
ESC 2011 - Bertinoro

Understanding
Low-level

Performance
Tuning

Sverre Jarp, Andrzej Nowak

CERN openlab
October 28th 2011

SJ,AN - Understanding Performance Tuning 2

Contents

1. Rationale and background

2. Software performance tuning on a modern PC

3. Drilling down on performance figures

4. Practical tips

5. Tools

> In this talk, we focus on processor performance

> We focus on Intel Core processors, but the same
techniques can often be applied to other case

Andrzej Nowak - Understanding Performance Tuning

Rationale and background

Andrzej Nowak - Understanding Performance Tuning

Seven dimensions of performance

First three dimensions:
Hardware vectors/SIMD
Pipelining
Superscalar

Next dimension is a “pseudo”

dimension:
Hardware multithreading

Last three dimensions:

Multiple cores
Multiple sockets
Multiple compute nodes

Vector width

Superscalar

Pipelining

Nodes

Multicore

Sockets

Multithreading

Andrzej Nowak - Understanding Performance Tuning

An iterative approach
The path to

optimised
code

Source Code

Compiler
Machine

Code

Platform

Execution
Results

Design of
Data

Structures
and

Algorithms

Performance tuning levels – reality check

Level Potential gains Estimate

Algorithm Major ~10x-1000x

Source code Medium ~1x-10x

Compiler level Medium-Low
~10%-20% (more
possible with autovec

or parallelization)

Operating system Low ~5-20%

Hardware Medium ~10%-30%

Andrzej Nowak - Understanding Performance Tuning 7

There is a facility that can monitor all of the items above
and their interaction – hardware counters

Andrzej Nowak - Understanding Performance Tuning

Performance tuning on a modern PC

Key techniques

Measuring performance

>The most common performance measurement
unit is time
 Wall clock time – “how long do I have to wait for it to

be done?”
 CPU time – “for how long is the computer busy?”
 Latency – “how long do I have to wait to get an

answer?”
 Throughput – “how much of X in a period of time?”

>Minimizing time/latency is not the same as

maximizing throughput
 and vice versa – i.e. see Amdahl’s and Gustafson’s

laws

Andrzej Nowak - Understanding Performance Tuning 9

Andrzej Nowak - Understanding Performance Tuning 10

Performance monitoring in hardware

> Most modern CPUs are able to provide real-time statistics
concerning executed instructions…

> …via a Performance Monitoring Unit (PMU)
> The PMU is watching your application in real time! (and

everything else that goes on inside the CPU)
> Limited number of sentries (counters) available, but they

are versatile
> Counters monitor events as they happen
> Recorded occurrences are called samples
> Core i7 and other (Nehalem and later):
 2-4 universal counters: #0, #1, (#2, #3)
 3 specialized counters: #16, #17, #18
 Additional 8 uncore counters: #20-#27

Andrzej Nowak - Understanding Performance Tuning 11

Events

> Many events in the CPU can be monitored
 A comprehensive list is dependent on the CPU and can be

extracted from the manufacturer’s manuals or from relevant
tools
 Examples: cache misses, instructions executed, cycles,

loads, vector operations

> On some CPUs (i.e. Intel Core), some events have bit-
masks which limit their range, called “unit masks” or
“umasks”
 Example: memory instructions retired: “ALL” or “only LOAD” or

“only STORE”

> Extensive information: Intel Manual 248966-023a
 Intel Manual 248966-023a “Intel 64 and IA-32 Architectures

Optimization Reference Manual”

> AMD CPU-specific manuals
 i.e. “BIOS and Kernel Developer’s Guide for AMD Family 10h

Processors” or “Software Optimization Guide For AMD Family
10h and 12h Processors”

The Performance Monitoring Unit

RETIRED INSTRUCTIONS
(=successful & useful execution)

PERFORMANCE MONITORING UNIT
(PMU)

ADD

ADD ADD

ADD MOV

MOV SUB

MOV MUL
0 1 2 3

MOV 0 1 2 3

READOUT:
ADD: 3 MOV: 3

Let’s monitor
ADD and MOV
instructions

Popular methods for performance monitoring:
Counting

1. Programming the PMU with the specified
event(s)

2. Reading the elapsed counts

3. Producing the result

Andrzej Nowak - Understanding Performance Tuning 13

PERFORMANCE MONITOR

resultapplication

PMU

1
1 2

2

TIME

3

Popular methods for performance monitoring:
Sampling (a.k.a. “Profiling”)

1. The PMU is programmed with the event(s) of interest
2. The application is started
3. Hardware performance counters count in the background

> When a pre-programmed value is reached, a performance
monitoring interrupt is sent

> The interrupt handler can perform a variety of operations, but most
of the time it will try to register the state of the machine, especially
the instruction pointer – this is called a sample

Andrzej Nowak - Understanding Performance Tuning 14

PMU
w/ reference event

Instruction
Pointer

PERFORMANCE
MONITOR

2

2

application,
shared libraries

1

3

result

6 (5: symbol information)

4. Finalization
 Once the application

finishes, the performance
monitoring software
consolidates and renders
the results. There are
different ways to present
the captured data, and
they also depend on the
type of counters used.

Popular methods for performance monitoring:
Other useful mechanisms

> Event multiplexing
 Since the amount of simultaneously monitored

events is limited, a technique called “multiplexing”
can be used. It consists of frequent, periodical time-
based switching of the monitored events on the
counters. Final results are produced through
extrapolation, and the choice of events in each
group is important for accuracy.

> System wide profiling vs. application profiling
 Some tools monitor the whole operating system and

later allow you to restrict the results just to your
application or library. Some tools (like pfmon) have
built in context switching logic which allows for
direct monitoring of applications.

Andrzej Nowak - Understanding Performance Tuning 15

Popular methods for performance monitoring:
Other useful mechanisms

> Instrumented vs. non-instrumented monitoring
 Some analysis types require binary instrumentation. That

means that the monitoring tool inserts probes into the binary
code and changes the way the monitored application is
running. Such activities might slow down the application by
orders of magnitude!

 Other analysis types don’t require binary instrumentations and
can be performed in the background without disturbing the
application. The performance penalty is usually minor, in the
order of 1-2%.

> User level vs. kernel level
 Most tools will allow you to choose whether you wish to

monitor on the user level or the kernel level (e.g. pfmon).
Kernel level monitoring is very handy to debug drivers or
system call abuse. You can get a profile and counts just as
you would with a userland application.

Andrzej Nowak - Understanding Performance Tuning 16

Andrzej Nowak - Understanding Performance Tuning 17

Popular methods for performance monitoring:
Triggers and triggering

> Automatically start or
stop monitoring

> Trigger types:
 Code
 Data

> A symbol name…
 i.e. “foobar”

> …or an address
 i.e. 0x8103b91e

Code Data

Andrzej Nowak - Understanding Performance Tuning

Common performance figures
And how to interpret them

Andrzej Nowak - Understanding Performance Tuning 19

Basic information about your program:
Recap

> The amount of:
 instructions executed
 processor cycles spent on the program
 transactions on the bus

> The amount/percentage of:
 memory loads and stores
 floating point operations
 vector operations (SIMD)
 branch instructions
 cache misses

Andrzej Nowak - Understanding Performance Tuning 20

Advanced information about your program

> The amount and type of:
 micro-ops executed
 SIMD instructions executed (and the kind)
 resource stalls within the CPU

> Cache access characteristics
 A rich set on Intel Core CPUs
 Requests (missed / hit / total / exclusive or shared

/ store or read)
 Lines modified / evicted / prefetched

Andrzej Nowak - Understanding Performance Tuning 21

Derived events

> Too much information available?
 Low level and fine grained events can be combined

to produce ratios (so called “derived events”)

> Examples (discussion follows):
 Cycles per instructions [CPI]
 Cache miss ratio or impact
 Branch misprediction ratio
 Modified data sharing ratio
 Percentage of wasted cycles
 Bus occupancy

Andrzej Nowak - Understanding Performance Tuning 22

A word for the future

 Mapping performance monitoring data onto your
source code and environment requires care and

experience

Andrzej Nowak - Understanding Performance Tuning 24

Cache misses
> If the requested item is not in the polled

cache, a higher level has to be consulted
(cache miss)

> Significant impact on performance
 Memory access issues are very common, yet

hard to fix

> Ratio:
LAST LEVEL CACHE MISSES / LAST LEVEL CACHE

REFERENCES

> Tips:
 A last level cache hit ratio below 95% is

considered to be catastrophic!
 Usually the figure should be above 99%
 The overall cache miss rate might be low (misses

/ total instructions), but the resource stalls figure
might be high; always check the cache miss
percentage

Data request

L1

L2

L3

Andrzej Nowak - Understanding Performance Tuning 25

Branch prediction

> Branch prediction is a process inside the
CPU which determines whether a conditional
branch in the program is anticipated by the
hardware to be taken or not

> Typically: prediction based on history

> The effectiveness of this hardware
mechanism heavily depends on the way the
software is written

> The penalty for a mispredicted branch is
usually severe (the pipelines inside the CPU
get flushed and execution stalls for a while)

Andrzej Nowak - Understanding Performance Tuning 26

Branch prediction ratios

> The percentage of branch instructions
 BRANCH INSTRUCTIONS / ALL INSTRUCTIONS

> The percentage of mispredicted branches
 MISPREDICTED BRANCHES / BRANCH INSTRUCTIONS
 The number of incorrectly predicted branches is

typically rather low: 20%, 10%, 5%, …. (?)

if (x > 0)

do_work() calculate()

YES: 80% NO: 20%

Andrzej Nowak - Understanding Performance Tuning 27

Floating point operations

> Often a significant portion of work of an
application

> May be accelerated using AVX or SSE (SIMD)

> Related events on the Intel Core
microarchitecture:
 “traditional” x87 FP ops
 Packed/Scalar single computational SIMD
 Packed/Scalar double computational SIMD
 SIMD micro-ops in total

> Non-computational SIMD instructions can
also be counted

Andrzej Nowak - Understanding Performance Tuning

Performance tuning tools
An update on popular performance monitoring facilities

Andrzej Nowak - Understanding Performance Tuning 29

Popular performance tuning software (1)

> Linux “perf” – the new performance monitoring subsystem
in the Linux kernel
 Pros:

• Low level access to some counters
• No patching needed for the application nor the kernel
• Growing community and toolset

 Cons:
• A new (and somewhat crude) implementation that still needs time
• Initial version: dangerously oversimplified

> perfmon2 – a powerful legacy performance monitoring
subsystem for Linux
 Pros:

• Low level access to all counters
• No recompilation needed for the application
•Well established toolset

 Cons:
• Recompiled kernel or kernel patch needed
• Development slowed down because of “perf”, shrinking community

Andrzej Nowak - Understanding Performance Tuning 30

Popular performance tuning software (2)

> Igprof – Covered by Lassi earlier in the week
> gprof – flat profiler
 Recompilation needed

> oprofile – flat profiler and event based sampling
 Flat profiles
 Antique; Kernel driver needed

> Valgrind
 Synthetic software CPU
 Simulates cache misses and branch mispredictions, memory

space profiler, function call relationships

> Intel tools - new redesigned tools, native to Linux
 “Inspector” - Memory and threading inspector (extended

functionality of Thread Checker)
 “VTune Amplifier” - Performance inspector (extended

functionality of VTune and Thread Profiler)

Andrzej Nowak - Understanding Performance Tuning 31

Popular performance tuning software (3)

> Intel products (soon available at CERN):
 VTune Amplifier (image on right), Inspector
 PTU (Performance Tuning Utility; next slide)
 Thread Profiler (legacy)

> AMD CodeAnalyst (image on left)

Andrzej Nowak - Understanding Performance Tuning 32

Popular performance tuning software (4)

Andrzej Nowak - Understanding Performance Tuning

Perfmon2 & pfmon
A real-world performance monitoring framework example
… and a demo

Andrzej Nowak - Understanding Performance Tuning 35

Perfmon2 architecture

> We use it as an
example of a robust
performance
monitoring framework
for Linux

> perfmon2 – kernel part

> libpfm – userspace
interface for perfmon

> pfmon – “example”
userspace application,
perfmon2 client

Kernel

perfmon2

Userspace
libpfm

pfmon

Andrzej Nowak - Understanding Performance Tuning 36

Perfmon2 – description and rationale

> Resides in the kernel
 Available as a kernel patch
 Very basic functionality

> Why was it chosen?
 Simple to use, lightweight, yet robust
 Support for numerous architectures:

 x86, x86-64, ia64, powerpc, cell / ps3, mips, sparc
 Supported by numerous hardware vendors:

•HP Labs, AMD, IBM, Intel, Sony, Toshiba, Cray,
SiCortex, Broadcom

•Also received support from Google and RedHat
 Built on well established experience
 Long history of good support

Andrzej Nowak - Understanding Performance Tuning 37

Pfmon overview

> Console based interface to libpfm/perfmon2

> Provides convenient access to performance
counters

> Wide range of functionality:
 Counting events
 Sampling in regular intervals
 Flat profile
 System wide mode
 Triggers
 Different data readout “plug-ins” (modules)

available

Andrzej Nowak - Understanding Performance Tuning

Remember: An iterative approach
The path to

optimised
code

Source Code

Compiler
Machine

Code

Platform

Execution
Results

Design of
Data

Structures
and

Algorithms

Andrzej Nowak - Understanding Performance Tuning

An example: Matrix Multiplication

Why matmul?
1) Simple, analytically understandable
2) Computationally intensive

a) but memory accesses get in your way, if you are not careful
3) FLP-OPS: N3 with SSE (DP)

Andrzej Nowak - Understanding Performance Tuning

Matmul (1): Source code
Two separate source files: matrix.c, multiply.c

#define NUM 1024
#define DIM 1024
 static double a[DIM][DIM], b[DIM][DIM], c[DIM][DIM];
....
 start = _rdtsc(); // Shown on Monday
 multiply_d(a,b,c);
 stop = _rdtsc();

unsigned long i,j,k;
for(i=0;i<NUM;i++) {
 for(k=0;k<NUM;k++) {
 for(j=0;j<NUM;j++) {
 c[i][j] = c[i][j] + a[i][k] * b[k][j];
}}}

Minimum FP-OPS = 1.073.741.824
Minimum CYCLES = 536.870.912

Needed pfmon commands
> Find the counters of interest

> Decide if “umasks” are required

> Use multiplexing

SJ, AN - Understanding Performance Tuning 42

pfmon -ecpu_clk_unhalted:thread_p,inst_retired:any_p,
fp_comp_ops_exe:sse_fp,last_level_cache_references
 -emem_inst_retired:loads,mem_inst_retired:stores,
last_level_cache_misses --eu-c --switch-timeout=2
./matrix

pfmon -l

pfmon –iMEM_INST_RETIRED
Name : MEM_INST_RETIRED
Desc : Memory instructions retired
Umask-01 : 0x01 : [LOADS] : Instructions retired which cont
Umask-02 : 0x02 : [STORES] : Instructions retired which con

Andrzej Nowak - Understanding Performance Tuning

Matmul (2): Run 1

Compile with icc and O2

Fraction of theoretical throughput limit = 13.25%

4.428.551.833 CPU_CLK_UNHALTED:THREAD_P
7.527.231.268 INST_RETIRED:ANY_P
2.150.475.685 FP_COMP_OPS_EXE:SSE_FP
 7.234.570 LAST_LEVEL_CACHE_REFERENCES
3.221.299.472 MEM_INST_RETIRED:LOADS
1.074.821.795 MEM_INST_RETIRED:STORES
 555.421 LAST_LEVEL_CACHE_MISSES

Andrzej Nowak - Understanding Performance Tuning

Fraction of throughput limit = 13.25%

4.428.551.833 CPU_CLK_UNHALTED:THREAD_P
7.527.231.268 INST_RETIRED:ANY_P
2.150.475.685 FP_COMP_OPS_EXE:SSE_FP
 7.234.570 LAST_LEVEL_CACHE_REFERENCES
3.221.299.472 MEM_INST_RETIRED:LOADS
1.074.821.795 MEM_INST_RETIRED:STORES
 555.421 LAST_LEVEL_CACHE_MISSES

Matmul (2): Run 3

Compile with icc and O3, ipo

Fraction of throughput limit = 27.02%

2.153.265.512 CPU_CLK_UNHALTED:THREAD_P
2.683.340.732 INST_RETIRED:ANY_P
1.083.687.270 FP_COMP_OPS_EXE:SSE_FP
 70.547.893 LAST_LEVEL_CACHE_REFERENCES
1.082.271.127 MEM_INST_RETIRED:LOADS
 538.017.571 MEM_INST_RETIRED:STORES
 170.399 LAST_LEVEL_CACHE_MISSES

Compared to previous run

Vector-friendly change

Andrzej Nowak - Understanding Performance Tuning

Fraction of throughput limit = 27.02%

2.153.265.512 CPU_CLK_UNHALTED:THREAD_P
2.683.340.732 INST_RETIRED:ANY_P
1.083.687.270 FP_COMP_OPS_EXE:SSE_FP
 70.547.893 LAST_LEVEL_CACHE_REFERENCES
1.082.271.127 MEM_INST_RETIRED:LOADS
 538.017.571 MEM_INST_RETIRED:STORES
 170.399 LAST_LEVEL_CACHE_MISSES

Matmul (3): Run 6b
Compile with icc and O3, ipo
Transpose one matrix
Unroll by 4

Fraction of throughput limit = 66.35%

 875.098.637 CPU_CLK_UNHALTED:THREAD_P
2.202.587.599 INST_RETIRED:ANY_P
1.078.769.120 FP_COMP_OPS_EXE:SSE_FP
 4.455.041 LAST_LEVEL_CACHE_REFERENCES
 512.036.721 MEM_INST_RETIRED:LOADS
 240.648.551 MEM_INST_RETIRED:STORES
 254.890 LAST_LEVEL_CACHE_MISSES

Compared to previous run

Cache-friendly changes

Andrzej Nowak - Understanding Performance Tuning

Fraction of throughput limit = 13.25%

4.428.551.833 CPU_CLK_UNHALTED:THREAD_P
7.527.231.268 INST_RETIRED:ANY_P
2.150.475.685 FP_COMP_OPS_EXE:SSE_FP
 7.234.570 LAST_LEVEL_CACHE_REFERENCES
3.221.299.472 MEM_INST_RETIRED:LOADS
1.074.821.795 MEM_INST_RETIRED:STORES
 555.421 LAST_LEVEL_CACHE_MISSES

Matmul (4): Overall gain is 5x
Compile with icc and O3, ipo
Transpose b-matrix
Unroll by 4

Fraction of throughput limit = 66.35%

 875.098.637 CPU_CLK_UNHALTED:THREAD_P
2.202.587.599 INST_RETIRED:ANY_P
1.078.769.120 FP_COMP_OPS_EXE:SSE_FP
 4.455.041 LAST_LEVEL_CACHE_REFERENCES
 512.036.721 MEM_INST_RETIRED:LOADS
 240.648.551 MEM_INST_RETIRED:STORES
 254.890 LAST_LEVEL_CACHE_MISSES

Compared to first run

Conclusion

SJ, AN - Understanding Performance Tuning 47

Source Code

Compiler
Machine

Code

Platform

Execution
Results

Design of
Data

Structures
and

Algorithms

> Low-level performance monitoring
works best inside-the-core

 On a restricted piece of code:

•one central algorithm

 Source code fully available

 Good knowledge of compiler and platform

 The theoretically best result is known

Q & A

	ESC 2011 - Bertinoro
	Contents
	Rationale and background
	Seven dimensions of performance
	An iterative approach
	Performance tuning levels – reality check
	Performance tuning on a modern PC
	Measuring performance
	Performance monitoring in hardware
	Events
	The Performance Monitoring Unit
	Popular methods for performance monitoring:�Counting
	Popular methods for performance monitoring:�Sampling (a.k.a. “Profiling”)
	Popular methods for performance monitoring:�Other useful mechanisms
	Popular methods for performance monitoring:�Other useful mechanisms
	Popular methods for performance monitoring:�Triggers and triggering
	Common performance figures
	Basic information about your program:�Recap
	Advanced information about your program
	Derived events
	A word for the future
	Cache misses
	Branch prediction
	Branch prediction ratios
	Floating point operations
	Performance tuning tools
	Popular performance tuning software (1)
	Popular performance tuning software (2)
	Popular performance tuning software (3)
	Popular performance tuning software (4)
	Perfmon2 & pfmon
	Perfmon2 architecture
	Perfmon2 – description and rationale
	Pfmon overview
	Remember: An iterative approach
	An example: Matrix Multiplication
	Matmul (1): Source code
	Needed pfmon commands
	Matmul (2): Run 1
	Matmul (2): Run 3
	Matmul (3): Run 6b
	Matmul (4): Overall gain is 5x
	Conclusion
	Slide Number 48

