] = big(j); 

} 
Remove loop 

carried 

dependence

Note: loop index 

“i” is private by 

default
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Nested loops

 For perfectly nested rectangular loops we can 
parallelize multiple loops in the nest with the collapse 
clause: 

 Will form a single loop of length NxM and then 
parallelize that.

 Useful if N is O(no. of threads) so parallelizing the 
outer loop may not have good load balance

#pragma omp parallel for collapse(2)

for (int i=0; i<N; i++) {

for (int j=0; j<M; j++) {

.....

} 

}

Number of 

loops to be 

parallelized, 

counting from 

the outside
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Reduction

 We are combining values into a single accumulation 
variable (ave) … there is a true dependence between 
loop iterations that can’t be trivially removed

 This is a very common situation … it is called a 
“reduction”.

 Support for reduction operations is included in most 
parallel programming environments.

double  ave=0.0, A[MAX];    int i;

for (i=0;i< MAX; i++) {

ave + = A[i];

} 

ave = ave/MAX; 

 How do we handle this case?
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Reduction
 OpenMP reduction clause:   

reduction (op : list)

 Inside a parallel or a work-sharing construct:

– A local copy of each list variable is made and initialized 
depending on the “op” (e.g. 0 for “+”).

– Updates occur on the local copy. 

– Local copies are reduced into a single value and 
combined with the original global value.

 The variables in “list” must be shared in the enclosing 
parallel region.  

double  ave=0.0, A[MAX];    int i;

#pragma omp parallel for reduction (+:ave)

for (i=0;i< MAX; i++) {

ave + = A[i];

} 

ave = ave/MAX; 
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OpenMP: Reduction operands/initial-values

 Many different associative operands can be used with reduction:

 Initial values are the ones that make sense mathematically.

Operator Initial value

+ 0

* 1

- 0

C/C++ only

Operator Initial value

& ~0

| 0

^ 0

&& 1

|| 0

Fortran Only

Operator Initial value

.AND. .true.

.OR. .false.

.NEQV. .false.

.IEOR. 0

.IOR. 0

.IAND. All bits on

.EQV. .true.

MIN* Largest pos. number

MAX* Most neg. number
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Exercise 4: Pi with loops

 Go back to the serial pi program and parallelize 
it with a loop construct

 Your goal is to minimize the number of 
changes made to the serial program.
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Exercise 5: Optimizing loops

 Parallelize the matrix multiplication program in 
the file matmul.c

 Can you optimize the program by playing with 
how the loops are scheduled?
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Synchronization: Barrier

 Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)

{

id=omp_get_thread_num();

A[id] = big_calc1(id);

#pragma omp barrier

#pragma omp for 

for(i=0;i<N;i++){C[i]=big_calc3(i,A);}

#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C,  i); }

A[id] = big_calc4(id);

}
implicit barrier at the end 

of a parallel region

implicit barrier at the end of a 

for worksharing construct

no implicit barrier 

due to nowait



84

Master Construct

 The master construct denotes a structured 
block that is only executed by the master thread. 

 The other threads just skip it (no 
synchronization is implied).

#pragma omp parallel  

{

do_many_things();

#pragma omp master

{     exchange_boundaries();   }

#pragma omp  barrier

do_many_other_things();

}
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Sections worksharing Construct
 The Sections worksharing construct gives a 

different structured block to each thread.  

#pragma omp parallel

{

#pragma omp sections

{

#pragma omp section

X_calculation();

#pragma omp section

y_calculation();

#pragma omp section

z_calculation();

}

}

By default, there is a barrier at the end of the “omp 

sections”.  Use the “nowait” clause to turn off the barrier.
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Single worksharing Construct

 The single construct denotes a block of code that is 
executed by only one thread (not necessarily the 
master thread).

 A barrier is implied at the end of the single block (can 
remove the barrier with a nowait clause).

#pragma omp parallel  

{

do_many_things();

#pragma omp single

{     exchange_boundaries();   }

do_many_other_things();

}
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Synchronization: ordered

 The ordered region executes in the sequential 
order.

#pragma omp parallel private (tmp)

#pragma omp for ordered reduction(+:res)

for (I=0;I<N;I++){

tmp = NEAT_STUFF(I);

#pragma ordered

res += consum(tmp);

}
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Synchronization: Lock routines

 Simple Lock routines:

A simple lock is available if it is unset.

– omp_init_lock(), omp_set_lock(), 
omp_unset_lock(), omp_test_lock(), 
omp_destroy_lock()

 Nested Locks

A nested lock is available if it is unset or if it is set but 
owned by the thread executing the nested lock function

– omp_init_nest_lock(), omp_set_nest_lock(), 
omp_unset_nest_lock(), omp_test_nest_lock(), 
omp_destroy_nest_lock()

Note: a thread always accesses the most recent copy of the 

lock, so you don’t need to use a flush on the lock variable.

A lock implies a 

memory fence (a 

“flush”) of all 

thread visible 

variables
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Synchronization: Simple Locks
 Protect resources with locks.

omp_lock_t lck;

omp_init_lock(&lck);

#pragma omp parallel private (tmp, id)

{

id = omp_get_thread_num();

tmp = do_lots_of_work(id);

omp_set_lock(&lck);

printf(“%d %d”, id, tmp);

omp_unset_lock(&lck);

}  

omp_destroy_lock(&lck);

Wait here for 

your turn.

Release the lock 

so the next thread 

gets a turn.

Free-up storage when done.
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Runtime Library routines

 Runtime environment routines:

– Modify/Check the number of threads

– omp_set_num_threads(), omp_get_num_threads(), 
omp_get_thread_num(), omp_get_max_threads()

– Are we in an active parallel region?

– omp_in_parallel()

– Do you want the system to dynamically vary the number of 
threads from one parallel construct to another?

– omp_set_dynamic,   omp_get_dynamic();

– How many processors in the system?

– omp_num_procs()

…plus a few less commonly used routines.
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Runtime Library routines
 To use a known, fixed number of threads in a program, 

(1) tell the system that you don’t want dynamic adjustment of 
the number of threads,  (2) set the number of threads, then (3) 
save the number you got.

#include <omp.h>

void main()

{   int num_threads;

omp_set_dynamic( 0 );

omp_set_num_threads( omp_num_procs() );

#pragma omp parallel

{     int id=omp_get_thread_num();

#pragma omp single   

num_threads = omp_get_num_threads();

do_lots_of_stuff(id); 

}

}

Protect this op since Memory 

stores are not atomic

Request as many threads as 

you have processors.

Disable dynamic adjustment of the 

number of threads.

Even in this case, the system may give you fewer threads 

than requested.  If the precise # of threads matters, test 

for it and respond accordingly.
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Environment Variables

 Set the default number of threads to use.

– OMP_NUM_THREADS int_literal

 Control how “omp for schedule(RUNTIME)” 
loop iterations are scheduled.

– OMP_SCHEDULE “schedule[, chunk_size]”

… Plus several less commonly used environment variables.
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Data environment:
Default storage attributes

 Shared Memory programming model: 
– Most variables are shared by default

 Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE 

variables

– C: File scope variables, static

– Both: dynamically allocated memory (ALLOCATE, malloc, new)

 But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called 

from parallel regions are PRIVATE

– Automatic variables within a statement block are PRIVATE.
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double A[10];

int main() {

int index[10];

#pragma omp parallel  

work(index);

printf(“%d\n”, index[0]);

}

extern double A[10];

void work(int *index) {

double temp[10];

static int count;

...

}

Data sharing: Examples

temp

A, index, count

temp temp

A, index, count

A, index and count are 

shared by all threads.

temp is local to each 

thread
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Data sharing:
Changing storage attributes

 One can selectively change storage attributes for 
constructs using the following clauses*

– SHARED

– PRIVATE

– FIRSTPRIVATE

 The final value of a private inside a parallel loop can be 
transmitted to the shared variable outside the loop with:

– LASTPRIVATE

 The default attributes can be overridden with:

– DEFAULT (PRIVATE | SHARED | NONE)

All the  clauses on this page 

apply to the OpenMP construct 

NOT to the entire region.

All data clauses apply to parallel constructs and worksharing constructs except 

“shared” which only applies to parallel constructs.

DEFAULT(PRIVATE) is Fortran only
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Data Sharing: Private Clause

void wrong() {

int tmp = 0;

#pragma omp parallel for private(tmp)

for (int j = 0; j < 1000; ++j) 

tmp += j;

printf(“%d\n”, tmp);

}

 private(var)  creates a new local copy of var for each thread.

– The value of the private copies is uninitialized

– The value of the original variable is unchanged after the region

tmp was not 

initialized

tmp is 0 here
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Data Sharing: Private Clause
When is the original variable valid?

int tmp;

void danger() {

tmp = 0;

#pragma omp parallel private(tmp)

work();

printf(“%d\n”, tmp);

}

 The original variable’s value is unspecified if it is 
referenced outside of the construct

– Implementations may reference the original variable or a 
copy ….. a dangerous programming practice!

extern int tmp;

void work() {

tmp = 5;

}

unspecified which 

copy of tmptmp has unspecified 

value



Firstprivate Clause

 Variables initialized from shared variable

 C++ objects are copy-constructed

99

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

if ((i%2)==0) incr++;
A[i] = incr;

}

Each thread gets its own copy 

of incr with an initial value of 0



Lastprivate Clause

 Variables update shared variable using value 
from last iteration 

 C++ objects are updated as if by assignment

void sq2(int n, double *lastterm)

{
double x; int i;

#pragma omp parllel for lastprivate(x)
for (i = 0; i < n; i++){

x = a[i]*a[i] + b[i]*b[i];
b[i] = sqrt(x);

}
*lastterm = x;

}

100

“x” has the value it held 

for the “last sequential” 

iteration (i.e., for i=(n-1))
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Data Sharing: 
A data environment test
 Consider this example of PRIVATE and FIRSTPRIVATE

 Are A,B,C local to each thread or shared inside the parallel region?

 What are their initial values inside and values after the parallel region?

variables A,B, and C = 1

#pragma omp parallel private(B)  firstprivate(C)

Inside this parallel region ...

 “A” is shared by all threads; equals 1

 “B” and “C” are local to each thread.

– B’s initial value is undefined

– C’s initial value equals  1

Outside this parallel region ...

 The values of “B” and “C” are unspecified if referenced in the 
region but outside the construct.
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Data Sharing: Default Clause

 Note that the default storage attribute is DEFAULT(SHARED) (so 
no need to use it)

 Exception: #pragma omp task

 To change default: DEFAULT(PRIVATE)

 each variable in the construct is made private as if specified in a 
private clause

 mostly saves typing  

 DEFAULT(NONE): no default for variables in static extent. Must 
list storage attribute for each variable in static extent. Good 
programming practice!

Only the Fortran API supports default(private).  

C/C++ only has default(shared) or default(none).
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Data Sharing: Default Clause Example

itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)

np = omp_get_num_threads() 

each = itotal/np

………

C$OMP END PARALLEL

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)

np = omp_get_num_threads() 

each = itotal/np

………

C$OMP END PARALLEL

These two 

code 

fragments are 

equivalent 
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Exercise 6: Mandelbrot set area

 The supplied program (mandel.c) computes the 
area of a Mandelbrot set. 

 The program has been parallelized with 
OpenMP, but we were lazy and didn’t do it 
right.

 Find and fix the errors (hint … the problem is 
with the data environment).
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Exercise 6 (cont.)

 Once you have a working version,  try to 
optimize the program?

Try different schedules on the parallel loop.

Try different mechanisms to support mutual 
exclusion … do the efficiencies change?
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Exercise 7: Molecular dynamics

 The program supplied in the folder “MolDyn” is 
a simple molecular dynamics simulation of the 
melting of solid argon. 

 Computation is dominated by the calculation of 
force pairs in subroutine forces (in forces.c)

 Parallelise this routine using a parallel for 
construct and atomics. Think carefully about 
which variables should be SHARED, PRIVATE 
or REDUCTION variables. 

 Optimize the program (hint: Experiment with 
different schedules kinds).
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Exercise 7 (cont.)

 Once you have a working version, move the 
parallel region out to encompass the iteration 
loop in main.c 

code other than the forces loop must be executed 
by a single thread (or workshared).

how does the data sharing change? 

 The atomics are a bottleneck on most systems. 

This can be avoided by introducing a temporary 
array for the force accumulation, with an extra 
dimension indexed by thread number.

Which thread(s) should do the final accumulation 
into f? 
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Outline

 Intro to parallel programming
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 Basic Synchronization
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 The rest of worksharing and synchronization

 Data Environment

 OpenMP tasks

 The OpenMP Memory model

 A survey of parallel programming models



What are tasks?

 Tasks are independent units of work

 Threads are assigned to perform the 
work of each task

 Tasks may be deferred 

 Tasks may be executed immediately

 The runtime system decides which 
of the above

Tasks are composed of:

– code to execute

– data environment

– internal control variables (ICV)

Serial Parallel



Task Construct – Explicit Task View

 A team of threads is created 
at the omp parallel construct

 A single thread is chosen to 
execute the while loop – lets 
call this thread “L”

 Thread L operates the while 
loop, creates tasks, and 
fetches next pointers

 Each time L crosses the omp
task construct it generates a 
new task and has a thread 
assigned to it

 Each task runs in its own 
thread

 All tasks complete at the 
barrier at the end of the 
parallel region’s single 
construct

#pragma omp parallel

{

#pragma omp single

{  // block 1

node * p = head;

while (p) { //block 2

#pragma omp task private(p)

process(p);

p = p->next;  //block 3

}

}

}



#pragma omp parallel num_threads(8)

// assume 8 threads

{

#pragma omp single private(p)

{

…

while (p) {  

#pragma omp task 

{

processwork(p);

}

p = p->next;

}

}

}

Simple Task Example

A pool of 8 threads is 

created here

One thread gets to 

execute the while loop

The single “while loop” 

thread creates a task for 

each instance of 

processwork()



Why are tasks useful?

#pragma omp parallel

{

#pragma omp single

{ // block 1

node * p = head;

while (p) { //block 2

#pragma omp task

process(p);

p = p->next;  //block 3

}

}

}

Have potential to parallelize irregular patterns and recursive function calls

Block 

1
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Task 1

Block 2

Task 2

Block 2

Task 3

Block 3

Block 3
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im

e

Single 

Threaded

Block 1

Block 3
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When are tasks guaranteed to 
complete

 Tasks are gauranteed to be complete at thread 
barriers:

#pragma omp barrier

 …  or task barriers

#pragma omp taskwait

113



Task Completion Example

#pragma omp parallel

{

#pragma omp task

foo();

#pragma omp barrier

#pragma omp single

{

#pragma omp task

bar();

}

}

Multiple foo tasks 

created here – one for 

each thread

All foo tasks guaranteed 

to be completed  here

One bar task created 

here

bar task guaranteed to 

be completed  here



int fib ( int n )

{

int x,y;

if ( n < 2 ) return n;

#pragma omp task

x = fib(n-1);

#pragma omp task

y = fib(n-2);

#pragma omp taskwait

return x+y

}

Data Scoping with tasks: Fibonacci example. 

n is private in both tasks

What’s wrong here?

Can’t use private variables 

outside of tasks

x is a private variable

y is a private variable



int fib ( int n )

{

int x,y;

if ( n < 2 ) return n;

#pragma omp task shared (x)

x = fib(n-1);

#pragma omp task shared(y)

y = fib(n-2);

#pragma omp taskwait

return x+y

}

Data Scoping with tasks: Fibonacci example. 

n is private in both tasks

What’s wrong here?

x & y are shared 

Good solution 

we need both values to 

compute the sum



List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

for(e=ml->first;e;e=e->next)

#pragma omp task

process(e);

}

Data Scoping with tasks: List Traversal example

What’s wrong here?

Possible data race !

Shared variable e 

updated by multiple tasks



List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single

{

for(e=ml->first;e;e=e->next)

#pragma omp task firstprivate(e)

process(e);

}

Data Scoping with tasks: List Traversal example

Good solution – e is 

firstprivate



List ml; //my_list

Element *e;

#pragma omp parallel

#pragma omp single private(e)

{

for(e=ml->first;e;e=e->next)

#pragma omp task

process(e);

}

Data Scoping with tasks: List Traversal example

Good solution – e is 

private
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Exercise 8: tasks in OpenMP

 Consider the program linked.c

Traverses a linked list computing a sequence of 
Fibonacci numbers at each node.

 Parallelize this program using tasks.
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Exercise 9: linked lists the hard way

 Consider the program linked.c

Traverses a linked list computing a sequence of 
Fibonacci numbers at each node.

 Parallelize this program using constructs 
defined in OpenMP 2.5 (loop worksharing 
constructs … i.e. don’t use OpenMP 3.0 tasks).

 Once you have a correct program, optimize it.
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OpenMP memory model

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

 A memory model is defined in terms of:

Coherence: Behavior of the memory system when a single 
address is accessed by multiple threads.

Consistency: Orderings of reads, writes, or synchronizations 
(RWS) with various addresses and by multiple threads.

 OpenMP supports a shared memory model.

 All threads share an address space, but it can get complicated:
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Source code

Program order

memory

a b
Commit order

private view

thread thread

private view
threadprivatethreadprivatea ab b

Wa Wb  Ra Rb . . . 

OpenMP Memory Model: Basic Terms

compiler

Executable code

Code order

Wb Rb Wa Ra . . . 

RW’s in any 

semantically 

equivalent order
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Consistency: Memory Access Re-ordering

 Re-ordering:

Compiler re-orders program order to the code order

Machine re-orders code order to the memory commit order

 At a given point in time, the “private view” seen by a 
thread may be different from the view in shared 
memory.

 Consistency Models define constraints on the orders of 
Reads (R), Writes (W) and Synchronizations (S) 

… i.e. how do the values “seen” by a thread change as you 

change how ops follow (→) other ops.  

Possibilities include:

– R→R,  W→W,  R→W,   R→S,  S→S,  W→S
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Consistency

 Sequential Consistency:

In a multi-processor, ops (R, W, S) are sequentially 
consistent if:

– They remain in program order for each 
processor.

– They are seen to be in the same overall order by 
each of the other processors.

Program order = code order = commit order

 Relaxed consistency:

Remove some of the ordering constraints for 
memory ops (R, W, S).
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OpenMP and Relaxed Consistency

 OpenMP defines consistency as a variant of 
weak consistency:

S ops must be in sequential order across threads.

Can not reorder S ops with R or W ops on the same 
thread

– Weak consistency guarantees 

S→W,   S→R , R→S, W→S, S→S

 The Synchronization operation relevant to this 
discussion is flush.
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Flush
 Defines a sequence point at which a thread is 

guaranteed to see a consistent view of memory with 
respect to the “flush set”.

 The flush set is:

 “all thread visible variables” for a flush construct without an 
argument list.

a list of variables when the “flush(list)” construct is used.

 The action of Flush is to guarantee that:

– All R,W ops that overlap the flush set and occur prior to the 
flush complete before the flush executes

– All R,W ops that overlap the flush set and occur after the 
flush don’t execute until after the flush.

– Flushes with overlapping flush sets can not be reordered.

Memory ops: R = Read,  W = write, S = synchronization
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Synchronization: flush example

 Flush forces data to be updated in memory so other 
threads see the most recent value

double A;

A = compute();

flush(A);   // flush to memory to make sure other

//  threads can pick up the right value

Note: OpenMP’s flush is analogous to a fence in 

other shared memory API’s.
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What is the Big Deal with Flush?

 Compilers routinely reorder instructions implementing 
a program

This helps better exploit the functional units, keep machine 
busy, hide memory latencies, etc.

 Compiler generally cannot move instructions:

past a barrier

past a flush on all variables

 But it can move them past a flush with a list of 
variables so long as those variables are not accessed

 Keeping track of consistency when flushes are used 
can be confusing … especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different 

threads. It just ensures that a thread’s values are made 

consistent with main memory.
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Pair wise synchronizaion in OpenMP

 OpenMP lacks synchronization constructs that 
work between pairs of threads.

 When this is needed you have to build it 
yourself.

 Pair wise synchronization

Use a shared flag variable

Reader spins waiting for the new flag value

Use flushes to force updates to and from memory



132

Exercise 10: producer consumer

 Parallelize the “prod_cons.c” program.

 This is a well known pattern called the 
producer consumer pattern

One thread produces values that another thread 
consumes.

Often used with a stream of produced values to 
implement “pipeline parallelism”

 The key is to implement pairwise 
synchronization between threads.
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Exercise 10: prod_cons.c

int main()

{

double *A, sum, runtime;     int flag = 0;

A = (double *)malloc(N*sizeof(double));

runtime = omp_get_wtime();

fill_rand(N, A);        // Producer: fill an array of data

sum = Sum_array(N, A);  // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf seconds, The sum is %lf \n",runtime,sum);

}
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a Survey of programming models
 TBB

 MPI

 Mixing MPI and OpenMP

 Pthreads

 Windows 32 threads

 Cilk

 OpenCL
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Intel® Threading Building Blocks (TBB)

 It is a template library for generic programming with C++  

 It provides a high-level abstraction for parallel 
programming

 You specify tasks patterns instead of threads

 Hides low level details of thread management (balances load of logical tasks 

across a set of physical threads)

 Full support for nested parallelism

 It facilitates scalable performance

 Strives for efficient use of cache, and balances load

 Portable across Linux*, Mac OS*, Windows*, and Solaris*

 Can be mixed with native threads and OpenMP

 Open source and licensed versions available

136
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Cilk 
space efficient scheduler

cache-oblivious algorithms

Threaded-C
continuation tasks

task stealing

Languages

Family Tree 
Chare Kernel

small tasks

OpenMP*
fork/join 

tasks
JSR-166
(FJTask)

containers

OpenMP taskqueue
while & recursion

Intel® TBB 1.0

STL
generic 

programming

STAPL
recursive ranges

ECMA .NET*
parallel iteration classes

Libraries

1988

2001

2006

1995

Pragmas

*Other names and brands may be claimed as the property of others

2009 Microsoft® PPL
Intel® TBB 2.2
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Limitations

 TBB is not intended for

 I/O bound processing

Real-time processing

Concurrent algorithms

 General limitations

Direct use only from C++

Distributed memory not supported (target is desktop)

Requires more work than “sprinkling” pragmas
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Intel® TBB 2.2 
Components

Synchronization Primitives
atomic, mutex, recursive_mutex

spin_mutex, spin_rw_mutex
queuing_mutex, queuing_rw_mutex

null_mutex, null_rw_mutex

Generic Parallel Algorithms
parallel_for, parallel_for_each

parallel_reduce
parallel_scan
parallel_do

pipeline
parallel_sort

parallel_invoke

Concurrent Containers
concurrent_hash_map

concurrent_queue
concurrent_bounded_queue

concurrent_vector
Task scheduler

task_group
task

task_scheduler_init
task_scheduler_observer

Memory Allocation
tbb_allocator
zero_allocator

cache_aligned_allocator
scalable_allocator

Threads
tbb_thread

Thread Local Storage
combinable

enumerable_thread_specific
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Task-based Programming

 Tasks are light-weight entities at user-level

TBB parallel algorithms map tasks onto 
threads automatically

Task scheduler manages the thread pool 

 Scheduler is unfair to favor tasks that have been 
most recent in the cache

Oversubscription and undersubscription of 
core resources is prevented by task-stealing 
technique of TBB scheduler

140
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Generic Programming

 Best known example is C++ STL

 Enables distribution of broadly-useful high-quality 

algorithms and data structures

 Write best possible algorithm with fewest constraints

Do not force particular data structure on user

Classic example: STL std::sort

 Instantiate algorithm to specific situation

C++ template instantiation, partial specialization, and 

inlining make resulting code efficient

 Standard Template Library, overall, is not thread-safe
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Generic Programming  - Example
 Programmer defines the generic template, and the 

compiler creates versions for data types used.

template <typename T> T max (T x, T y) {

if (x < y) return y;

return x;

}

int main() {

int i = max(20,5);

double f = max(2.5, 5.2);

MyClass m = max(MyClass(“foo”),MyClass(“bar”));

return 0;

}

T must define a copy constructor

and a destructor

T must define operator<
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TBB Parallel patterns

 Task scheduler powers high level parallel patterns that are pre-

packaged, tested, and tuned for scalability

 parallel_for: parallel execution of independent loop iterations 

 parallel_reduce: parallel independent loop iterations that include a reduction.  

 parallel_do: load-balanced parallel execution of independent loop iterations with 

unknown or dynamically changing bounds (e.g. applying function to the element of 

linked list)

 parallel_scan: template function that computes parallel prefix

 pipeline: data-flow pipeline pattern

 parallel_sort: parallel sort  

 parallel_invoke: evaluates up to 10 functions, possibly in parallel and waits for all of 

them to finish.
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The parallel_for Template 

 Requires definition of:

 A range type to iterate over

 Must define a copy constructor and a destructor

 Defines is_empty()

 Defines is_divisible()

 Defines a splitting constructor, R(R &r, split)

 A body type that operates on the range (or a subrange)

 Must define a copy constructor and a destructor

 Defines operator()

template <typename Range, typename Body>

void parallel_for(const Range& range, const Body &body); 
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Body is Generic

 Requirements for parallel_for Body

Body::Body(const Body&) Copy constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Apply the body 
to subrange.

 parallel_for partitions original range into 
subranges, and deals out subranges to worker 
threads in a way that:

 Balances load

 Uses cache efficiently

 Scales
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Range is Generic

 Requirements for parallel_for Range

R::R (const  R&) Copy constructor

R::~R() Destructor

bool R::is_empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned

R::R (R& r, split) Splitting constructor; splits r 
into two subranges

 Library provides predefined ranges

 blocked_range and blocked_range2d

 You can define your own ranges
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const int N = 100000;

void change_array(float array, int M) {

for (int i = 0; i < M; i++){

array[i] *= 2;

}

}

int main (){

float A[N];

initialize_array(A);

change_array(A, N);

return 0;

}

An Example using parallel_for (1 of 3)

 Independent iterations and fixed/known bounds
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#include “tbb/task_scheduler_init.h”

#include “tbb/blocked_range.h”

#include “tbb/parallel_for.h”

using namespace tbb;

int main (){

task_scheduler_init init;

float A[N];

initialize_array(A);

parallel_change_array(A, N);

return 0;

}

An Example using parallel_for (2 of 3)

Include Library Headers

Use namespace

 Include and initialize the library

Initialize scheduler

int main (){

float A[N];

initialize_array(A);

change_array(A, N);

return 0;

}

blue = original code

green = provided by TBB

red = boilerplate for library
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An Example using parallel_for (3 of 3)

 Use the parallel_for algorithm

149

class ChangeArrayBody {

float *array;

public:

ChangeArrayBody (float *a): array(a) {}

void operator()( const blocked_range <int>& r ) const{

for (int i = r.begin(); i != r.end(); i++ ){

array[i] *= 2;

}

}

};

void parallel_change_array(float *array, int M) {

parallel_for (blocked_range <int>(0, M), 

ChangeArrayBody(array), auto_partitioner());

}

Define Task

Use algorithm

Use auto_partitioner()

void change_array(float *array, int M) {

for (int i = 0; i < M; i++){

array[i] *= 2;

}

}

blue = original code

green = provided by TBB

red = boilerplate for library
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An Example using parallel_for (3b of 3)

 Use the parallel_for algorithm

150

class ChangeArrayBody {

float *array;

public:

ChangeArrayBody (float *a): array(a) {}

void operator()( const blocked_range <int>& r ) const{

for (int i = r.begin(); i != r.end(); i++ ){

array[i] *= 2;

}

}

};

void parallel_change_array(float *array, int M) {

parallel_for (blocked_range <int>(0, M), 

ChangeArrayBody(array),

auto_partitioner());

}

blue = original code

green = provided by TBB

red = boilerplate for library



151

151

The parallel_reduce Template

 Requirements for parallel_reduce Body

Body::Body( const Body&, split ) Splitting 
constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Accumulate results 
from subrange

void Body::join( Body& rhs ); Merge result of rhs
into the result of 
this.

template <typename Range, typename Body>

void parallel_reduce (const Range& range, Body &body);

 Reuses Range concept from parallel_for
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Numerical Integration Example

152

4.0

2.0

1.00.0 X

static long num_steps=100000; 

double step, pi;

void main(int argc, char* 

argv[])

{  int i;

double x, sum = 0.0;

step = 1.0/(double) num_steps;

for (i=0; i< num_steps; i++){

x = (i+0.5)*step;

sum += 4.0/(1.0 + x*x);

}

pi = step * sum;

printf(“Pi = %f\n”,pi);

}
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parallel_reduce Example

153

#include "tbb/parallel_reduce.h"

#include "tbb/task_scheduler_init.h"

#include "tbb/blocked_range.h"

using namespace tbb;

int main(int argc, char* argv[])

{

double pi;

double width = 1./(double)num_steps;

MyPi step((double *const)&width); 

task_scheduler_init init;

parallel_reduce(blocked_range<size_t>(0,num_steps), step,  

auto_partitioner() );

pi = step.sum*width;

printf("The value of PI is %15.12f\n",pi);

return 0;

}

blue = original code

green = provided by TBB

red = boilerplate for library
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parallel_reduce Example
class MyPi {

double *const my_step;

public:

double sum;

void operator()( const blocked_range<size_t>& r ) {

double step = *my_step;

double x;

for (size_t i=r.begin(); i!=r.end(); ++i)

{

x = (i + .5)*step;

sum += 4.0/(1.+ x*x);

}

}

MyPi( MyPi& x, split ) : my_step(x.my_step), sum(0) {}

void join( const MyPi& y ) {sum += y.sum;}

MyPi(double *const step) : my_step(step), sum(0) {}

};

join

accumulate results

blue = original code

green = provided by TBB

red = boilerplate for library
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Scalable Memory Allocators

 Serial memory allocation can easily become a bottleneck 
in multithreaded applications

 Threads require mutual exclusion into shared heap

 False sharing - threads accessing the same cache line

 Even accessing distinct locations, cache line can ping-
pong

 Intel® Threading Building Blocks offers two choices for 
scalable memory allocation

 Similar to the STL template class std::allocator

 scalable_allocator

 Offers scalability, but not protection from false sharing

 Memory is returned to each thread from a separate pool

 cache_aligned_allocator

 Offers both scalability and false sharing protection
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Concurrent Containers

 TBB Library provides highly concurrent containers 

STL containers are not concurrency-friendly: attempt to 

modify them concurrently can corrupt container

Standard practice is to wrap a lock around STL 

containers

 Turns container into serial bottleneck 

 Library provides fine-grained locking or lockless 

implementations

Worse single-thread performance, but better scalability.

Can be used with the library, OpenMP, or native threads.
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Synchronization Primitives
 Parallel tasks must sometimes touch shared data

 When data updates might overlap, use mutual exclusion to avoid 
race

 High-level generic abstraction for HW atomic 
operations
 Atomically protect update of single variable

 Critical regions of code are protected by scoped 
locks
 The range of the lock is determined by its lifetime (scope)

 Leaving lock scope calls the destructor, making it exception safe

 Minimizing lock lifetime avoids possible contention

 Several mutex behaviors are available
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Atomic Execution

 atomic<T>

 T should be integral type or pointer type

 Full type-safe support for 8, 16, 32, and 64-bit integers

Operations

atomic <int> i;

. . .

int z = i.fetch_and_add(2);

„= x‟ and „x = ‟ read/write value of x

x.fetch_and_store (y) z = x, x = y, return z

x.fetch_and_add (y) z = x, x += y, return z

x.compare_and_swap (y,p) z = x, if (x==p) x=y; return z
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Mutex Concepts 

M() Construct unlocked mutex

~M() Destroy unlocked mutex

typename M::scoped_lock Corresponding scoped_lock type

M::scoped_lock () Construct lock w/out acquiring a 
mutex

M::scoped_lock (M&) Construct lock and acquire lock on 
mutex

M::~scoped_lock () Release lock if acquired

M::scoped_lock::acquire (M&) Acquire lock on mutex

M::scoped_lock::release () Release lock

159

Mutexes are C++ objects based on scoped locking pattern

Combined with locks, provide mutual exclusion
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Mutex Flavors 

 spin_mutex

 Non-reentrant, unfair, spins in the user space

 VERY FAST in lightly contended situations; use if you need to 
protect very few instructions

 queuing_mutex

 Non-reentrant, fair, spins in the user space

 Use Queuing_Mutex when scalability and fairness are important

 queuing_rw_mutex

 Non-reentrant, fair, spins in the user space

 spin_rw_mutex

 Non-reentrant, fair, spins in the user space

 Use ReaderWriterMutex to allow non-blocking read for multiple 
threads
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spin_mutex Example
#include "tbb/spin_mutex.h“

Node* FreeList;

typedef spin_mutex FreeListMutexType;

FreelistMutexType FreelistMutex;

Node* AllocateNode (){

Node* n;

{

FreelistMutexType::scoped_lock mylock(FreeListMutex);

n = FreeList;

if ( n ) FreeList = n->next;

}

if ( !n ) n = new Node();

return n;

}

void FreeNode( Node* n ) {

FreelistMutexType::scoped_lock mylock(FreeListMutex); 

n->next = FreeList;

FreeList = n;

}

blue = original code

green = provided by TBB

red = boilerplate for library
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One last question…

 Do not ask!

 Not even the scheduler knows how many threads really are available

 There may be other processes running on the machine

 Routine may be nested inside other parallel routines

 Focus on dividing your program into tasks of sufficient size

 Task should be big enough to amortize scheduler overhead

 Choose decompositions with good depth-first cache locality and 
potential breadth-first parallelism

 Let the scheduler do the mapping

How do I know how many threads are available?
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Parallel API’s: MPI
the Message Passing Interface

omp_set_lock(lck)MPI_Bsend_init

MPI_Pack

MPI_Sendrecv_replace

MPI_Recv_init

MPI_Allgatherv

MPI_Unpack 

MPI_Sendrecv

MPI_Bcast

MPI_Ssend

C$OMP ORDERED MPI_Startall

MPI_Test_cancelled 

MPI_Type_free

MPI_Type_contiguous

MPI_Barrier

MPI_Start

MPI_COMM_WORLD

MPI_Recv

MPI_Send

MPI_Waitall

MPI_Reduce

MPI_Alltoallv

MPI_Group_compare

MPI_Scan
MPI_Group_size

MPI_Errhandler_create

MPI:  An API for Writing Clustered Applications

 A library of routines to coordinate the 
execution of multiple processes. 

 Provides point to point and collective 
communication  in Fortran, C and C++

 Unifies last 15 years of  cluster 
computing and MPP practice
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The minimal set of MPI functions

There are hundreds of functions in MPI, but most 
programs use the following seven MPI functions:
 MPI_Init

 MPI_Comm_size

 MPI_Comm_rank

 MPI_Send

 MPI_Recv

 MPI_Reduce

 MPI_Finalize
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Initializing the MPI Library

 MPI_Init prepares the system for MPI execution

 No MPI functions may be called before MPI_Init

 Almost all MPI functions return an error code (C), or an error 
variable. When debugging, first check their values.

Fortran:

MPI_INIT (ierr)

C:

int MPI_Init (int* argc, char* argv[])
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Shutting Down MPI

 MPI_Finalize frees any memory allocated by the MPI 
library

 No MPI functions may be called after calling 
MPI_Finalize

 You should close every MPI program with a 
call to MPI_Finalize

Fortran:

MPI_FINALIZE (ierr)

C:

int MPI_Finalize (void)
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Sizing the MPI Communicator

 MPI_Comm, an opaque data type, is defined in mpi.h. It 

defines a communication context (group of processes, given 
a particular name). Default context: MPI_COMM_WORLD 
(all processes)

 MPI_Comm_size returns the number of processes in the 

specified communicator

Fortran:

MPI_COMM_SIZE (comm, size, ierr)

integer :: comm, size, ierr

C:

int MPI_Comm_size (

MPI_Comm comm, int* size)
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MPI_Comm_rank returns rank (sequence number) of calling 
process within the specified communicator 

 Processes are numbered from 0 to N-1 in an N-process run

Fortran:

MPI_COMM_RANK (comm, rank, ierr)

integer :: comm, rank, ierr

C:

int MPI_Comm_rank (

MPI_Comm comm, int* rank)

Determining MPI Process Rank
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A trivial MPI program
 Almost all MPI programs start and end like this one …

#include <stdio.h>

#include <mpi.h>

int main (int argc, char* argv[])

{

int numProc, myRank;

MPI_Init (&argc, &argv); /* Initialize the library */ 

MPI_Comm_rank (MPI_COMM_WORLD, &myRank); /* Who am I?” */

MPI_Comm_size (MPI_COMM_WORLD, &numProc); /*How many? */

printf (“Hello. Process %d of %d here.\n”, myRank, numProc);

MPI_Finalize (); /* Wrap it up. */

}
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Sending Data

 MPI_Send performs a blocking send of the specified data (“count” 

copies of type “datatype,” stored in “buf”) to the specified destination 
(rank “dest” within communicator “comm”), with message ID “tag”

Fortran:

MPI_SEND (buf, count, datatype,

dest, tag, comm, ierr)

<type> buf(*)

integer :: count, datatype, ierr,

dest, tag, comm

C:

int MPI_Send (void* buf, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)
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Receiving Data

 MPI_Recv performs a blocking receive of specified data from specified 

source whose parameters match the send; information about transfer 
is stored in “status”

Fortran:

MPI_RECV (buf, count, datatype, source,

tag, comm, status, ierr)

<type> buf(*)

integer :: count, datatype, ierr, source,

tag, comm,

status(MPI_STATUS_SIZE)

C:

int MPI_Recv (void* buf, int count,

MPI_Datatype datatype, int source,

int tag, MPI_Comm comm,

MPI_Status* status)
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Data Reduction

Fortran:

MPI_REDUCE (sendbuf, recvbuf, count,

datatype, operation, root,

comm, ierr)

<type> sendbuf(*), recvbuf(*)

integer :: count, datatype, operation,

root, comm, ierr

C:

int MPI_Reduce (void* sendbuf,

void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op,

int root, MPI_Comm comm)

• MPI_Reduce performs specified reduction operation on specified data 

from all processes in communicator, places result in process “root” only.

• MPI_Allreduce places result in all processes (avoid unless necessary)
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MPI Reduction Operations

Operation Function

MPI_SUM Summation

MPI_PROD Product

MPI_MIN Minimum value

MPI_MINLOC Minimum value and location

MPI_MAX Maximum value

MPI_MAXLOC Maximum value and location

MPI_LAND Logical AND

MPI_BAND Bitwise AND

MPI_LOR Logical OR

MPI_BOR Bitwise OR

MPI_LXOR Logical exclusive OR

MPI_BXOR Bitwise exclusive OR

User-defined It is possible to define new reduction operations
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How do people use MPI?
The SPMD Model

Replicate the program.

Add glue code

Break up the data

A sequential program 

working on a data set

•A parallel program working 

on a decomposed data set.

• Coordination by passing 

messages.
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Pi program in MPI 
#include <mpi.h>

void main (int argc, char *argv[])

{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&argc, &argv) ;

MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

my_steps = num_steps/numprocs ;  

for (i=my_id*my_steps; i<(my_id+1)*my_steps ; i++)

{

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

sum *= step ; 

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD) ;

}
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How do people mix MPI and OpenMP?

Replicate the program.

Add glue code

Break up the data

A sequential program 

working on a data set

•Create the MPI program with 

its data decomposition.

• Use OpenMP inside each 

MPI process.
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Pi program with MPI and OpenMP
#include <mpi.h>

#include “omp.h”

void main (int argc, char *argv[])

{

int i, my_id, numprocs;  double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&argc, &argv) ;

MPI_Comm_Rank(MPI_COMM_WORLD, &my_id) ;

MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;

my_steps = num_steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)

for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)

{

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

sum *= step ; 

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0, 

MPI_COMM_WORLD) ;

}

Get the MPI 

part done 

first, then add 

OpenMP 

pragma 

where it 

makes sense 

to do so
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Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.

 Not all MPIs are threadsafe.  MPI 2.0 defines threading 
modes:
 MPI_Thread_Single: no support for multiple threads

 MPI_Thread_Funneled: Mult threads, only master calls MPI

 MPI_Thread_Serialized: Mult threads each calling MPI, but they 
do it one at a time.

 MPI_Thread_Multiple: Multiple threads without any restrictions

 Request and test thread modes with the function:

MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun.  
You’ll need to broadcast OpenMP parameters and set them 
with the library routines.
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Dangerous Mixing of MPI and OpenMP
 The following will work only if MPI_Thread_Multiple is 

supported … a level of support I wouldn’t depend on.

MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;
#pragma omp parallel 
{

int tag, swap_neigh, stat, omp_id = omp_thread_num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly_calc1(omp_id, mpi_id, buffer);

// Finds MPI id and tag so
neighbor(omp_id, mpi_id, &swap_neigh, &tag);  // messages don’t conflict

MPI_Send (buffer,   BUFF_SIZE, MPI_LONG, swap_neigh, 
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_LONG, swap_neigh, 
tag,  MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical

consume(buffer, omp_id, mpi_id);
}
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Messages and threads

 Keep message passing and threaded sections of your 
program separate:
 Setup message passing outside OpenMP parallel regions 

(MPI_Thread_funneled)

 Surround with appropriate directives (e.g. critical section or master) 
(MPI_Thread_Serialized)

 For certain applications depending on how it is designed it may not 
matter which thread handles a message.  (MPI_Thread_Multiple)

 Beware of race conditions though if two threads are probing on the 
same message and then racing to receive it.
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Safe Mixing of MPI and OpenMP
Put MPI in sequential regions

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel for 
for (I=0;I<N;I++) {

U[I] =  big_calc(I);
}

MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, swap_neigh, 
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh, 
tag,  MPI_COMM_WORLD, &stat);

#pragma omp parallel for 
for (I=0;I<N;I++) {

U[I] =  other_big_calc(I, incoming);
}

consume(U, mpi_id);

Technically Requires 

MPI_Thread_funneled, but I 

have never had a problem with 

this approach … even with pre-

MPI-2.0 libraries.



184

Safe Mixing of MPI and OpenMP
Protect MPI calls inside a parallel region

MPI_Init(&argc, &argv) ;      MPI_Comm_Rank(MPI_COMM_WORLD, &mpi_id) ;

// a whole bunch of initializations

#pragma omp parallel
{
#pragma omp for

for (I=0;I<N;I++)    U[I] =  big_calc(I);

#pragma master
{

MPI_Send (U,   BUFF_SIZE, MPI_DOUBLE, neigh, tag,  MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh,  tag,  MPI_COMM_WORLD,         

&stat);
}
#pragma omp barrier
#pragma omp for 

for (I=0;I<N;I++)   U[I] =  other_big_calc(I, incoming);

#pragma omp master
consume(U, mpi_id);

}

Technically Requires 

MPI_Thread_funneled, but I 

have never had a problem with 

this approach … even with pre-

MPI-2.0 libraries.
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Hybrid OpenMP/MPI works, but is it worth it?

 Literature* is mixed on the hybrid model: sometimes its better, 
sometimes MPI alone is best.

 There is potential for benefit to the hybrid model

 MPI algorithms often require replicated data making them less memory 
efficient.

 Fewer total MPI communicating agents means fewer messages and less 
overhead from message conflicts.

 Algorithms with good cache efficiency should benefit from shared caches 
of multi-threaded programs.

 The model maps perfectly with clusters of SMP nodes.

 But really, it’s a case by case basis and to large extent depends on the 
particular application.

*L. Adhianto and Chapman, 2007



186

a Survey of programming models
 TBB

 MPI

 Mixing MPI and OpenMP

 Pthreads

 Windows 32 threads

 Cilk

 OpenCL



187

Overview of POSIX threads

 POSIX: Portable Operating System Interface for Unix

 Interface to Operating System utilities

 Pthreads: The POSIX threading interface

 System calls to create and synchronize threads

 Should be relatively uniform across UNIX-like OS Platforms

 Pthreads contain support for

 Exploiting parallelism

 Synchronization

 No explicit support for communication … since it is a shared 
memory interface, a pointer to shared data is passed to a thread.
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Forking POSIX threads

 Signature
 int pthread_create (pthread_t *,

const pthread_attr_t *,
void * (*)(void *),
void *);

 Example call:
 Errcode = pthread_create(&thread_id, 

&thread_attribute,  
&thread_fun, 
&fun_arg);

 thread_id is the thread id or handle (used to halt, etc.)

 thread_attribute various attribtures
 Standard default values obtained by passing a NULL pointer

 Sample attribute: minimum stack size

 thread_fun the function to bre run (takes and returns void*)

 Fun_arg an argumnet can be passed to thread_fun when it starts

 Errorcode will be set nonozero if the create operation fails.
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Simple Threading Example

void * SayHello(void *foo) {

printf( “hello, world\n”);

return NULL;

}

int main(){

pthread_t threads[16];

int tn;

for(tn=0; tn<16; tn++) {

pthread_create(&threads[tn],  NULL, SayHello, NULL);

}

return 0;

}

Compile using gcc -lpthread
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Shared data and threads

 Variables declared outside of main are shared

 Objects allocated on the heap may be shared (if the 
pointer is passed)

 Variables on the statck are private; passing pointer to 
these around to other threads can cause problems

 Often done by creating a large “thread data” struct, 
which is passed into all threads as an argument

char *message = “hello world\n”;

pthread_create(&thread1, NULL,

printf_fun, (void*) message);
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Numerical Integration: POSIX Threads (1 of 2)

#include <stdio.h>

#include <pthread.h>

#define NUMSTEPS 10000000

#define NUMTHREADS 4

double gStep = 0.0, gPi = 0.0;

pthread_mutex_t gLock;

void *threadFunction(void *pArg)

{

int myNum = *((int *)pArg);

double partialSum = 0.0, x;  // local to each thread

for (int i = myNum; i < NUMSTEPS; i += NUMTHREADS) // cyclic distribution

{

x = (i + 0.5f) * gStep;

partialSum += 4.0f / (1.0f + x*x);  //compute partial sums at each thread

}

pthread_mutex_lock(&gLock);

gPi += partialSum * gStep;  // add partial to global final answer

pthread_mutex_unlock(&gLock);

return 0;

}

Source:  Michael Wrinn of Intel
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Numerical Integration: POSIX Threads (2 of 2)

int main()

{

pthread_t threadHandles[NUMTHREADS];

int tNum[NUMTHREADS], i;

pthread_mutex_init(&gLock, NULL);

gStep = 1.0 / NUMSTEPS;

for ( i = 0; i < NUMTHREADS; ++i )

{

tNum[i] = i;

pthread_create(&threadHandles[i], NULL, threadFunction,

(void)&tNum[i]); 

}

for ( i = 0; i < NUMTHREADS; ++i )

{

pthread_join(threadHandles[i], NULL);

}

pthread_mutex_destroy(&gLock);

printf("Computed value of Pi: %12.9f\n", gPi );

return 0;

}

Source:  Michael Wrinn of Intel



193

Some additional pthreads functions

 pthread_yield();

 Informs the scheduler that the thread is willing to yield its 
quantum, requires no arguments.

 pthread_t me;    me = pthread_self();

 Allows a pthread to obtain its own identifier pthread_t thread;

 pthread_detach(thread);

 Informs the library that the threads exit status will not be needed 
by subsequent pthread_join calls resulting in better threads 
performance.  
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Setting Attribute values

 Once an initialized attribute object exists, changes can be 
made.  For example

 To change the stack size for a thread to 8192 (before calling 
pthread_create), do this:

 pthread_attr_setstacksize(&my_attributes,(size_t)8192);

 To get the stack size, do this:

 Stack_t my_stack_size;

 Pthread)_attr_getstacksize(&my_attributes, &my_stack__size);

 Other attributes

 Guard size – use to protect against stack overflow.

 Scheduling policiy – FIF”O or Round Robin

 Lazy stack allocation – allocate on demand (lazy) or all at once , 
“up front”.

 Scheduling parameters – in particular, thread priotity
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Basic Synchronization: Mutexes

 Mutexes: mutual exclusion locks.  Used to protect access 
to common data structures

 To create a mutex in Pthreads:
#include <pthread.h>
pthread_mutex_t amutex = PTHREAD_MUTEX_INITIALIZER
pthread_mutex_init (&amutex, NULL);

 To use the mutex:

int pthread_mutex_lock(amutex);

int pthread_mutex_unlock(amutex);

 To dealoocate a mutex
Int pthread_mutex_destroy(pthread_mutex_t *mutex);
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Basic Synchronization: Barrier

 Barrier: Global Synchronization

 Especially common with programs that utilize the SPMD pattern

pthread_t me;    me = pthread_self();
work_on_subgrid(me);
barrier;
read_neighboring_values();
barrier;

 Barriers in pthreads

 Example of creating a barreir and initializing it for three threads.

pthread_barrier_t b;
pthread_barrier_init(&b, NULL, 3);

 Note: the NULL value in the second arguments specifies that the 
default attributes are to be used.

 To wait at a barrier
pthread_barrier_wait(&b);
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Native Thread Libraries

 Linux and Windows both include native threads for 
shared address space programming

 API provides:
 Thread creation (fork)

 Thread destruction (join)

 Synchronization.

 Programmer is in control … these are very general.

 Downside: programmer MUST control everything.



Solution: Win32 API, PI (fork/join pattern)
#include <windows.h>

#define NUM_THREADS 2

HANDLE thread_handles[NUM_THREADS];

CRITICAL_SECTION hUpdateMutex;

static long num_steps = 100000;

double step;

double global_sum = 0.0;

void Pi (void *arg)

{

int i, start;

double x, sum = 0.0;

start = *(int *) arg;

step = 1.0/(double) num_steps;

for (i=start;i<= num_steps; i=i+NUM_THREADS){

x = (i-0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

EnterCriticalSection(&hUpdateMutex);

global_sum += sum;

LeaveCriticalSection(&hUpdateMutex);

}

void main ()

{

double pi; int i;

DWORD threadID;

int threadArg[NUM_THREADS];

for(i=0; i<NUM_THREADS; i++)   threadArg[i] = i+1;

InitializeCriticalSection(&hUpdateMutex);

for (i=0; i<NUM_THREADS; i++){

thread_handles[i] = CreateThread(0, 0,

(LPTHREAD_START_ROUTINE) Pi,

&threadArg[i], 0, &threadID);

}

WaitForMultipleObjects(NUM_THREADS, 

thread_handles, TRUE,INFINITE);

pi = global_sum * step;

printf(" pi is %f \n",pi);

}

Put work into a function

Launch threads to 

execute the function

Wait until the 

threads are done

Protect update to 

shared data
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Cilk in one slide
 Extends C to create a parallel language but maintains serial semantics.

 A fork-join style task oriented programming model perfect for recursive 
algorithms (e.g. branch-and-bound) … shared memory machines only!

 Solid theoretical foundation … can prove performance theorems. 

cilk Marks a function as a “cilk” function that can be spawned

spawn Spawns a cilk function … only 2 to 5 times the cost of a 
regular function call

sync Wait until immediate children spawned functions return

 “Advanced” key words

inlet Define a function to handle return values from a cilk 
task

cilk_fence A portable memory fence.

abort Terminate all currently existing spawned tasks

 Includes locks and a few other odds and ends.
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Recursion is at the heart of cilk

 Cilk makes it inexpensive to spawn new tasks.

 Instead of loops, recursively generate lots of tasks.

 Creates nested queues of tasks.  A scheduler intelligently 
uses workstealing to keep all the cores busy as they work 
on these tasks.

With cilk, the programmer worries about expressing concurrency, 
not the details of how it is implemented
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A simple Cilk example: Example
 Compute Fibonacci numbers ... recursively split the 

problem until its small enough to compute directly

int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = fib(n-1);
y = fib(n-2);
return (x+y);

}
}

C version

cilk int fib (int n) {
if (n<2) return (n);

else {
int x,y;
x = spawn fib(n-1);
y = spawn fib(n-2);
sync;
return (x+y);

}
}

Cilk version

Remove cilk 
key words and 
you produce 
the correct C 
programm 
(the C elision)

Based on Charles E. Leiserson, multithreaded programming in Cilk, lecture 1, July 13, 2006

Cilk supports an incremental parallelism software methodology.
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Cactus stack

 Cilk supports C’s rule for pointers: a pointer to stack 
space can be passed from parent to child, but not from 
child to parent (Cilk also supports malloc)

A AA A A

C C C

B

D
E

A B C D E

A

B C

D E

Based on Charles E. Leiserson, multithreaded programming in Cilk, lecture 1, July 13, 2006

Views of the stackCall Graph
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Common pattern for Cilk

 Start with a program 
with a loop.

 Convert to a recursive 
structure … splitting 
range in half until the 
remaining chunk is 
small enough to 
compute directly.

void vadd (real *A, real *B, int n){
int i; for(i=0; i<n; i++) A[i] += 

B[i];
}

void vadd (real *A, real *B, int n){ 
if (n<MIN) {

int i; for(i=0; i<n; i++) A[i] += 
B[i];     

} else {
vadd(A, B, n/2);
vadd(A+n/2, B+n/2, n-n/2);

}
}

 Add Cilk keywords

spawn
spawn

sync;

cilk
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PI Program: Cilk
static long num_steps = 1073741824;    // I’m lazy … make it a power of 2

double step = 1.0/(double) num_steps;

cilk double pi_comp(int istep, int nstep){

double x, sum;

if(nstep < MIN_SIZE)

for (int i=istep, sum=0.0; i<= nstep; i++){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

return sum;

else {

sum1 = spawn pi_comp(istep, nstep/2);

sum2 = spawn pi_comp(istep+nstep/2, nstep/2);

}

sync;

return sum1+sum2;

}

int main ()

double pi, sum = spawn pi_comp(0,num_steps);

sync;

pi = step * sum;

}

Recursively split range of the 
loop until its small enough to 
just directly compute

Wait until child tasks are done then return the sum 
… implements a balanced binary tree reduction!
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Is Cilk efficient?

 It can be.

 The recursive splitting procedure is usually cache friendly.

 The scheduler does a great job of balancing the load  

 The cilk scheduler …

 The cilk scheduler maps tasks onto processors dynamically at 
runtime

 The scheduler is provably good:

 Each thread maintains a double ended queue (a deque) of work.  
Pulls work off the bottom of the queue.

 When a queue is empty, it pulls work off the top of a randomly 
selected queue
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inlets

 Inlets let you incorporate the result of a spawned task in 
a more complicated way than a simple assigment.

int max, ix = -1
inlet void update (int val, int index) {

if(ix == -1 || val > max) {
ix = index; max = val;

}
}

for (i=0; i<1000000; i++) {
update (spawn foo(i), i);

}
sync; // ix now indexes the largest foo(i)

Based on Charles E. Leiserson, multithreaded programming in Cilk, lecture 3, July 17, 2006

The inlet keyword defines a void 
internal function to be an inlet

The “non-spawn” args to update() 
are evaluated,

Then the Cilk procedure foo(i) is 
spawned.

When foo(i) 
returns, update() 
is invoked

Cilk provides implicit atomicity among 
threads in the same frame, so no locking is 
necessary inside update to prevent races
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a Survey of programming models
 TBB

 MPI

 Mixing MPI and OpenMP

 Pthreads

 Windows 32 threads

 Cilk

 OpenCL



OpenCL: a language designed for the data-
parallel index-map pattern

CPUs
Multiple cores driving 

performance increases

GPUs
Increasingly general purpose 

data-parallel computing

Graphics APIs 
and Shading 
Languages

Multi-processor 
programming –

e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of heterogeneous 

parallel computing CPUs, GPUs, and other processors

3rd party names are the property of their owners. Source: SC09 OpenCL tutorial



OpenCL Platform Model

• One Host + one or more Compute Devices
- Each Compute Device is composed of one or more Compute Units

- Each Compute Unit is further divided into one or more Processing 
Elements

Source: SC09 OpenCL tutorial



The data parallel index-map pattern:

• define a problem domain in terms of an index-map and 
execute a kernel invocation for each point in the domain
- E.g., process a 1024 x 1024 image: Global problem dimensions: 

1024 x 1024 = 1 kernel execution per pixel: 1,048,576 total kernel executions

void

scalar_mul(int n, 

const float *a, 

const float *b, 

float *c)

{

int i;

for (i=0; i<n; i++)

c[i] = a[i] * b[i];

}

Scalar 

kernel void

dp_mul(global const float *a, 

global const float *b, 

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel 

Source: SC09 OpenCL tutorial



An N-dimension domain of work-items

• Global Dimensions:    1024 x 1024    (whole problem space)

• Local Dimensions: 128 x 128 (work group … executes together) 

1024

1
0

2
4

Synchronization between work-items

possible only within workgroups:

barriers and memory fences

Cannot synchronize outside 

of a workgroup

• Choose the dimensions that are “best” for your algorithm



Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, 
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

clGetContextInfo(context, CL_CONTEXT_DEVICES, 0, 

NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 
devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, devices[0], 
0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, 
NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, 
NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL, 
NULL);

// create the program

program = clCreateProgramWithSource(context, 1, 
&program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, NULL, 
NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0], 

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],

sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2], 

sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 
NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array

err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 
0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define Memory objects

Create the program

Build  the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad as it looks.



Case Study: Matrix Multiplication: Sequential code

void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)

{

int i, j, k;

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Dot product of a row of A and a column of B for each element of C

Source: SC10 OpenCL tutorial



Matrix Multiplications Performance

• Basic, unoptimized results of C, serial matrix 
multiplication on a CPU.

Case MFLOPS

CPU:  Sequential C (not OpenCL) 167

Run on an Apple MacBook Pro laptop running OSX 10 Snow 

Leopard.CPU is Intel® Core™2 Duo CPU T8300  @ 2.40GHz 

3rd party names are the property of their owners.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information

on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Source: SC10 OpenCL tutorial



Matrix Multiplication: OpenCL kernel (1/4)

void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)

{

int i, j, k;

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial



Matrix Multiplication: OpenCL kernel (2/4)

void mat_mul(

int Mdim, int Ndim, int Pdim, 

float *A, float *B, float *C)

{

int i, j, k;

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}

__kernel mat_mul(

const int Mdim, const int Ndim, const int Pdim, 

__global float *A, __global float *B, __global float *C)

Mark as a kernel function and specify memory qualifiers

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial



Matrix Multiplication: OpenCL kernel (3/4)

__kernel mat_mul(

const int Mdim, const int Ndim, const int Pdim, 

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}
Remove outer loops and set work item coordinates

i = get_global_id(0);

j = get_global_id(1);

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial



Matrix Multiplication: OpenCL kernel (4/4)

__kernel mat_mul(

const int Mdim, const int Ndim, const int Pdim, 

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

i = get_global_id(0);

j = get_global_id(1);

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial



Matrix Multiplication: OpenCL kernel 

__kernel mmul(  

const int Mdim,  

const int Ndim,

const int Pdim, 

__global float* A,

__global float* B,

__global float* C)

{

int k;    

int i = get_global_id(0);

int j = get_global_id(1);

float tmp;      

tmp = 0.0;  

for(k=0;k<Pdim;k++)

tmp += A[i*Ndim+k] * B[k*Pdim+j];

C[i*Ndim+j] = tmp;   

}   

Rearrange a bit and use a local scalar for intermediate C element values (a 

common optimization in Matrix Multiplication functions) 

3rd party names are the property of their owners. Source: SC10 OpenCL tutorial



Matrix Multiplications Performance

• Basic results … no effort to optimize code.

Run on an Apple MacBook Pro laptop running OSX 10 Snow Leopard. GPU a  GeForce® 

8600M GT  GPU from  NVIDIA  with a max of 4 compute units. CPU is Intel® Core™2 Duo 

CPU T8300  @ 2.40GHz 

Case MFLOPS

CPU:  Sequential C (not OpenCL) 167

GPU: C(i,j) per work item, all global 511

CPU: C(i,j) per work item, all global 744

3rd party names are the property of their owners.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information

on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Source: SC10 OpenCL tutorial



OpenCL Memory Model

• Private Memory
- Per work-item

• Local Memory
- Shared within a workgroup  

• Local Global/Constant Memory
- Visible to all workgroups

• Host Memory
- On the CPU

Workgroup

Work-Item

Computer Device

Work-Item

Workgroup

Host

Private 
Memory

Private 
Memory

Local MemoryLocal Memory

Global/Constant Memory

Host Memory

• Memory management is explicit 
You must move data from host -> global -> local and back

Work-ItemWork-Item

Private 
Memory

Private 
Memory

Source: SC09 OpenCL tutorial



Optimizing Matrix Multiplication

• Notice that each element of C in a row uses the same row of A.

• Let’s copy A into private memory so we don’t incur the overhead of pulling 
it from global memory for each C(i,j) computation.

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Private memory 

of each work 

item



Row of C per work item, A row private

__kernel mmul( 

const int Mdim, 

const int Ndim, 

const int Pdim, 

__global float* A, 

__global float* B, 

__global float* C) 

{ 

int k,j; 

int i = get_global_id(0); 

float Awrk[1000];

float tmp; 

for(k=0;k<Pdim;k++) 

Awrk[k] = A[i*Ndim+k]; 

for(j=0;j<Mdim;j++){

tmp = 0.0; 

for(k=0;k<Pdim;k++) 

tmp += Awrk[k] * B[k*Pdim+j]; 

C[i*Ndim+j] = tmp; 

} 

}  

Setup a work array for A in 

private memory and copy into 

from global memory before we 

start with the matrix 

multiplications.



Matrix Multiplications Performance
• Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.  

Device is  GeForce® 8600M GT  GPU from  NVIDIA  with a max of 4 

compute units 

Device is  Intel® Core™2 Duo CPU     T8300  @ 2.40GHz 
3rd party names are the property of their 

owners.

Case MFLOP

S

CPU:  Sequential C (not OpenCL) 167

GPU: C(i,j) per work item, all global 511

GPU: C row per work item, all global 258

GPU: C row per work item, A row 

private

873

CPU: C(i,j) per work item 744

Big impact



Optimizing Matrix Multiplication

• Notice that each element of C uses the same row of A.

• Each work-item in a work-group uses the same columns of B

• Let’s store the B columns in local memory

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Private memory of 

each work item
Local memory for 

each work-group



Row of C per work item, A row private, B columns local

__kernel mmul( 

const int Mdim, 

const int Ndim, 

const int Pdim, 

__global float* A, 

__global float* B, 

__global float* C,

__local float* Bwrk) 

{ 

int k,j; 

int i = get_global_id(0); 

int iloc = get_local_id(0); 

int nloc = get_local_size(0);

float Awrk[1000];

float tmp; 

for(k=0;k<Pdim;k++) 

Awrk[k] = A[i*Ndim+k]; 

for(j=0;j<Mdim;j++){

for(k=iloc;k<Pdim;k=k+nloc) 

Bwrk[k] = B[k*Pdim+j]; 

barrier(CLK_LOCAL_MEM_FENCE);

tmp = 0.0; 

for(k=0;k<Pdim;k++) 

tmp += Awrk[k] * Bwrk[k];  

C[i*Ndim+j] = tmp; 

} 

} 

Pass in a pointer to local memory.  

Work-items in a group start by 

copying the columns of B they 

need into the local memory.



Matrix Multiplications Performance
• Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.  

Device is  GeForce® 8600M GT  GPU from  NVIDIA  with a max of 4 compute units 

Device is  Intel® Core™2 Duo CPU     T8300  @ 2.40GHz 

3rd party names are the property of their owners.

Case MFLOP

S

CPU:  Sequential C (not OpenCL) 167

GPU: C(i,j) per work item, all global 511

GPU: C row per work item, all global 258

GPU: C row per work item, A row 

private

873

GPU: C row per work item, A private, 

B local

2472

CPU: C(i,j) per work item 744



Matrix Multiplications Performance
• Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.  

Device is  GeForce® 8600M GT  GPU from  NVIDIA  with a max of 4 compute units 

Device is  Intel® Core™2 Duo CPU     T8300  @ 2.40GHz 

3rd party names are the property of their owners.

Case Speedu

p

CPU:  Sequential C (not OpenCL) 1

GPU: C(i,j) per work item, all global 3

GPU: C row per work item, all global 1.5

GPU: C row per work item, A row 

private

5.2

GPU: C row per work item, A private, 

B local

15

CPU: C(i,j) per work item 4.5

Wow!!!   OpenCL on a 

GPU is radically faster 

that C on a CPU, right?



CPU vs GPU: Let’s be fair
• We made no attempt to optimize the CPU/C code but we worked hard 

to optimize OpenCL/GPU code.

• Lets optimize the CPU code 
- Use compiler optimization (level O3).
- Replace float with double (CPU ALU’s like double)
- Reorder loops:

void mat_mul_ijk(int Mdim, int Ndim, int Pdim,

double *A, double *B, double *C)

{

int i, j, k;

for (i=0; i<Ndim; i++)

for (j=0; j<Mdim; j++)

for(k=0;k<Pdim;k++)

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

void mat_mul_ikj(int Mdim, int Ndim, int Pdim, 

double *A, double *B, double *C)

{

int i, j, k;

for (i=0; i<Ndim; i++)

for(k=0;k<Pdim;k++)

for (j=0; j<Mdim; j++)

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

- ijk:   272 mflops
- ikj:  1130 mflops
- kij:   481 mflops

- Float,  no opt  167 mflops
- Double, O3     272 mflops



Matrix Multiplications Performance
• Results on an Apple laptop with an NVIDIA GPU and an Intel CPU.  

Device is  GeForce® 8600M GT  GPU from  NVIDIA  with a max of 4 compute units 

Device is  Intel® Core™2 Duo CPU     T8300  @ 2.40GHz 

3rd party names are the property of their owners.

Case Speedu

p

CPU:  Sequential C (not OpenCL) 1

GPU: C(i,j) per work item, all global 0.45

GPU: C row per work item, all global 0.23

GPU: C row per work item, A row 

private

0.77

GPU: C row per work item, A private, 

B local

2.2

CPU: C(i,j) per work item 0.66

And we still are only 

using one core … and 

we are not using SSE 

so there is lots of 

room to further 

optimize the CPU 

code.



Matrix Multiplications Performance
• After we optimize to increase flops per memory access, we get the 

following results.

Run on an Apple MacBook Pro laptop running OSX 10 Snow Leopard. GPU is a  GeForce® 8600M GT  

GPU from  NVIDIA  with a max of 4 compute units. CPU is Intel® Core™2 Duo CPU T8300  @ 2.40GHz 

Case MFLOPS

CPU:  Sequential C (not OpenCL) 1130

GPU: C(i,j) per work item, all global 511

GPU: C row per work item, all global 258

GPU: C row per work item, A row private 873

GPU: C row per work item, A private, B local 2472

CPU: C(i,j) per work item 744

3rd party names are the property of their owners.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel products as measured by those tests. Any difference in system hardware or

software design or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information

on performance tests and on the performance of Intel products, reference <http://www.intel.com/performance> or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

Source: SC10 OpenCL tutorial
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Conclusion

 We have now covered the full sweep of the 
OpenMP specification.

We’ve left off some minor details, but we’ve covered 
all the major topics … remaining content you can 
pick up on your own.

 Download the spec to learn more … the spec is 
filled with examples to support your continuing 
education.

www.openmp.org

 Get involved:

get your organization to join the OpenMP ARB.

Work with us through Compunity.
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Appendices
 Sources for Additional information

 Solutions to exercises

Exercise 1: hello world

Exercise 2: Simple SPMD Pi program

Exercise 3: SPMD Pi without false sharing

Exercise 4: Loop level Pi

Exercise 5: Matrix multiplication

Exercise 6: Mandelbrot area

Exercise 7: Molecular dynamics

Exercise 8: linked lists with tasks

Exercise 9: linked lists without tasks

Exercise 10: the producer-consumer pattern

 Thread  Private Data

Exercise 11: Monte Carlo Pi and random numbers

 Fortran and OpenMP

 Compiler Notes
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OpenMP Organizations

OpenMP architecture review  board URL, 
the “owner” of the OpenMP specification:

www.openmp.org  

OpenMP User’s Group (cOMPunity) URL:

www.compunity.org

Get involved, join compunity and help 

define the future of OpenMP
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Books about OpenMP

 A new book about 
OpenMP 2.5 by a team of 
authors at the forefront of 
OpenMP’s evolution.

 A book about how to 
“think parallel” with 
examples in OpenMP, MPI 
and java
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OpenMP Papers

 Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a 
ccNUMA architecture using OpenMP. III.  Parallel Computing, vol.26, no.7-8, July 
2000, pp.843-56. Publisher: Elsevier, Netherlands.

 Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared 
memory machine.  Computer Physics Communications, vol.124, no.1, Jan. 2000, 
pp.49-59. Publisher: Elsevier, Netherlands.

 Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using 
OpenMP”, Shared Memory Parallel Programming with OpenMP, Lecture notes in 
Computer Science, Vol. 3349, P. 1, 2005

 Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel 
analysis of harbor wave response using MPI and OpenMP.  International Journal 
of High Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64. 
Publisher: Sage Science Press, USA.

 Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple 
levels of parallelism in OpenMP: a case study.  Proceedings of the 1999 
International Conference on Parallel Processing. IEEE Comput. Soc. 1999, 
pp.172-80.  Los Alamitos, CA, USA.

 Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in 
an MPI application.  Proceedings of the ISCA 12th International Conference.
Parallel and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.
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OpenMP Papers (continued)

 Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you 
are not watching: a Performance analysis case study comparing MPI/OpenMP, 
MLP, and Nested OpenMP, Shared Memory Parallel Programming with OpenMP, 
Lecture notes in Computer Science, Vol. 3349, P. 29, 2005

 Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N. 
Applying interposition techniques for performance analysis of OPENMP parallel 
applications.  Proceedings 14th International Parallel and Distributed Processing 
Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40.  

 Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality 
control.  Proceedings of Eighth ECMWF Workshop on the Use of Parallel 
Processors in Meteorology. Towards Teracomputing. World Scientific Publishing. 
1999, pp.301-13. Singapore.

 Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner, 
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message 
Passing and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

 Cappello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a 
cluster of SMP PCs using a parallelization of the MPI programs with OpenMP. 
Lecture Notes in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.  

 Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for 
Clusters with Implicit Data Distribution, Shared Memory Parallel Programming with 
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005
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OpenMP Papers (continued)

 B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving 
performance under OpenMP on ccNUMA and software distributed 
shared memory systems,” Concurrency and Computation: Practice and 
Experience. 14(8-9): 713-739, 2002.

 J. M. Bull and M. E.  Kambites. JOMP: an OpenMP-like interface for 
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Exercise 1: Solution
A multi-threaded “Hello world” program

 Write a multithreaded program where each 
thread prints “hello world”.

#include “omp.h”

void main()

{

#pragma omp parallel

{

int ID = omp_get_thread_num();

printf(“ hello(%d) ”, ID);

printf(“ world(%d) \n”, ID);

}

}

Sample Output:

hello(1) hello(0) world(1)

world(0)

hello (3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with default 

number of threads

Runtime library function to 

return a thread ID.End of the Parallel region
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The SPMD pattern

 The most common approach for parallel 
algorithms is the SPMD or Single Program 
Multiple Data pattern.

 Each thread runs the same program (Single 
Program), but using the thread ID, they operate 
on different data (Multiple Data) or take slightly 
different paths through the code.

 In OpenMP this means:

A parallel region “near the top of the code”.

Pick up thread ID and num_threads.

Use them to split up loops and select different blocks 
of data to work on.
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#include <omp.h>

static long num_steps = 100000;         double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads;  double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds;

double x;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0)   nthreads = nthrds;

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

x = (i+0.5)*step;

sum[id] += 4.0/(1.0+x*x);

}

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i] * step;

}

Exercise 2: A simple SPMD pi program  
Promote scalar to an array 

dimensioned by number of 

threads to avoid race 

condition.

This is a common trick in 

SPMD programs to create a 

cyclic distribution of loop 

iterations

Only one thread should copy the 

number of threads to the global 

value to make sure multiple threads 

writing to the same address don’t 

conflict.  
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False sharing

 If independent data elements happen to sit on the same 
cache line, each update will cause the cache lines to 
“slosh back and forth” between threads.

This is called “false sharing”.

 If you promote scalars to an array to support creation 
of an SPMD program, the array elements are 
contiguous in memory and hence share cache lines.

Result … poor scalability

 Solution: 

When updates to an item are frequent, work with local copies 
of data instead of an array indexed by the thread ID.

Pad arrays so elements you use are on distinct cache lines.
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#include <omp.h>

static long num_steps = 100000;         double step;

#define NUM_THREADS 2

void main ()

{ double  pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds;    double x, sum;

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id == 0)   nthreads = nthrds;   

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){

x = (i+0.5)*step;

sum += 4.0/(1.0+x*x);

}

#pragma omp critical

pi += sum * step;

}

}

Exercise 3: SPMD Pi without false sharing

Sum goes “out of scope” beyond the parallel 

region … so you must sum it in here.   Must 

protect summation into pi in a critical region so 

updates don’t conflict

No array, so 

no false 

sharing. 

Create a scalar local to 

each thread to 

accumulate partial 

sums.
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Exercise 4: solution  

#include <omp.h>

static long num_steps = 100000;         double step;

#define NUM_THREADS 2

void main ()

{ int i; double x, pi, sum = 0.0;

step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel for private(x) reduction(+:sum)

for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

}

Note: we created a parallel 

program without changing 

any code and by adding 4 

simple lines!

i private by 

default

For good OpenMP 

implementations, 

reduction is more 

scalable than critical.
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Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

tmp = 0.0;

for(k=0;k<Pdim;k++){

/* C(i,j) = sum(over k) A(i,k) * B(k,j) */

tmp += *(A+(i*Ndim+k)) *  *(B+(k*Pdim+j));

}

*(C+(i*Ndim+j)) = tmp;

}

}

•On a dual core laptop

•13.2 seconds  153 Mflops  one thread

•7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2
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Exercise 6: Area of a Mandelbrot set

 Solution is in the file mandel_par.c

 Errors:

Eps is private but uninitialized.   Two solutions

– It’s write-only so you can make it shared.

– Make it firstprivate

The loop index variable j is shared by default.  Make 
it private. 

The variable c has global scope so “testpoint” may 
pick up the global value rather than the private value 
in the loop.  Solution … pass C as and arg to 
testpoint

Updates to “numoutside” are a race.  Protect with an 
atomic.

254
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Exercise 7 solution 

#pragma omp parallel for default (none) \

shared(x,f,npart,rcoff,side) \

reduction(+:epot,vir) \

schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

………

Loop is not well load 

balanced: best schedule 

has to be found by 

experiment.

Compiler will warn you 

if you have missed some 

variables

See forces.c in MolDynSoln1



........

#pragma omp atomic

f[j]    -= forcex;

#pragma omp atomic

f[j+1]  -= forcey;

#pragma omp atomic

f[j+2]  -= forcez;

}

}

#pragma omp atomic

f[i]     += fxi;

#pragma omp atomic

f[i+1]   += fyi;

#pragma omp atomic

f[i+2]   += fzi;

}

}

All updates to f 

must be atomic

Exercise 7 solution (cont.)

See forces.c in MolDynSoln1



Exercise 7 with orphaning 

#pragma omp single

{  

vir = 0.0;

epot = 0.0;

}

#pragma omp for reduction(+:epot,vir) \

schedule (static,32)

for (int i=0; i<npart*3; i+=3) {

………

Move the parallel construct into Main to reduce 

overhead from creating/suspending threads for 

each call to force()

Implicit barrier needed to avoid race 

condition with update of reduction variables 

at end of the for construct

See forces.c in MolDynSoln2



Exercise 7 reduce sync overhead

ftemp[myid][j]    -= forcex;

ftemp[myid][j+1]  -= forcey;

ftemp[myid][j+2]  -= forcez;

}

}

ftemp[myid][i]         += fxi;

ftemp[myid][i+1]       += fyi;

ftemp[myid][i+2]       += fzi;

} 

Replace atomics with 

accumulation into array 

with extra dimension

See forces.c in MolDynSoln3



Exercise 7 The reduction step

….

#pragma omp for 

for(int i=0;i<(npart*3);i++){

for(int id=0;id<nthreads;id++){

f[i] += ftemp[id][i]; 

ftemp[id][i] = 0.0;

}

}

Reduction can be done in 

parallel

Zero ftemp for next time 

round

See forces.c in MolDynSoln3



261

Appendices
 Sources for Additional information

 Solutions to exercises

Exercise 1: hello world

Exercise 2: Simple SPMD Pi program

Exercise 3: SPMD Pi without false sharing

Exercise 4: Loop level Pi

Exercise 5: Matrix multiplication

Exercise 6: Mandelbrot area

Exercise 7: Molecular dynamics

Exercise 8: linked lists with tasks

Exercise 9: linked lists without tasks

Exercise 10: the producer-consumer pattern

 Thread  Private Data

Exercise 11: Monte Carlo Pi and random numbers

 Fortran and OpenMP

 Compiler Notes



262

Linked lists with tasks (OpenMP 3)
 See the file Linked_omp3_tasks.c

#pragma omp parallel 

{

#pragma omp single

{

p=head;

while (p) {

#pragma omp task firstprivate(p) 

processwork(p);

p = p->next;

}

}

}

Creates a task with its 

own copy of “p” 

initialized to the value 

of “p” when the task is 

defined
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Linked lists without tasks
 See the file Linked_omp25.c

while (p != NULL) {

p = p->next;

count++;

}

p = head;

for(i=0; i<count; i++) {

parr[i] = p;

p = p->next;

}

#pragma omp parallel 

{

#pragma omp for schedule(static,1)

for(i=0; i<count; i++)

processwork(parr[i]);

}

Count number of items in the linked list

Copy pointer to each node into an array

Process nodes in parallel with a for loop

Default schedule Static,1

One Thread 48 seconds 45 seconds

Two Threads 39 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2
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Linked lists without tasks: C++ STL
 See the file Linked_cpp.cpp

std::vector<node *> nodelist;

for (p = head; p != NULL; p = p->next)

nodelist.push_back(p);

int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1)

for (int i = 0; i < j; ++i)

processwork(nodelist[i]);

C++, default sched. C++, (static,1) C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds

Two Threads 47 seconds 32 seconds 28 seconds

Copy pointer to each node into an array

Count number of items in the linked list

Process nodes in parallel with a for loop

Results on an Intel dual core 1.83 GHz CPU,   Intel IA-32  compiler 10.1 build 2
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Exercise 10: producer consumer
int main()

{

double *A, sum, runtime; int numthreads, flag = 0;

A = (double *)malloc(N*sizeof(double));

#pragma omp parallel sections

{

#pragma omp section

{

fill_rand(N, A);

#pragma omp flush

flag = 1;

#pragma omp flush (flag)

}

#pragma omp section

{

#pragma omp flush (flag)

while (flag != 1){

#pragma omp flush (flag)

}

#pragma omp flush 

sum = Sum_array(N, A);

}

}

}

Use flag to Signal when the 

“produced” value is ready

Flush forces refresh to memory.  

Guarantees that the other thread 

sees the new value of A

Notice you must put the flush inside the while 

loop to make sure the updated flag variable is 

seen

Flush needed on both “reader” and “writer” 

sides of the communication
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Data sharing: Threadprivate

 Makes global data private to a thread

Fortran: COMMON blocks

C: File scope and static variables, static class members

 Different from making them PRIVATE

with PRIVATE global variables are masked. 

THREADPRIVATE preserves global scope within each 
thread

 Threadprivate variables can be initialized using
COPYIN or at time of definition (using language-
defined initialization capabilities).
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A threadprivate example (C)

int counter = 0;

#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;

return (counter);

}

Use threadprivate to create a counter for each 

thread.
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Data Copying: Copyin

parameter (N=1000)

common/buf/A(N)

!$OMP THREADPRIVATE(/buf/)

C Initialize the A array

call init_data(N,A)

!$OMP PARALLEL COPYIN(A)

… Now each thread sees threadprivate array A initialied 

… to the global value set in the subroutine init_data()

!$OMP END PARALLEL

end

You initialize threadprivate data using a copyin 

clause. 
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Data Copying: Copyprivate

#include <omp.h>

void input_parameters (int, int); // fetch values of input parameters 

void do_work(int, int); 

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{

#pragma omp single copyprivate (Nsize, choice)

input_parameters (Nsize, choice);

do_work(Nsize, choice);

}

}

Used with a single region to broadcast values of privates 

from one member of a team to the rest of the team.  
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Exercise 11: Monte Carlo Calculations
Using Random numbers to solve tough problems

 Sample a problem domain to estimate areas, compute 
probabilities, find optimal values, etc.

 Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is 
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4

 Compute π by randomly choosing 
points, count the fraction that falls in 
the circle, compute pi.  

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000    π = 3.148
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Exercise 11

 We provide three files for this exercise
pi_mc.c: the monte carlo method pi program

 random.c: a simple random number generator

 random.h: include file for random number generator

 Create a parallel version of this program without 
changing the interfaces to functions in random.c
This is an exercise in modular software … why should a user 

of your parallel random number generator have to know any 
details of the generator or make any changes to how the 
generator is called?

The random number generator must be threadsafe. 

 Extra Credit:
Make your random number generator numerically correct (non-

overlapping sequences of pseudo-random numbers).
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Computers and random numbers
 We use “dice” to make random numbers: 

Given previous values, you cannot predict the next value.

There are no patterns in the series … and it goes on forever.

 Computers are deterministic machines … set an initial 
state, run a sequence of predefined instructions, and 
you get a deterministic answer

By design, computers are not random and cannot produce 
random numbers.

 However, with some very clever programming, we can 
make “pseudo random” numbers that are as random as 
you need them to be … but only if you are very careful.

 Why do I care?  Random numbers drive statistical 
methods used in countless applications:

Sample a large space of alternatives to find statistically good 
answers (Monte Carlo methods).
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Monte Carlo Calculations:
Using Random numbers to solve tough problems
 Sample a problem domain to estimate areas, compute 

probabilities, find optimal values, etc.

 Example: Computing π with a digital dart board:

 Throw darts at the circle/square.

 Chance of falling in circle is 
proportional to ratio of areas:

Ac = r2 * π

As = (2*r) * (2*r)  = 4 * r2

P = Ac/As =  π /4

 Compute π by randomly choosing 
points, count the fraction that falls in 
the circle, compute pi.  

2 * r

N= 10 π = 2.8

N=100 π = 3.16

N= 1000    π = 3.148



277

Parallel Programmers love Monte Carlo 
algorithms

#include “omp.h”

static long num_trials = 10000;

int main ()

{

long i;      long Ncirc = 0;       double pi, x, y;

double r = 1.0;   // radius of circle. Side of squrare is 2*r 

seed(0,-r, r);  // The circle and square are centered at the origin

#pragma omp parallel for private (x, y) reduction (+:Ncirc)

for(i=0;i<num_trials; i++)

{

x = random();         y = random();

if ( x*x + y*y) <= r*r)   Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);

printf("\n %d trials, pi is %f \n",num_trials, pi);

}

Embarrassingly parallel: the 
parallelism is so easy its 

embarrassing.

Add two lines and you have a 
parallel program.
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Linear Congruential Generator (LCG)
 LCG: Easy to write, cheap to compute, portable, OK quality

 If you pick the multiplier and addend correctly, LCG has a 
period of PMOD.

 Picking good LCG parameters is complicated, so look it up 
(Numerical Recipes is a good source).  I used the following:

 MULTIPLIER = 1366

 ADDEND = 150889

 PMOD = 714025

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;

random_last = random_next;
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LCG code
static long MULTIPLIER  = 1366;

static long ADDEND      = 150889;

static long PMOD        = 714025;

long random_last = 0;

double random ()

{

long random_next;

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;

random_last = random_next;

return ((double)random_next/(double)PMOD);

}

Seed the pseudo random 

sequence by setting 

random_last
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Running the PI_MC program with LCG generator

0.00001

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

LCG - one thread
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Log10 number of samples

Run the same 

program the 

same way and 

get different 

answers!  

That is not 

acceptable!

Issue: my LCG 

generator is not 

threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core 

laptop (Intel T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.
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LCG code: threadsafe version
static long MULTIPLIER  = 1366;

static long ADDEND      = 150889;

static long PMOD        = 714025;

long random_last = 0;

#pragma omp threadprivate(random_last)

double random ()

{

long random_next;

random_next = (MULTIPLIER  * random_last + ADDEND)% PMOD;

random_last = random_next;

return ((double)random_next/(double)PMOD);

}

random_last carries 

state between random 

number computations,

To make the generator 

threadsafe, make 

random_last 

threadprivate so each 

thread has its own copy.
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Thread safe random number generators
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Thread safe 

version gives the 

same answer 

each time you 

run the program.

But for large 

number of 

samples, its 

quality is lower 

than the one 

thread result!

Why?
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1 2 3 4 5 6 LCG - one

thread

LCG 4 threads,

trial 1

LCT 4 threads,

trial 2

LCG 4 threads,

trial 3

LCG 4 threads,

thread safe
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Pseudo Random Sequences

 Random number Generators (RNGs) define a sequence of pseudo-random 
numbers of length equal to the period of the RNG

 In a typical problem, you grab a subsequence of the RNG range

Seed determines starting point

 Grab arbitrary seeds and you may generate overlapping sequences  

 E.g. three sequences … last one wraps at the end of the RNG period.

 Overlapping sequences = over-sampling and bad statistics … lower 
quality or even wrong answers!

Thread 1

Thread 2

Thread 3



284

Parallel random number generators
 Multiple threads cooperate to generate and use 

random numbers.

 Solutions:

Replicate and Pray

Give each thread a separate, independent 
generator

Have one thread generate all the numbers.

Leapfrog … deal out sequence values “round 
robin” as if dealing a deck of cards.

Block method … pick your seed so each 
threads gets a distinct contiguous block.

 Other than “replicate and pray”, these are difficult 
to implement.  Be smart … buy a math library that 
does it right.

If done right, can 

generate the 

same sequence 

regardless of the 

number of 

threads …

Nice for 

debugging, but 

not really 

needed 

scientifically.

Intel’s Math kernel Library supports 

all of these methods.
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MKL Random number generators (RNG)

#define BLOCK 100

double  buff[BLOCK]; 

VSLStreamStatePtr stream;

vslNewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val); 

vdRngUniform (VSL_METHOD_DUNIFORM_STD, stream, 
BLOCK, buff, low, hi)

vslDeleteStream( &stream );

 MKL includes several families of RNGs in its vector statistics library.

 Specialized to efficiently generate vectors of random numbers

Initialize a 

stream or 

pseudo 

random 

numbers

Select type of 

RNG and set seed

Fill buff with BLOCK pseudo rand.  

nums, uniformly distributed with 

values between lo and hi.
Delete the stream when you are done
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Wichmann-Hill generators (WH)

 WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

 Easy to use, just make each stream threadprivate and initiate 
RNG stream so each thread gets a unique WG RNG. 

VSLStreamStatePtr stream;

#pragma omp threadprivate(stream)

…

vslNewStream(&ran_stream, VSL_BRNG_WH+Thrd_ID, (int)seed);
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Independent Generator for each 
thread

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6

WH one

thread

WH, 2

threads

WH, 4

threads

L
o

g
1

0
R

e
la

tiv
e

 e
rro

r

Log10 number of samples

Notice that 

once you get 

beyond the 

high error, 

small sample 

count range, 

adding threads 

doesn’t 

decrease 

quality of 

random 

sampling.
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#pragma omp single

{   nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER;     // just pick a seed

pseed[0] = iseed;

mult_n = MULTIPLIER;

for (i = 1; i < nthreads; ++i)

{

iseed = (unsigned long long)((MULTIPLIER * iseed) % PMOD);

pseed[i] = iseed;

mult_n = (mult_n * MULTIPLIER) % PMOD;

}

}

random_last = (unsigned long long) pseed[id];

Leap Frog method
 Interleave samples in the sequence of pseudo random numbers:

Thread i starts at the ith number in the sequence

Stride through sequence, stride length = number of threads.

 Result … the same sequence of values regardless of the number 
of threads.

One thread 

computes offsets 

and strided 

multiplier

LCG with Addend = 0 just 

to keep things simple

Each thread stores offset starting 

point into its threadprivate “last 

random” value
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Same sequence with many threads.
 We can use the leapfrog method to generate the 

same answer for any number of threads

Steps One thread 2 threads 4 threads

1000 3.156 3.156 3.156

10000 3.1168 3.1168 3.1168

100000 3.13964 3.13964 3.13964

1000000 3.140348 3.140348 3.140348

10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and 

one for the y values (WH+1).  Also used the leapfrog method to deal out iterations among threads.
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Appendices
 Sources for Additional information

 Solutions to exercises

Exercise 1: hello world

Exercise 2: Simple SPMD Pi program

Exercise 3: SPMD Pi without false sharing

Exercise 4: Loop level Pi

Exercise 5: Matrix multiplication

Exercise 7: Molecular dynamics

Exercise 8: linked lists with tasks

Exercise 9: linked lists without tasks

Exercise 10: the producer-consumer pattern

 Thread  Private Data

Exercise 11: Monte Carlo Pi and random numbers

 Fortran and OpenMP

 Compiler Notes



Fortran and OpenMP

 We were careful to design the OpenMP 
constructs so they cleanly map onto C, C++ 
and Fortran.

 There are a few syntactic differences that once 
understood, will allow you to move back and 
forth between languages.

 In the specification, language specific notes 
are included when each construct is defined. 
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OpenMP:
Some syntax details for Fortran programmers

 Most of the constructs in OpenMP are compiler 
directives.

For Fortran, the directives take one of the forms:

C$OMP construct [clause [clause]…]

!$OMP construct [clause [clause]…]

*$OMP construct [clause [clause]…]

 The OpenMP include file and lib module

use omp_lib

Include omp_lib.h



OpenMP:
Structured blocks (Fortran)

C$OMP PARALLEL

10    wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

print *,id

Most OpenMP constructs apply to structured blocks.

– Structured block: a block of code with one point 
of entry at the top and one point of exit at the 
bottom.  

– The only “branches” allowed are STOP 
statements in Fortran and exit() in C/C++.

C$OMP  PARALLEL

10    wrk(id) = garbage(id)

30    res(id)=wrk(id)**2

if(conv(res(id))goto 20

go to 10

C$OMP END PARALLEL

if(not_DONE) goto 30

20    print *, id

A structured block Not A structured block



OpenMP:
Structured Block Boundaries

 In Fortran: a block is a single statement or a group of 

statements between directive/end-directive pairs. 

C$OMP PARALLEL

10    wrk(id) = garbage(id)

res(id) = wrk(id)**2

if(conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO

do I=1,N

res(I)=bigComp(I)

end do 

C$OMP END PARALLEL DO

 The  “construct/end construct” pairs is done anywhere a 

structured  block appears in Fortran.  Some examples:

 DO   …  END  DO

 PARALLEL  …  END PARREL

 CRICITAL  … END CRITICAL

 SECTION  … END SECTION

 SECTIONS  … END SECTIONS

 SINGLE  …  END SINGLE

 MASTER … END MASTER



Runtime library routines
 The include file or module defines parameters

 Integer parameter omp_locl_kind

 Integer parameter omp_nest_lock_kind

 Integer parameter omp_sched_kind

 Integer parameter openmp_version

– With value that matches C’s _OPEMMP macro

 Fortran interfaces are similar to those used with C 

Subroutine omp_set_num_threads (num_threads)

 Integer  function omp_get_num_threads()

 Integer function omp_get_thread_num()\

Subroutine omp_init_lock(svar)

– Integer(kind=omp_lock_kind) svar

Subroutine omp_destroy_lock(svar)

Subroutine omp_set_lock(svar)

Subroutine omp_unset_lock(svar)
295
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Appendices
 Sources for Additional information

 Solutions to exercises

Exercise 1: hello world

Exercise 2: Simple SPMD Pi program

Exercise 3: SPMD Pi without false sharing

Exercise 4: Loop level Pi

Exercise 5: Matrix multiplication

Exercise 7: Molecular dynamics

Exercise 8: linked lists with tasks

Exercise 9: linked lists without tasks

Exercise 10: the producer-consumer pattern

 Thread  Private Data

Exercise 11: Monte Carlo Pi and random numbers

 Fortran and OpenMP

 Compiler Notes
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Compiler notes: Intel on Windows

 Intel compiler:

Launch SW dev environment … on my laptop I use:

– start/intel software development tools/intel C++ 
compiler 11.0/C+ build environment for 32 bit 
apps

cd to the directory that holds your source code

Build software for program foo.c

– icl /Qopenmp foo.c

Set number of threads environment variable

– set OMP_NUM_THREADS=4

Run your program

– foo.exe To get rid of the pwd on the 

prompt, type 

prompt = %
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Compiler notes: Visual Studio

 Start “new project”

 Select win 32 console project

Set name and path

On the next panel, Click “next” instead of finish so you can 
select an empty project on the following panel.

Drag and drop your source file into the source folder on the 
visual studio solution explorer

Activate OpenMP

– Go to project properties/configuration 
properties/C.C++/language … and activate OpenMP

 Set number of threads inside the program

 Build the project

 Run “without debug” from the debug menu.
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Compiler notes: Other

 Linux and OS X with gcc:

> gcc -fopenmp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

 Linux and OS X with PGI:

> pgcc -mp foo.c

> export OMP_NUM_THREADS=4

> ./a.out

for the Bash shell
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OpenMP constructs

 #pragma omp parallel

 #pragma omp for

 #pragma omp critical

 #pragma omp atomic

 #pragma omp barrier

 Data environment clauses

 private (variable_list)

 firstprivate (variable_list)

 lastprivate (variable_list)

 reduction(+:variable_list)

 Tasks (remember … private data is made firstprivate by default)

 pragma omp task

 pragma omp taskwait

 #pragma threadprivate(variable_list)  

Where variable_list is a 

comma separated list of 

variables

Print the value of the macro

_OPENMP

And its value will be 

yyyymm

For the year and month of the 

spec the implementation used

Put this on a line right after you 

define the variables in question


