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Part I - Black Holes and Dark Matter

Black Holes phenomenology:
- Study of Black Hole inspirals

- Accretion physics

Dark Matter searches
- Can Black holes of primordial 

origin be a part of the Dark 
Matter?


- Can we learn something on the 
nature of the Dark Matter by 
studying Black Hole physics?Multi-messenger astronomy

- Gravitational Waves

- Radio waves/ X-rays/ Gamma rays/ 

Neutrinos
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Black Holes in the Universe

Stellar-mass black holes

IMBHs? 
100 < M < 106 MSun 

Hypothetical link between stellar-mass and SMBHs


• Originated by direct collapse of low-metallicity gas 
clouds? Primordial origin?


• Recent detection by LIGO/Virgo arXiv:2009.01190

uncertainty is greater for the minimal-assumption
reconstruction due to greater flexibility in its waveform
model. The agreement between the reconstructed wave-
forms using the two models can be quantified through the
noise-weighted inner product that enters Eq. (5), and it is
found to be 94þ2

−3%, consistent with expectations for the
SNR at which GW150914 was observed.

IV. DISCUSSION

We have presented measurements of the heaviest stellar-
mass BHs known to date, and the first stellar-mass BBH.
The system merges into a BH of ≈60M⊙. So far, stellar-
mass BHs of masses ≈10M⊙ have been claimed using
dynamical measurement of Galactic x-ray binaries [123].
Masses as high as 16–20M⊙ and 21–35M⊙ have been
reported for IC10 X-1 [124,125] and NGC300 X-1 [126],
respectively; however, these measurements may have been
contaminated by stellar winds as discussed in Ref. [127]
and references therein. Our results attest that BBHs do form
and merge within a Hubble time. We have constrained the
spin of the primary BH of the binary to be a1 < 0.7 and
we have inferred the spin of the remnant BH to be af ≈ 0.7.
Up to now, spin estimates of BH candidates have relied on
modeling of accretion disks to interpret spectra of x-ray
binaries [128]. In contrast, GW measurements rely only on

the predictions of general relativity for vacuum spacetime.
Astrophysical implications of our results on the rate of
BBH mergers are discussed in Ref. [129] and implications
for our understanding of the formation and evolution of
BBHs are discussed in Ref. [97].
The statistical uncertainties with which we have char-

acterized the source properties and parameters reflect the
finite SNR of the observation of GW150914 and the error
budget of the strain calibration process. The latter degrades
primarily the estimate of the source location. If we assume
that the strain was perfectly calibrated, i.e., hM ¼ h, see
Eqs. (1) and (4), the 50% and 90% credible regions for sky
location would become 48 deg2 and 150 deg2, compared to
the actual results of 150 deg2 and 610 deg2, respectively.
The physical parameters show only small changes with the
marginalization over calibration uncertainty, for example,
the final mass Msource

f changes from 62þ4
−4M⊙ including

calibration uncertainty to 62þ4
−3M⊙ assuming perfect cali-

bration, and the final spin af changes from 0.67þ0.05
−0.07 to

0.67þ0.04
−0.05 . The effect of calibration uncertainty is to increase

the overall parameter range at a given probability, but the
medians of the PDFs remain largely unchanged. For
GW150914, the dominant source of statistical uncertainty
is the finite SNR. More accurate calibration techniques are
currently being tested, and one can expect that in future

FIG. 6. Time-domain data (sampled at 2048 Hz) and reconstructed waveforms of GW150914, whitened by the noise power spectral
density (in Fig. 1 of Ref. [1] the data are band passed and notched filtered), for the H1 (top) and L1 (bottom) detectors. Times are shown
relative to September 14, 2015 at 09:50:45 UTC. The ordinate axes on the right are in units of noise standard deviations from zero—i.e.,
the peak alone is an ∼4-σ excursion relative to the instrument noise at that time—and on the left are normalized in order to preserve the
strain amplitude at 200 Hz. The waveforms are plotted as bands representing the uncertainty in the reconstruction. Shaded regions
correspond to the 90% credible regions for the reconstructed waveforms. The broadest (dark blue) shaded region is obtained with the
model that does not assume a particular waveform morphology, but instead uses a linear combination of sine-Gaussian wavelets.
The lighter, narrower shaded region (cyan) is the result from the modeled analyses using IMRPhenom and EOBNR template waveforms.
The thin grey lines are the data. The agreement between the reconstructed waveforms using the two models is found to be 94þ2

−3%.

PRL 116, 241102 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JUNE 2016

241102-10

X-ray binaries GW mergers

Supermassive 
black holes

Observed up to 

z ~ 10

Seed problem

4 X-ray AGN in a z ⇠ 10 galaxy

Fig. 2 JWST and Chandra images of UHZ1: Panel (a) The JWST NIRCam image of the
surroundings of UHZ1, and a zoom-in NIRCam image of UHZ1 in Panels (b and c). Panel (d)
JWST images of UHZ1 in seven filters. The galaxy is detected in all JWST bands except for
F115W. The non-detection in the bluest F115W band clearly indicates the dropout nature
of the galaxy and suggests that it is located at z ⇡ 10. The source is extended, with a
potentially disturbed morphology evocative of late-stage mergers at lower redshift. A bright
nuclear region is apparent in the F150W and F200W bands, and the contrast of this nucleus
against the galaxy outskirts decreases for the redder bands. (e) A JWST/Chandra overlay
showing a 4.2� excess of X-ray counts cospatial with UHZ1. (f) The same Chandra 2�7 keV
Chandra image, this time with UHZ1 represented as black contours. The size of the X-ray
source is consistent with a point source. The location, luminosity, and spectral characteristics
of the source suggest that it is a heavily obscured quasar residing in the z = 10.3 galaxy,
UHZ1. North is up and East is left.

Of this sample of 11 JWST galaxies, we detect a statistically significant X-
ray source associated with UHZ1 (RA=0:14:16.096, Dec=-30:22:40.285); this
galaxy is magnified[2] by a factor of µ = 3.81+0.41

�0.56
. No other galaxies are

located in the vicinity of UHZ1 that could be associated with the X-ray source
(Figure 2). We note that of the galaxy sample, UHZ1 has the highest lensing

https://arxiv.org/abs/2009.01190


Pisa - June 2023

10-22 eV 1 eV 1 TeV1 GeV 1019 GeV
(10-5 g)

1057 GeV
(1033 g)

“Fuzzy” Dark 
Matter
λdB ~ 1 kpc ~ size of a 
dSph Galaxy

[Hui, Ostriker, 
Tremaine, Witten 
2016] 

Axion-like particles

Primordial black holes 
(PBHs)Weakly interacting massive 

particles (WIMPS)
e.g. lightest neutralino state in 
MSSM

Proposed more than 40 
years ago [Zeld’ovich and 
Novikov 1966, Hawking 
1971]

1st wave of popularity 
following microlensing 
hints by MACHO 
collaboration [Alcock et al. 
1997]

Recently reconsidered in 
the DM community

Sterile neutrinos

hc
G

Black Holes as Dark Matter
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Primordial Black Hole phenomenology
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Credit: Bradley Kavanagh, https://github.com/bradkav/PBHbounds
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PBH constraintsWhy a sub-dominant population would matter?

Pisa - September 2023

• A discovery of a sub-dominant population of DM in the form of (massive) 
PBHs could:


• Solve the problem of the SMBH seed?


• Reveal non-trivial early universe physics


• Help us set stringent upper limits on other DM candidates
4

(UCMHs) have ⇢(r) / r
�9/4 density profiles, which has

been confirmed by recent 3D simulations [16]. Since fPBH

is at or well below the percent-level in all but one of our
detection scenarios, we can assume that UCMHs form in
isolation, so we neglect the e↵ects of PBH-PBH interac-
tions on the UCMH profile.

Due to the steepness of the profile the DM density
reaches a maximum value at the “annihilation plateau”,
where the DM annihilation rate becomes equal to the
Hubble rate. Due to the large resulting gamma-ray lu-
minosities, UCMHs in the Milky Way would appear as
bright point sources with no counterparts in other wave-
lengths. Previous analyses searching the 3FGL for DM
subhalos [60–62] have identified 19 bright, high-latitude,
non-variable unassociated point sources that are spec-
trally compatible with annihilating DM. As described in
detail in Appendix A, we perform a Monte Carlo simula-
tion to assess the observability of UCMHs by Fermi. We
then use this to determine the 95% confidence level (CL)
upper bound on the WIMP annihilation cross-section in
the zero-velocity limit (�vrel)0. This upper limit depends
on the PBHs’ spatial distribution which we assume tracks
the Milky Way DM distribution. We fix fPBH to the 5th
percentile of the posterior P (fPBH|N), derived in the pre-
vious sections for the detection of N PBH candidates.
We conservatively assume that all 19 compatible unasso-
ciated point sources are UCMHs and set the upper limit
on (�vrel)0 by comparing with the expected number of
UCMHs passing cuts on their integrated gamma-ray flux
and galactic latitude (given MPBH, m� and N).

Annihilation in UCMHs outside the Milky Way over all
redshifts contributes to the di↵use, isotropic extragalac-
tic background (EGB) [63–65], which has been measured
by Fermi [66]. This provides an additional very robust
constraint on the DM self-annihilation cross section since
it requires no assumptions about the PBH spatial distri-
bution. To set a conservative bound we do not assume a
particular background model. Instead, we compute the
expected gamma-ray flux from UCMHs in each of Fermi’s
energy bins, and calculate the likelihood of such an excess
above the observed flux using the statistical and system-
atic uncertainties. As for the point source constraints,
we fix fPBH to the 5th percentile for a given detection
scenario.

An important di↵erence with regard to standard indi-
rect detection analyses is the scaling of signals with the
fractional WIMP abundance f� = ⌦�/⌦DM for under-
abundant thermal relics. Typically, the DM annihilation
rate depends on the combination f�

2(�vrel)0 since it fac-
tors into terms dependent on the integrated DM density
profile squared (J-factor) and the self-annihilation cross
section. In the PBH scenario, the DM density profile it-
self depends on (�vrel)0 since this sets the radius of the
annihilation plateau. As a result, the DM annihilation
rate (and thus the extragalactic di↵use flux from PBHs
and expected number of unassociated point sources) de-
pends on the combination f�

4(�vrel)0; this is derived in
Appendix A.
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FIG. 2. Constraints on DM self-annihilation cross sec-

tion. The solid lines correspond to the 95% CL upper limits
obtained assuming a small number of PBH detections with
LIGO/Virgo O3 (blue), Einstein Telescope (ET, orange) and
SKA (green). The lower dashed lines correspond to con-
straints which would be obtained if the number of PBH ob-
servations are as large as allowed by current limits. The dark
grey region is the envelope of 95% CL profile likelihood con-
tours for several supersymmetric models, while the light grey
region is for singlet scalar scenarios. The horizontal dotted
black line indicates the standard thermal relic cross section
3⇥10�26 cm3/s. The angled dotted black line shows the lower
bound from unitarity for s-wave annihilation. �

Results and discussion. For each detection scenario in
Table I we show as function of WIMP mass the 95% CL
upper limit on f

4

�(�vrel)0 in Fig. 2, where f� = ⌦�/⌦DM

is the fractional contribution of a particle species to the
cosmic DM density. This allows us to compare our pro-
jections with the theoretical predictions in cases where
new particles constitute only a subdominant component
of DM. The colored curves show the most stringent con-
straint arising from gamma-ray observations at a given
WIMP mass, assuming annihilation into b̄b. For our pro-
jected limits assuming a small number of PBH detections
(solid lines), point source constraints dominate at low
WIMP mass, while di↵use constraints are more relevant
at high mass. This can be seen as a ‘kink’ in each of
the solid lines, above which di↵use constraints dominate.
For larger numbers of PBH detections (dashed lines), dif-
fuse constraints generally dominate (see Appendix A for
a more detailed comparison of the limits).

We find that a detection of O(10) PBHs with any of the
methods described above would rule out large ranges of
standard-model extensions with stable relics at the elec-
troweak scale. To illustrate this, we show in dark grey the
envelope of the 95% CL profile-likelihood contours for the
MSSM7 [67] and various GUT-scale SUSY models [68]
obtained by the GAMBIT collaboration. In light grey,
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Accretion bounds
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FIG. 2. Constraints on the fraction of DM in the form of PBHs fPBH, with mass MPBH, or in the form of compact objects, fCO,
with mass MCO for each of the di↵erent types of constraint. In each case the excluded regions are shaded. Top left: Evaporation
constraints on PBHs (Sec. III A): extragalactic gamma-ray background [55], CMB [153, 154], dwarf galaxy heating [155],
EDGES 21cm [156], Voyager e± [157], 511 keV gamma-ray line [158, 159] and the MeV Galactic di↵use flux [160]. Top
middle: Gravitational lensing constraints on compact objects (Sec. III C): stellar microlensing (MACHO [161], EROS [12],
OGLE [162], HSC [163]), Icarus lensing event [164], and supernovae magnification distribution [165]. Top right: Constraints
on PBHs from gravitational waves (Sec. III D) produced by individual mergers [166, 167] and the stochastic background of
mergers [168]. Note that there are substantial uncertainties on GW constraints, arising from the possible disruption of PBH
binaries. Bottom left: Dynamical constraints on compact objects (Sec. III E): from dwarf galaxies [169] and wide binaries [170].
Bottom right: Accretion constraints on PBHs (Sec. III F): CMB [171], EDGES 21cm [172], X-ray [173], radio [173], and dwarf
galaxy heating [174]. Digitised bounds and plotting codes are available online at PBHbounds.

B. Interactions with stars

Asteroid mass PBHs can potentially be constrained by the consequences of their capture by, and transit through,
stars [179–182]. See Ref. [182] for detailed recent calculations and discussion.

As a PBH passes through a star it loses energy by dynamical friction, and may be captured. A captured PBH will
sink to the centre of the star and also accrete matter, potentially destroying the star. A large capture probability
requires a large DM density and low velocity dispersions. Stellar survival constraints have been applied to globular
clusters [179]. However, as emphasised by Ref. [180], (most) globular clusters are not thought to have a high DM
density. Moreover, Ref. [182] argues that the survival of stars does not in fact constrain the PBH abundance, but
that the disruption of stars may lead to constraints, if the observational signatures are worked out (see Ref. [183] for
work in this direction).

The transit of a PBH through a carbon/oxygen white dwarf will lead to localized heating by dynamical friction,
which could ignite the carbon and potentially cause a runaway explosion [181, 182]. Reference [182] again finds that
the survival of white dwarfs does not constrain fPBH, but if white dwarf ignition by a PBH leads to a visible explosion
there could be constraints.

• Primordial Black Holes can accrete 
baryonic matter

• Astronomical environments: X-ray/
radio bounds (focus on Galactic center)


• Cosmological bound: for instance from 
Cosmic Microwave Background (focus 
on accretion during the Dark Ages)


• They rely on complicated accretion 
physics


• Comprehensive assessment of the 
uncertainties is very much needed!
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Accretion physics under the spotlight: BHL formalism.
Continuity equation for steady-state flow

4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

2) Temperature-limited case: Object at rest, cloud spherically accreting

r
~v

Figure 5: Schematic of the
temperature-limited case. A cloud
of gas accretes spherically onto an
object represented by the black dot.
The shading gives an indication for the
density of the gas: darker is denser. The
dotted ring at radial distance r from the
object gives an intuition for equation
10. For this, also the velocity ~v and the
inward flux (gray arrows) of the gas have
been indicated.

The second case considered is that the object is at rest and an infinite cloud of gas
accretes steadily and spherically symmetric onto the object. This scenario is depicted in
figure 5 and has first been considered by [78]. Following [79], the accretion rate can be
derived as follows. Starting from the continuity equation and making the assumption of
a steady flow (@⇢/@t = 0) and spherical symmetry (~v = vr̂), we get:

@⇢

@t
+ ~r · (⇢~v) = 0 !

1

r2
@

@r

�
r2⇢v

�
= 0. (9)

This implies that the combination r2⇢v is constant as a function of the radial distance,
and thus the same everywhere. Integrating the right side of equation 9 over a sphere of
radius r we obtain the accretion rate Ṁ ,

Ṁ = 4⇡r2⇢(�v), (10)

where we included a minus sign in the definition of Ṁ to make it positive, since we have
v < 0 for accreting gas. Similar to the accretion rate of last paragraph, this equation
simply states that the accretion rate is the inward flux of mass ⇢(�v) through the surface
4⇡r2 of a sphere with radius r. Since Ṁ is independent of r, we can relate it to the
ambient values of the density and sound speed by evaluating Ṁ at the sonic radius rs.
For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
= �

2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)

16

Euler equation
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(dP/d⇢)1/2
0

, and the polytropic equation P = K⇢� , we know that c2s = K�⇢��1. Plugging
this back into the right-hand side of equation 15 gives

⇢(rs) = ⇢(1)

✓
2

5 � 3�

◆ 1

��1

.

Turning back to Ṁ in equation 10, evaluating it at the sonic radius and substituting
in the above expressions for rs, cs(rs) and ⇢(rs), we get the accretion rate

Ṁ = 4⇡r2s⇢(rs)cs(rs) = ⇡
(GM)2⇢(1)

c3s(1)

✓
2

5 � 3�

◆ 5�3�
2(��1)

. (16)

The last factor is of order unity and ranges from 1 to 4.5. For a typical value of the
adiabatic index � = 1.4 the prefactor is 2.5. This concludes the calculation of steady
spherically symmetric accretion, known as Bondi accretion. Note that the di↵erence to
the previous case, apart from a numerical factor, is that the accretion is suppresed by
the sound speed instead of the velocity. Since cs / T 1/2 from the ideal gas law, this case
is also termed the temperature-limited case.

Both cases are equally valid, but their relative contribution depends on the velocity
and the sound speed. To arrive at the accretion rate for intermediate cases, where cs ⇠ v,
Bondi conjectured equation 4, which clearly holds for both limits cs � v and cs ⌧ v.
Later numerical calculations [80] actually showed there should be an extra factor of two
in this equation, allowing for a numerical agreement with the velocity-limited case [81].

To recap, the main assumptions going into Bondi accretion are a steady flow and
spherical symmetry. Hoyle-Lyttleton accretion then takes into account the possibility of
a relative velocity between the object and the accreting gas. Therefore, the Bondi-Hoyle-
Lyttleton accretion rate would be a good approximation for the realistic scenario of an
isolated object accreting from interstellar gas. For this scenario to remain spherically
symmetric it is also important that the object has a negligible angular momentum and
magnetic field strength [79].

Besides these crucial assumptions, there are some more issues worth considering
when applying the Bondi-Hoyle-Lyttleton accretion rate to this scenario. One, a drag
force due to dynamical friction of the object moving relative to the gas slows down
the object, eventually reducing Bondi-Hoyle-Lyttleton accretion to just the spherically
symmetric Bondi accretion. Two, the wake of gas piling up behind the object would
form an unstable column with shock fronts altering the flow of accretion onto the object.
Three, a non-uniform density or velocity of the gas has a non-zero angular momentum
around the object and could therefore transfer this angular momentum to the object,
breaking down the assumption of spherical symmetry. Four, accretion onto the object
inevitably gives rise to radiative feedback, which might alter the accretion rate in a
significant way. And five, when considering accretion onto a black hole or neutron star,
relativistic e↵ects will become important and needs to be taken into account. See [81]
and references therein for a general discussion on these issues.

Concluding this section, the Bondi-Hoyle-Lyttleton accretion rate is the first attempt
at tackling the accretion problem. Equation 4 seems to capture the main dependences
of the accretion rate: a square dependence on the mass, a linear dependence on the gas

18

4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

4 Accretion Physics of Isolated Black Holes

For testing PBHs as a dark matter candidate through their radio and X-ray emission,
the accretion physics of black holes play a vital role. Therefore, a basic understanding
of the relevant concepts is required before moving on. This section will be dedicated
to give a brief picture of the accretion physics of isolated black holes accreting from a
constant gas density. To this end, this section is structured in the following way.

First, the concept of Bondi-Hoyle-Lyttleton accretion will be described and derived
in section 4.1. Then in section 4.2 the concept of radiative e�ciency will be introduced.
Next, in section 4.3, the radiative feedback and in particular the idea of a Strömgren
sphere will be discussed. This is followed by a brief discussion in section 4.4 on disk
accretion scenarios accurate for observed accreting systems. The last subsection, section
4.5, will introduce the empirical fundamental plane relating the X-ray luminosity, radio
luminosity and mass of black holes.

4.1 Bondi-Hoyle-Lyttleton Accretion

The first attempt at describing the accretion of gas onto an object was done by Bondi,
Hoyle and Lyttleton in three consecutive works [76, 77, 78]. This resulted in the famous
Bondi-Hoyle-Lyttleton accretion rate:

ṀBHL = 4⇡
(GM)2⇢1

(v2 + c21)3/2
(4)

Here Ṁ is the accretion rate, G is the gravitational constant, M and v are respectively
the mass and velocity of the accreting object, and c1 and ⇢1 are respectively the sound
speed and density of the accreting gas at infinity.

Equation 4 is actually a composition of two equations, each considering the accretion
rate in a specific case. The two cases considered are 1) a gas cloud is at rest and an
object moves through the cloud with a constant velocity [76, 77], and 2) an object is at
rest and the gas accretes steadily and spherically symmetric onto the object [78]. In the
following two parts of this section the accretion rate for both cases will be derived.

1) Velocity-limited case: Cloud at rest, object moving through cloud

O
�

~v

dC

Figure 4: Schematic of the velocity-limited case. An object O moves with constant velocity ~v
through a cloud of gas. The gas particles with impact parameter � follow hyperbolic trajectories
(solid lines) colliding at point C, a distance d from the object. These particles will eventually
accrete if their velocities are insu�cient to escape the gravitational attraction of the object.
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Accretion physics under the spotlight: BHL formalism.

• Perna et al. 2003, “Bondi accretion and the problem of missing isolated neutron stars”

• S. Pellegrini 2005, “Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra 

Observations”  (explanation for the radiative quiescence of supermassive black holes in the local 
Universe)


• Wang et al. 2013, “Dissecting X-ray-emitting Gas around the Center of our Galaxy” 

Bondi-Hoyle-Littleton formula needs to be “fudged” because of observational 
constraints related to local neutron stars, the SMBH at the center of the Galaxy, and 
AGNs.


2

radio and X-ray constraints on the gas density around
Sgr A*, the supermassive BH at the center of the Galaxy,
the least luminous accreting BH observed to date (in
Eddingtion units), and thus a well-studied source from
the point of view of weak accretion physics [24–26]. We
compute the accretion rates and the radiative e�ciencies
of a Galactic population of PBHs in the low-e�ciency
limit, following the formalism presented in [27, 28]. We
take into account the findings of previous studies regard-
ing accretion of interstellar gas onto isolated black holes
[29–31].
We model the radiative e�ciency ⌘, defined by the

relation for the bolometric luminosity LB = ⌘Ṁc2, as
⌘ = 0.1Ṁ/Ṁ crit for Ṁ < Ṁcrit (if we were to assume
instead e�cient accretion above the critical rate, Ṁ >
Ṁcrit, then we would have a constant ⌘ = 0.1). As already
discussed, all our sources fall below this critical accretion
rate, such that they are all ine�cient accretors: this
means the luminosity scales non-linearly with accretion
rate, L / Ṁ2.
We parameterize the accretion rate as Ṁ = �ṀBondi,

such that

Ṁ = 4⇡�(GMBH)2⇢
�
v2
BH

+ c2
s

��3/2

(1)

where G is the gravitational constant, vBH is the veloc-
ity of the BH, and cs is the sound speed of the accreted
gas, which is below 1 km/s in cold, dense environments.
An important element that needs consideration is the

temperature of the accreted gas due to radiative pre-
heating [27]. Photoionising radiation will lead to an
ionisation bubble surrounding the source, known as the
Strömgren sphere [32], with a characteristic radius, RStr.
In the following, we assume that the gas around the BH
is fully ionized – and therefore, we set cs = 10 km/s – if
the timescale for the ionization of the Strömgren sphere is
shorter than the timescale associated with the incoming
flux of fresh, unprocessed material.

Regarding �, we choose a reference value of 0.02. Given
the degeneracy between � and the angular momentum
and temperature of the accreted gas, this value is consis-
tent with isolated neutron star population estimates and
studies of active Galactic nuclei accretion [16, 17, 26]
This prescription is the same as that adopted by [28];

however, we consider MBH = 30 M�, and rescale the
value of Ṁ crit = 0.01 ṀEdd used in that work across the
full 10–100 M� mass range.

We convert bolometric luminosity to X-ray luminosity
via the approximate factor LX ' 0.3LB following [28].

Motivated by the results presented in [33] and by
the discussion in [27, 28], we assume the presence of a
jet – thus requiring a system with a surplus of angular
momentum, or a dynamically important magnetic field
combined with a spinning black hole – emitting radio
waves in the GHz domain with an optically thick, almost

flat spectrum, whilst the X-ray emission is non-thermally
dominated, originating from optically thin regions closer
to the BH. In order to convert the X-ray luminosity into a
GHz radio flux, we adopt the universal empirical relation
discussed e.g. in [34], also known as the fundamental
plane (FP), which applies for a remarkably large class of
compact objects of di↵erent masses, from X-ray binary
systems to active Galactic nuclei. We calculate the X-ray
luminosity in the 2–10 keV band in accordance with
the FP, assuming a hard power-law X-ray spectrum
with photon index ↵, and a typical range for hard state
X-ray binaries of 1.6–2.0 (see [35]). We extrapolate this
power-law spectrum into the 0.5–8 keV and 10–40 keV
bands in order to also make comparisons with Chandra
and NuSTAR catalogs. We then use the FP relation
to calculate the 5 GHz radio flux from the 2–10 keV
X-ray flux and assume a flat radio spectrum, such that
F5GHz = F1.4GHz, allowing direct comparison with the
1.4 GHz source catalog from a VLA survey of the GC
region.

Primordial black hole population: In order to de-
rive a bound from X-ray and radio data, we set up a
Monte Carlo simulation for each PBH mass, assuming a
delta mass function.
We populate the Galaxy with PBHs following the

Navarro-Frenk-White (NFW) distribution [36] (other
more conservative choices are discussed below). We imple-
ment the accurate 3D distribution of molecular, atomic,
ionized gas in the inner bulge presented in [15]; that dis-
tribution includes a detailed model of the 3D structure of
the Central Molecular Zone (CMZ), a 300 pc wide region
characterized by large molecular gas density and centered
on the GC, i.e. in the region where the largest density of
PBHs is expected.
For each PBH, the velocity is drawn randomly from

a Maxwell-Boltzmann distribution. The characteristic
velocity of the distribution is position-dependent. The
velocity distribution at a given radius is a crucial ingredi-
ent, because the accretion rate scales as v�3, eq. (1). In
order to derive such a distribution, we consider the recent
state-of-the-art model for the mass distribution in the
Milky Way described in [37], where 6 axis-symmetric
components are taken into account (bulge, DM halo,
thin and thick stellar discs, and HI and molecular gas
discs). We then assume that the velocity distribution
at a distance R from the GC is a Maxwell-Boltzmann
with vmean = vcirc(R) =

p
(GM(< R)/R). Under the

assumption of isotropic orbits1, an exact computation of
the phase-space density could be performed by means of

1
We verified that, in the high-resolution Aquarius N-body simula-

tions, the anisotropy parameter � = 1� �t/�r is consistent with

0 in the whole range of radii we are interested in, therefore the

assumption of isotropic orbits is solid.

The fudge factor takes into account several effects, including the role of outflows
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• Park-Ricotti model: numerical 
simulations + semi-analytical 
parametrization in presence of radiative 
feedback.


• Suppression of the accretion rate at low 
velocity, due to the formation of an 
ionized bubble
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Figure 4. Accretion rates of interstellar gas onto a moving, isolated PBH as a function of its velocity.
The results of [45] (solid blue line) are compared to the phenomenological prescription adopted in [15],
whereby we show the two cases the authors considered: Bondi-Hoyle-Littleton accretion of neutral
gas (orange dashed line) and gas which is considered fully ionized when the timescale for ionization
is shorter than the timescale for the BH to traverse its Bondi sphere (green dot-dashed line). The
rates are expressed as fractions of the Bondi rate, the mass of the PBH is fixed at 100M� and the
ambient gas density and temperature are set to ⇢ = 104 mp cm�3 and T = 102 K respectively. The
vertical dotted line identifies the Mach number where the accretion rate reaches the peak, i.e. where
the ionization front starts to break down.

monotonic decrease of the accretion rate with increasing BH velocity, the simulations show
a more complicated phenomenology. If the BH velocity is supersonic, but the Mach number
is below a critical value MR (MR ' 4 for T ' 104 K), a dense bow shock forms in the
upstream region; behind the bow shock, a D-type (dense) ionization front develops, and
a cometary-shaped HII region can be identified, characterized by low density and velocity.
In this regime, the gas velocity in the reference frame of the moving BH decreases with
increasing BH velocity, hence the accretion rate follows the opposite trend with respect to
the Bondi-Hoyle-Lyttleton formula, i.e. it increases with increasing BH velocity (see Fig.
4). Conversely, when the BH velocity is above MR, the ionization front becomes R-type
(rarefied), and the accretion rate decreases with the BH velocity, e↵ectively returning the
accretion process to Bondi-Hoyle-Littleton-like accretion.

– 10 –

10

The Park-Ricotti model
6 K. Sugimura and M. Ricotti

T [K]

nH [cm-3]

v [km/s]

density

temperature

xH=0.9

0.1

density

temperature

80000 au

20000 au

Figure 3. The snapshots of the steady-state flow in the run with
n1 = 10

5
cm

�3, MBH = 10
2 M�, T1 = 10

4
K, and v1/c1 = 2. The

bottom panel is a zoom-in view of the top panel where the entire
HII bubble is displayed. In each panel, we show the xy-slice of
the density (upper) and the temperature (lower), together with
the velocity streamlines. The outer and inner white contours cor-
respond to the surfaces of the neutral fraction xHI = 0.9 and 0.1,
respectively. The gas is moving from the right side to the left, with
the BH located at the center of the sink region (white circle).

we see that a stable, dense shell forms between the D-type
I-front and the preceding shock, alike a bow shock around
a blunt body (see, e.g., Yalinewich & Sari 2016; Keshet &
Naor 2016, for recent studies).

Let us investigate the structure of the flow in detail. In
the HII region, the gas is heated to the equilibrium tem-
perature TII ⇡ 4 – 5 ⇥ 10

4
K, determined by the balance of

the photo-ionization heating and the Ly↵ and free-free cool-
ing. The shock is isothermal due to the e�cient Ly↵ cool-
ing in the neutral gas, and the density jump in the shell
is (v1/c1)2 ⇡ 4 of the ambient value. As considered in the
analytical model in Sec. 2, the gas motion is approximately
plane-parallel except for inside the shell, where the tangen-
tially diverging motion has a significant e↵ect on the stream-
lines. The shell is rather thick (�Rshell/RIF ⇠ 0.1) and stable.
The size of the I-front, RIF ⇠ 2 ⇥ 10

4
au, agrees with the

analytic Strömgren radius in Eq. (13). In general, the flow
structure is consistent with previous 2D simulations in PR13
and agrees with the analytical model.

To understand the properties of the shell and its stabil-
ity, we investigate the dependence of the shell thickness on
the BH velocity, by performing runs with various BH veloc-
ities v1/c1 = 1.5 – 3 for n1 = 10

5
cm

�3 and MBH = 10
2

M�.
We observe stable D-type flows for the velocity range men-
tioned above, but the shell becomes unstable or disappears
(the I-front becomes R-type) for velocities v1/c1 > 3, as we
will see in the next section.

Figure 4 summarizes the main results found in this pa-
per with regard to the stability of the I-front. The points in
the figure show the ratio of the shell thickness to the size
of the I-front, �Rshell/RIF, as a function of v1/c1 for a large
set of simulations, as shown in the legend. We see that the
ratio becomes smaller, i.e., the shell becomes thinner, with
increasing v1/c1. The filled symbols refer to simulations in
which the shell is stable, while open symbols refer to simu-
lations with unstable shells.

The solid lines in the figure show �Rshell/RIF from the
analytical model described by Eq. (24) in Sec. 2.2, for sev-
eral values of TII, together with the arrows indicating the
values of vR, at which the thickness becomes zero accord-
ing to the model. For the moment, we focus on the curve
for TII = 6 ⇥ 10

4
K because the temperature inside the

HII region has approximately this value in the runs with
n1 = 10

5
cm

�3 and MBH = 10
2

M� (see Figure 3). With
the numerical factor set to ↵ = 0.5, the analytical curve
for TII = 4⇥10

4
K shows good agreement with the simulation

results for n1 = 10
5

cm
�3 and MBH = 10

2
M�. The agree-

ment is good also for all the other simulations in the figure,
justifying the validity of our analytical model, as well as the
choice of ↵ = 0.5. The analytical model predicts that the
thickness approaches zero as v1 approaches vR. In the runs
with n1 = 10

5
cm

�3 and MBH = 10
2

M�, however, the shell
becomes unstable before the velocity reaches vR, as indicated
by the open symbols.

We also investigate the dependence of shell thick-
ness on n1 and MBH, in addition to the dependence
on v1. We performed runs with various v1, assuming
(n1, MBH) = (10

4
cm

�3, 10
2

M�), (10
3

cm
�3, 10

2
M�), and

(10
3

cm
�3, 10

3
M�), and plot �Rshell/RIF of the stable D-type

flows in Figure 4. We see that �Rshell/RIF becomes smaller
when decreasing n1 or MBH. It appears that �Rshell/RIF is
proportional to the parameter combination MBH n1.

According to our model, the shell thickness depends on
parameters other than v1 only because of changes of the
sound speed inside the HII region, cII. We will show below
that cII depends on MBH n1, and that this dependence can
be attributed to changes in the temperature profile inside
the ionized region. In Fig. 5, we plot the upstream tem-
perature profiles along the axis of BH motion in the runs
with v1/c1 = 2 and di↵erent n1 and MBH. We normal-
ize the radius by the size of the I-front to directly compare
the temperature profiles. We see in Fig. 5 that the steep-
ness of the temperature rise inside the HII region has signif-
icant di↵erences among the runs. For the run with BH mass
MBH = 10

2
M� and n1 = 10

5
cm

�3, the temperature rapidly
reaches the almost constant value 5 – 6 ⇥ 10

4
K inside the

HII region, while the rise in temperature becomes slower
as n1 decreases. Therefore, in the lower-density case with
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2) Temperature-limited case: Object at rest, cloud spherically accreting

r
~v

Figure 5: Schematic of the
temperature-limited case. A cloud
of gas accretes spherically onto an
object represented by the black dot.
The shading gives an indication for the
density of the gas: darker is denser. The
dotted ring at radial distance r from the
object gives an intuition for equation
10. For this, also the velocity ~v and the
inward flux (gray arrows) of the gas have
been indicated.

The second case considered is that the object is at rest and an infinite cloud of gas
accretes steadily and spherically symmetric onto the object. This scenario is depicted in
figure 5 and has first been considered by [78]. Following [79], the accretion rate can be
derived as follows. Starting from the continuity equation and making the assumption of
a steady flow (@⇢/@t = 0) and spherical symmetry (~v = vr̂), we get:

@⇢

@t
+ ~r · (⇢~v) = 0 !

1

r2
@

@r

�
r2⇢v

�
= 0. (9)

This implies that the combination r2⇢v is constant as a function of the radial distance,
and thus the same everywhere. Integrating the right side of equation 9 over a sphere of
radius r we obtain the accretion rate Ṁ ,

Ṁ = 4⇡r2⇢(�v), (10)

where we included a minus sign in the definition of Ṁ to make it positive, since we have
v < 0 for accreting gas. Similar to the accretion rate of last paragraph, this equation
simply states that the accretion rate is the inward flux of mass ⇢(�v) through the surface
4⇡r2 of a sphere with radius r. Since Ṁ is independent of r, we can relate it to the
ambient values of the density and sound speed by evaluating Ṁ at the sonic radius rs.
For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
= �

2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)
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feedback.


• Peaks of accretion rate depends on 
ionized sound speed
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bottom panel is a zoom-in view of the top panel where the entire
HII bubble is displayed. In each panel, we show the xy-slice of
the density (upper) and the temperature (lower), together with
the velocity streamlines. The outer and inner white contours cor-
respond to the surfaces of the neutral fraction xHI = 0.9 and 0.1,
respectively. The gas is moving from the right side to the left, with
the BH located at the center of the sink region (white circle).

we see that a stable, dense shell forms between the D-type
I-front and the preceding shock, alike a bow shock around
a blunt body (see, e.g., Yalinewich & Sari 2016; Keshet &
Naor 2016, for recent studies).

Let us investigate the structure of the flow in detail. In
the HII region, the gas is heated to the equilibrium tem-
perature TII ⇡ 4 – 5 ⇥ 10

4
K, determined by the balance of

the photo-ionization heating and the Ly↵ and free-free cool-
ing. The shock is isothermal due to the e�cient Ly↵ cool-
ing in the neutral gas, and the density jump in the shell
is (v1/c1)2 ⇡ 4 of the ambient value. As considered in the
analytical model in Sec. 2, the gas motion is approximately
plane-parallel except for inside the shell, where the tangen-
tially diverging motion has a significant e↵ect on the stream-
lines. The shell is rather thick (�Rshell/RIF ⇠ 0.1) and stable.
The size of the I-front, RIF ⇠ 2 ⇥ 10

4
au, agrees with the

analytic Strömgren radius in Eq. (13). In general, the flow
structure is consistent with previous 2D simulations in PR13
and agrees with the analytical model.

To understand the properties of the shell and its stabil-
ity, we investigate the dependence of the shell thickness on
the BH velocity, by performing runs with various BH veloc-
ities v1/c1 = 1.5 – 3 for n1 = 10

5
cm

�3 and MBH = 10
2

M�.
We observe stable D-type flows for the velocity range men-
tioned above, but the shell becomes unstable or disappears
(the I-front becomes R-type) for velocities v1/c1 > 3, as we
will see in the next section.

Figure 4 summarizes the main results found in this pa-
per with regard to the stability of the I-front. The points in
the figure show the ratio of the shell thickness to the size
of the I-front, �Rshell/RIF, as a function of v1/c1 for a large
set of simulations, as shown in the legend. We see that the
ratio becomes smaller, i.e., the shell becomes thinner, with
increasing v1/c1. The filled symbols refer to simulations in
which the shell is stable, while open symbols refer to simu-
lations with unstable shells.

The solid lines in the figure show �Rshell/RIF from the
analytical model described by Eq. (24) in Sec. 2.2, for sev-
eral values of TII, together with the arrows indicating the
values of vR, at which the thickness becomes zero accord-
ing to the model. For the moment, we focus on the curve
for TII = 6 ⇥ 10

4
K because the temperature inside the

HII region has approximately this value in the runs with
n1 = 10

5
cm

�3 and MBH = 10
2

M� (see Figure 3). With
the numerical factor set to ↵ = 0.5, the analytical curve
for TII = 4⇥10

4
K shows good agreement with the simulation

results for n1 = 10
5

cm
�3 and MBH = 10

2
M�. The agree-

ment is good also for all the other simulations in the figure,
justifying the validity of our analytical model, as well as the
choice of ↵ = 0.5. The analytical model predicts that the
thickness approaches zero as v1 approaches vR. In the runs
with n1 = 10

5
cm

�3 and MBH = 10
2

M�, however, the shell
becomes unstable before the velocity reaches vR, as indicated
by the open symbols.

We also investigate the dependence of shell thick-
ness on n1 and MBH, in addition to the dependence
on v1. We performed runs with various v1, assuming
(n1, MBH) = (10

4
cm

�3, 10
2

M�), (10
3

cm
�3, 10

2
M�), and

(10
3

cm
�3, 10

3
M�), and plot �Rshell/RIF of the stable D-type

flows in Figure 4. We see that �Rshell/RIF becomes smaller
when decreasing n1 or MBH. It appears that �Rshell/RIF is
proportional to the parameter combination MBH n1.

According to our model, the shell thickness depends on
parameters other than v1 only because of changes of the
sound speed inside the HII region, cII. We will show below
that cII depends on MBH n1, and that this dependence can
be attributed to changes in the temperature profile inside
the ionized region. In Fig. 5, we plot the upstream tem-
perature profiles along the axis of BH motion in the runs
with v1/c1 = 2 and di↵erent n1 and MBH. We normal-
ize the radius by the size of the I-front to directly compare
the temperature profiles. We see in Fig. 5 that the steep-
ness of the temperature rise inside the HII region has signif-
icant di↵erences among the runs. For the run with BH mass
MBH = 10

2
M� and n1 = 10

5
cm

�3, the temperature rapidly
reaches the almost constant value 5 – 6 ⇥ 10

4
K inside the

HII region, while the rise in temperature becomes slower
as n1 decreases. Therefore, in the lower-density case with

MNRAS 000, 1–13 (2020)

4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

2) Temperature-limited case: Object at rest, cloud spherically accreting

r
~v

Figure 5: Schematic of the
temperature-limited case. A cloud
of gas accretes spherically onto an
object represented by the black dot.
The shading gives an indication for the
density of the gas: darker is denser. The
dotted ring at radial distance r from the
object gives an intuition for equation
10. For this, also the velocity ~v and the
inward flux (gray arrows) of the gas have
been indicated.

The second case considered is that the object is at rest and an infinite cloud of gas
accretes steadily and spherically symmetric onto the object. This scenario is depicted in
figure 5 and has first been considered by [78]. Following [79], the accretion rate can be
derived as follows. Starting from the continuity equation and making the assumption of
a steady flow (@⇢/@t = 0) and spherical symmetry (~v = vr̂), we get:

@⇢

@t
+ ~r · (⇢~v) = 0 !

1

r2
@

@r

�
r2⇢v

�
= 0. (9)

This implies that the combination r2⇢v is constant as a function of the radial distance,
and thus the same everywhere. Integrating the right side of equation 9 over a sphere of
radius r we obtain the accretion rate Ṁ ,

Ṁ = 4⇡r2⇢(�v), (10)

where we included a minus sign in the definition of Ṁ to make it positive, since we have
v < 0 for accreting gas. Similar to the accretion rate of last paragraph, this equation
simply states that the accretion rate is the inward flux of mass ⇢(�v) through the surface
4⇡r2 of a sphere with radius r. Since Ṁ is independent of r, we can relate it to the
ambient values of the density and sound speed by evaluating Ṁ at the sonic radius rs.
For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
= �

2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)
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Multi-wavelength detectability of isolated black holes in the Milky Way 3

implies on the one hand that Eq. 3, stating the mass conservation
through the front along the direction of displacement of the BH, is
no longer valid. On the other hand, since the velocity past the shock
is now lower than v⇡ , the jump conditions at the ionization front
can be solved. One should now consider, however, two sets of jump
conditions associated to the two fronts: the shock and the ionization
front. Park and Ricotti instead observed through simulations that,
in this regime, the velocity inside the ionized region is vin ⇡ 2s,in.
This relation, promoted to an equality, can be used together with
Eq. 4 to compute the density din. This way, for v⇡  vBH  v' ,
we obtain:

din = d0
in ⌘ d

v2
BH + 22

s

2 22
s,in

,

vin = 2s,in .

(7)

Thus we have in summary:

din =

8>>>>><
>>>>>:

d�in , vBH � vR ,

d0
in , vD < vBH < vR ,

d+in , vBH  vD ,

(8)

and

vin =

8>>>>>><
>>>>>>:

d

din
vBH , vBH � vR ,

2s,in , vD < vBH < vR ,

d

din
vBH , vBH  vD .

(9)

Plugging these equations back into Eq. 2 finally gives the de-
sired accretion rate expressed in terms of the BH speed and the
properties of the neutral medium it is moving through.

Notice in particular that in the velocity range vD  vBH  vR
we get:

§"PR13 = c
(⌧")

2d(v2
BH + 22

s )
p

2 25
s,in

, (10)

which increases quadratically with the BH velocity, in sharp contrast
to the behaviour of the BHL rate, which decreases with velocity. This
behaviour is the main feature introduced by the PR13 model, and is
due to the formation around these objects of the aforementioned bow
shock that deflects part of the gas away from the BH. The velocity
dependence of the BHL rate is recovered in the high velocity regime,
vBH > vR, where both rates present a / v�3

BH dependence. The
complete velocity dependence of the PR13 rate is shown in figure 1,
for varied gas densities, BH masses, and sound speeds of the ionized
region. For comparison, the BHL rate with _ = 1 is also shown. We
can observe in this figure how the BHL rate decreases monotonically
with velocity, whereas the PR13 rate peaks at vBH = vR = 2 2s,in
and is suppressed at lower velocity by the presence of the bow shock.

For E < vD, the rate increases again. However, notice that this
transition typically happens at velocities of ⇡ 0.1 km/s (see Eq. 6),
which are of little relevance for this work and not shown in figure.

The di�erent velocity dependence of the PR13 rate compared
to the BHL rate has important consequences when studying the
emission properties of a BH population characterized by a given
velocity distribution. According to the BHL prescription, the low-
velocity tail of the population is the easiest to detect. Following
PR13, the highest emissions are instead associated to BHs with
intermediate velocities.

Furthermore, BHL can predict very high accretion rates if

n = 103cm-3

cs = 1 km s-1

M = 7.8 M⊙

PR
BHL, λ = 1

csin = 10 km s-1

csin = 25 km s-1

csin = 50 km s-1

0 50 100 150 200 250 30010-14

10-13

10-12

10-11

10-10
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10-8

vBHkm s-1

M
M

⊙
ye
ar

-1


Figure 1. Accretion rate as a function of the BH speed. We show the
accretion rate obtained according to the PR13 and BHL models, as a function
of the BH speed and other relevant parameters. For the BHL rate, we set
the suppression factor _ = 1, to allow for a more direct comparison. The
to models agree at high velocity, but predictions di�er by many orders of
magnitude in the low velocity range.

the speeds are low enough, which can easily lead to overshooting
experimental bounds, while the highest rates predicted by PR13 are
orders of magnitude smaller.

As a final remark, using Eq. 10 to express the peak of the PR13
rate in terms of the Eddington accretion rate §"Edd :

§"PR13
��
vBH=vR

§"Edd
⇡ 10�4

✓
"BH

10 "�

◆ ✓
d/<?

103 cm�3

◆ ✓
2B,in

25 km/s

◆�3
,

(11)

one can see that the accretion rate will always be highly sub-

MNRAS 000, 1–?? (2020)

Scarcella+ 2012.10421
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Revisiting the Cosmological constraint
The physics behind the bound

• PBHs accrete baryonic matter.


•  The accretion rate Mdot depends on ambient density 
and PBH - baryon relative speed. BHL and PR model.


•  Ambient density dilutes with decreasing redshift


•  PBH speed relative to baryons also decreases according 
to linear theory:


FIG. 1. Recreating the plots in Francesca’s Thesis: behaviour of the PR accretion rate as a function
of relevant parameters. (Plot made by Greg)

Behaviour of the accretion rate with redshift

• The density of the surrounding gas as a function of redshift is stated in Poulin/Serpico

[7] (Eq. (5)) [FS: putting this equation back in the standard form to make it more

immediately readable],

⇢1 = mp n1 ⇡ mp 200 cm
�3

✓
1 + z

1000

◆3

, (2)

where mp is the mass of the proton.

• The speed of sound is also stated in Poulin/Serpico [7] (Eq. (3)),

cs,1 =

s
�(1 + xe)T

mp

⇡ 6

r
1 + z

1000
(km/s), (3)

where � is the polytropic equation of state coe�cient for a mono-atomic ideal gas (in

our case � is taken to be 1). The latter formula is less accurate and obviously does

3

Poulin+ 1707.04206

3

There is no exact computation of the accretion rate
accounting for the finite sound speed and a displace-
ment of the accreting object. However, as argued by
Bondi in Ref. [67], a reasonable proxy can be obtained
by the quadratic sum of the relative velocity and the
sound speed at infinity, which leads to an e↵ective veloc-
ity v

2

e↵
= c

2

s,1 + v
2

rel
. We thus define the Hoyle-Bondi

radius and rate2

ṀHB ⌘ 4⇡� ⇢1ve↵r
2

HB
⌘ 4⇡� ⇢1

(GM)2

v
3

e↵

. (6)

Despite the fact that the Bondi analysis was originally
limited to spherical accretion, this formalism is com-
monly used to treat non-spherical cases, with e.g. for-
mation of an accretion disk, by choosing an appropriate
value for �. Although it has been shown for instance
that the simple analytical formulae can overestimate ac-
cretion in presence of vorticity [69] or underestimates it
in presence of turbulence [70], typically Eq. (6) provides
a reasonable order-of-magnitude description of the simu-
lations (see for instance [71] for a recent simulation and
interpolation formulae).

B. Relative baryon-PBH velocity and disk
accretion in the early universe

In the cosmological context, one might naively esti-
mate the relative velocity between DM and baryons to
be of the order of the thermal baryon velocity or of the
speed of sound, Eq. (3). In that case, the appropriate
accretion rate would be the Bondi one, Eq. (2). The sit-
uation is however more complicated, since at the time of
recombination the sound velocity drops abruptly and the
baryons, which were initially tightly coupled to the pho-
tons in a standing acoustic wave, acquire what is an even-
tually supersonic relative stream with respect to DM,
coherent over tens of Mpc scales. In linear theory, one
finds that the square root of the variance of the relative
baryon-DM velocity is basically constant before recom-
bination and then drops linearly with z [72, 73]:

q
hv2

L
i ' min


1,

1 + z

1000

�
⇥ 30 km/s . (7)

Yet, this is a linear theory result, and it is unclear if it
can shed any light on the accretion, which depends on
very small, sub-pc scales (Bondi radius, see Eq. (4)). In
Ref. [72], the authors first studied the problem of small-
scale perturbation growth into such a configuration, by
a perturbative expansion of the fluid equations for DM,
baryons, and the Poisson equation around the exact solu-
tion with uniform bulk motion given by Eq. (7), further

2
Actually, our rate definition is a factor 2 larger than the original

proposal, but has been confirmed as more appropriate even with

numerical simulations, see Ref. [68].

assuming zero density contrast, and zero Poisson poten-
tial. Their results suggest that small-scale structure for-
mation and the baryon settling into DM potential wells is
significantly delayed with respect to simple expectations.
Equation (7) has also entered recent treatments of the
Hoyle-Bondi PBH accretion rate, see Ref. [58], yielding a
correspondingly suppressed accretion. In particular, by
taking the appropriate moment of the function of velocity
entering the luminosity of accreting BH over the velocity
distribution, Ref. [58] found

ve↵ ⌘

⌧
1

(c2
s,1 + v

2

L
)3

��1/6

'

r
cs,1

q
hv2

L
i , (8)

with the last approximation only valid if cs,1 ⌧
p

hv2
L
i,

which is acceptable at early epochs after recombination,
of major interest in the following.

The application of the above perturbative (but non-
linear) theory to the relative motion between PBH and
the baryon fluid down to sub-pc scales appears prob-
lematic. A first consideration is that the behavior of
an ensemble of PBH of stellar masses is very di↵erent
from the “fluid-like” behavior adopted for microscopic
DM candidates like WIMPs. The discreteness of PBHs
is associated to a “Poissonian noise”, enhancing the DM
power spectrum at small scale, down to the horizon for-
mation one [74–77]. Our own computation suggests that
a density contrast of O(1) is attained at z ' 1000 at
a comoving scale as large as kNL ⇠ 103 Mpc�1 for a
population of 1M� PBH whose number density is com-
parable to the DM one. Even allowing for fudge factors
(e.g. fPBH ⇠ 0.1, di↵erent mass) the non-linearity scale
is unavoidably pertinent to the scales of interest. In fact,
the PBH formation mechanism itself is a non-linear phe-
nomenon, and peaks theory suggests that PBH are likely
already born in clusters, on the verge of forming bound
systems [75, 78]. Our first conclusion is that the ap-
plication of the scenario considered in Refs. [72, 73] to
the PBH case is not at all straightforward. In particu-
lar, a more meaningful background solution around which
to perturb would be the one of vanishing initial baryon
perturbations in the presence of an already formed halo
(and corresponding gravitational potential) at a scale
kNL

>
⇠ 103 Mpc�1. A second caveat is that the treat-

ment in Refs. [72, 73] uses a fluid approximation, i.e. it
does not account for “kinetic” e↵ects such as the ran-
dom (thermal) velocity distribution around the bulk mo-
tion velocity given by Eq. (7). One expects that “cold”
baryons (statistically colder than the average) would al-
ready settle in the existing PBH halo at early time,
forming a virialized system—albeit still under-dense in
baryons, with respect to the cosmological baryon to DM
ratio. One may also worry about other e↵ects, such as
shocks and instabilities, which may hamper the applica-
bility of the approach of Ref. [72] to too small scales and
too long times.

Assuming that the overall picture remains neverthe-
less correct in a more realistic treatment, we expect that
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Revisiting the Cosmological constraint
The physics behind the bound

• Accretion disks emits ionizing radiation during the Dark 
Ages (between Recombination and Reionization): 


• IGM is heated up (alteration of TM)

• IGM is also partially ionized (alteration of the free 

electron fraction Xe)

7

FIG. 1. Free electron fraction, xe, as a function of redshift, including the contribution of a monochromatic PBH population
with mass MPBH = 100M�, for di↵erent PBH dark matter fractions fPBH =

�
10�2, 10�3, 10�4,. 10�4

�
. The standard

scenario with fPBH = 0 is denoted by the solid black line. We use fiducial astrophysical parameters: (⇣UV, ⇣X, Tmin, N↵) =�
50, 2⇥ 1056 M�1

� , 5⇥ 104 K, 4000
�
; see Section IV.1.

The aforementioned modifications to the free electron fraction, temperature of the gas, and Lyman-↵ flux are
incorporated by modifying the publicly available codes cosmorec/Recfast++ [159–161], relevant at high redshifts
when astrophysical mechanisms can be neglected, and 21cmFAST [162], relevant at low redshifts when astrophysical
mechansims, such as ionization and heating from stars and X-ray binaries, are relevant. Figures 1 and 2 show the
redshift evolution of the free electron fraction and the kinetic gas temperature for a population of PBHs with mass
MPBH = 100M� and di↵erent relative abundances fPBH.2 Notice that the e↵ect of PBHs accretion on the free electron
fraction in Fig. 1 is clearly visible: the presence of the extra heating and ionization terms from PBHs accretion changes
the redshift evolution of xe, increasing this quantity from the early recombination era, below z ⇠ 1000, until the late
reionization era. The kinetic gas temperature would also be increased by the presence of the energy injection in the
IGM (see Fig. 2). Similar to the case in which there is energy injection from dark matter annihilations [99, 101], PBH
accretion leads to an earlier and more uniform heating of the IGM, which is larger for an increasing fraction of dark
matter in the form of PBHs, until stellar sources turn on and start to ionize the medium (around z ⇠ 15 in Fig. 1).3

These results illustrate that even small abundances of PBHs could have dramatic e↵ects on the properties of the IGM.
Before continuing, we would like to emphasize that the treatment of accretion adopted in this work is rather

conservative. For the redshifts relevant for 21cm cosmology, the conditions necessary for the formation of accretion
disks around PBHs seem likely. Within the context of disk accreting models, ADAF accretion is among the lowest
in the radiative e�ciency of X-rays. Adopting a larger radiative luminosity or accretion rate would correspondingly
enhance the observable signatures associated with global heating and ionization of the IGM.

2
This range of values is simply intended to illustrate the dependence of these observables on fPBH. Note that the cases with the largest

abundances are in tension with CMB constraints [85].
3
Note that although the spatial and redshift PBH distribution follows that of matter, it is di↵erent from the distribution of X-ray sources,

i.e., star-forming halos beyond a threshold for atomic cooling.

Mena+ 1906.07735

RecombinationReionization

particles will decay producing a primary spectrum of stable particles whose interaction with
the cosmological plasma need to be accurately followed. Like in most of the literature, we
restrict the analysis to the impact of injected positrons, electrons and photons. Indeed, neu-
trinos are basically invisible to the medium and simply carry away part of the energy. On the
other hand, protons and antiprotons have been checked to loosen the bounds by about 10%,
[36]. Thus neglecting them only leads to slightly too conservative bounds, while permitting
a significant reduction of the computing time.

Typically, the injected primary particles initiate an e.m. cascade by interacting with
thermal photons, producing an increase in the number of non-thermal particles at the expense
of a decrease in their average energy. When these extra particles cool down to energies of the
order of a keV, they start interacting strongly with atoms of hydrogen (and sub-dominantly
of helium [17]). To account for the ionization, excitation and heating of these atoms, we have
to modify the equations governing the evolution of the fraction of free electrons, xe © ne/nH ,
taking into account both direct ionization and collisional excitation followed by photoioniza-
tion by a CMB photon. At the same time, we must add to the equation for the evolution of
the intergalactic medium (IGM) TM a term accounting for the associated heating, which has
a feedback on the evolution of xe. Finally, at some point, the energy of the extra particles
drops below the Lyman-– transition energy (10.2 eV). Then these particles are no longer able
to interact with atoms and can be considered as “lost”. The three-level atom approximation
gives a good overall description of the processes at play, and can be fudged to achieve sub-
percent accuracy [37]. In this approximation, the evolution equations of the free electron
fraction xe and IGM temperature TM is governed by:

dxe(z)
dz

= 1
(1 + z)H(z)(R(z) ≠ I(z) ≠ IX(z)) ,

dTM

dz
= 1

1 + z

5
2TM + “(TM ≠ TCMB)

6
+ Kh . (2.1)

where the R and I terms are the standard recombination and ionization rates given by

R(z) = C

5
–Hx

2

enH

6
, I(z) = C

5
—H(1 ≠ xe)e≠ h‹–

kbT
M

6
. (2.2)

The e�ective ionization rate IX can be decomposed as IX(z) = IXi(z) + IX–(z), where IXi

is the rate of direct ionization and IX– that of excitation+ionization:

IXi = ≠ 1
nH(z)Ei

dE

dV dt

----
dep,i

, IX– = ≠ (1 ≠ C)
nH(z)E–

dE

dV dt

----
dep,–

, (2.3)

while Ei and E– are respectively the average ionization energy per baryon, and the Lyman-–
energy. Finally, the rate Kh at which the plasma is heated by DM decay or annihilation is
defined as:

Kh = ≠ 2
H(z)(1 + z)3kbnH(z)(1 + fHe + xe)

dE

dV dt

----
dep,h

. (2.4)

We refer e.g. to the appendix of Ref. [28] for further definitions and more details on each of
these coe�cients. In CLASS, it is possible to use a fudged version of Recfast [37, 38] or HyRec
code [34] to solve these recombination equations. The ExoCLASS branch proposes as a third
possibility the use of CosmoRec [35].

– 4 –

Stocker+ 1801.01871
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Revisiting the Cosmological constraint

The physics behind the bound

• Impact on CMB anisotropy is due to the alteration of the 
visibility function and the recombination optical depth 
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FIG. 2: Top panel: Energy deposition functions computed
following ref. [97] in the case of accreting PBH. Bottom

panel: Comparison of the free electron fractions obtained for
a monochromatic population of PBH with masses 500 M�
depending on the accretion recipe used. The curve labelled
“standard” refers to the prediction in a ⇤CDM model whose
parameters have been set to the best fit of Planck 2016 like-
lihoods high-` TT,TE,EE + LOWSim [1].

MPBH < 150 M� for fPBH = 1, as opposed to their
MPBH

<
⇠ 100 M�. We attribute the 50% degradation

of our bound compared to Ref. [58] to our more refined
energy deposition treatment. We checked that an agree-
ment at a similar level with Refs. [57, 107] is obtained if
we implement their prescriptions, but since some equa-
tions in Ref. [107] (re-used in Ref. [57]) have been shown
to be erroneous [58], we do not discuss them further.

Our fiducial conservative constraints (at 95% C.L.)
are represented in Fig. 4 with the blue-shaded region in
the plane (MPBH, fPBH): We exclude PBH with masses
above ⇠ 2 M� as the dominant form of DM. The con-
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FIG. 3: CMB TT (top panel) and EE (bottom panel) power
spectrum obtained for a monochromatic population of PBH
with masses 500 M� depending on the accretion recipe used.

straints can be roughly cast in the form:

fPBH <

✓
2 M�
M

◆1.6✓0.01

�

◆1.6

. (23)

This is two orders of magnitudes better than the spheri-
cal accretion scenario, and it improves significantly over
the radio and X-ray constraints from Ref. [48], without
dependence on the DM halo profile as those ones. Lens-
ing constraints are nominally better only at M <

⇠ 6 M�.
Note also the importance of the relative velocity be-
tween PBH and accreting baryons: If instead of Eq. (8)
we were to adopt ve↵ ' cs,1—representative of a case
where a density of baryons comparable to the cosmo-
logical one is captured by halos at high redshift—the
bound would improve by a further order of magnitude, to
M <

⇠ 0.2 M� (light-red shaded region in Fig. 4). This is
also true, by the way, for the spherical accretion scenario,
where—all other conditions being the same—adopting

Poulin+ 1707.04206
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Revisiting the Cosmological constraint: Results

• Accretion rate suppression around PBHs is very relevant 

• Dependence on the ionized sound speed

• May weaken the bound


Preliminary

Dominic Agius, Gregory  
Suczewski, Rouven 
Essig, DG, Francesca 
Scarcella, Mauro Valli, in 
preparation
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Figure 4. Accretion rates of interstellar gas onto a moving, isolated PBH as a function of its velocity.
The results of [45] (solid blue line) are compared to the phenomenological prescription adopted in [15],
whereby we show the two cases the authors considered: Bondi-Hoyle-Littleton accretion of neutral
gas (orange dashed line) and gas which is considered fully ionized when the timescale for ionization
is shorter than the timescale for the BH to traverse its Bondi sphere (green dot-dashed line). The
rates are expressed as fractions of the Bondi rate, the mass of the PBH is fixed at 100M� and the
ambient gas density and temperature are set to ⇢ = 104 mp cm�3 and T = 102 K respectively. The
vertical dotted line identifies the Mach number where the accretion rate reaches the peak, i.e. where
the ionization front starts to break down.

monotonic decrease of the accretion rate with increasing BH velocity, the simulations show
a more complicated phenomenology. If the BH velocity is supersonic, but the Mach number
is below a critical value MR (MR ' 4 for T ' 104 K), a dense bow shock forms in the
upstream region; behind the bow shock, a D-type (dense) ionization front develops, and
a cometary-shaped HII region can be identified, characterized by low density and velocity.
In this regime, the gas velocity in the reference frame of the moving BH decreases with
increasing BH velocity, hence the accretion rate follows the opposite trend with respect to
the Bondi-Hoyle-Lyttleton formula, i.e. it increases with increasing BH velocity (see Fig.
4). Conversely, when the BH velocity is above MR, the ionization front becomes R-type
(rarefied), and the accretion rate decreases with the BH velocity, e↵ectively returning the
accretion process to Bondi-Hoyle-Littleton-like accretion.

– 10 –
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Made with Cobaya+CLASS (modified to account for energy injection)

2018 low-l Planck TT.EE, high-l Planck TT.TE.EE, lensing, ACT, BAO
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Revisiting the Cosmological constraint
BHL vs PR: the “Unexpected robustness” of the bound


See also 
Facchinetti+ 
2212.07969

Preliminary
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Black Holes as Portals to new Physics

• Intermediate-Mass Black Holes may exist in the Universe.
• Dark-Matter over-densities can form around them [Gondolo&Silk 

9906391, Zhao&Silk 0501625, Hannuksela+ 1906.11845].
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Dark Matter ‘Mini-spikes’
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DM-induced Dephasing
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• Dephasing of the waveform w.r.t. GR in vacuum
• Physical process: Dynamical Friction

• Kavanagh+ 2002.12811 (PRD)

• Coogan+ 2108.04154 (PRD)

• Cole+ 2211.01362 (Nature 

Astronomy)

3

to assemble the distribution of DM by adding successive
spherical shells of DM of increasing radius r, until the
final distribution ⇢DM(r) is constructed around the BH.
We denote the potential energy of each shell of DM of
radius r by dUsh(r). It is given by

dUsh(r) = �
G[m1 + menc(r)]

r
[4⇡r2⇢DM(r) dr] . (2.6)

After some algebra, we can instead write it as

dUsh(r) = �
G[m1 + menc(r)]mDM(r)(3 � �sp) dr

r2
.

(2.7)
Integrating Eq. (2.7) between the inner radius rin and

a given radius r, we arrive at the total potential energy
in the distribution of DM between the radii rin and r.
When �sp 6= 2 or �sp 6= 5/2, the result is

�UDM(r) = �
GmDM(r)(3 � �sp)

r

⇥


m1 � mDM(rin)

2 � �sp
+

mDM(r)

5 � 2�sp

�
� Uin ,

(2.8)

where the constant Uin is given by

Uin = �
GmDM(rin)(3 � �sp)

rin(2 � �sp)


m1 �

mDM(rin)(3 � �sp)

5 � 2�sp

�
.

(2.9)
The total potential energy of the DM spike can be ob-
tained by evaluating Eq. (2.8) at r = rsp.

Note that we are ignoring the e↵ect of the gravitational
potential of the small compact object on the binding en-
ergy. This will generally lead to relative errors of order
q, which will be small for the systems we are considering.

C. Orbital energy and energy dissipation through
GWs and DF

Next, we will summarize how we compute the orbital
energy and the dissipation of orbital energy through grav-
itational waves and dynamical friction. Our formalism is
similar to that presented in Eda et al. [28, 29]. Since
the system we are considering is characterized by a small
mass ratio between the IMBH and the orbiting compact
object (q ⌧ 1), we will adopt the approximation µ ' m2

(the errors in this approximation are of order q). This as-
sumes that the barycenter position is equal to the IMBH
position. Similarly, assuming M = m1 leads to errors of
order q. We discuss the impact of this approximation in
more detail in Sec. VI. We will also work with circular
orbits, and we will ignore the correction to the Keplerian
frequency arising from the distribution of DM (which will
be a percent-level e↵ect for most of the binaries we study
in this paper). In this approximation, the orbital energy
reduces to the familiar expression

Eorb = �
Gm1m2

2r2
. (2.10)

Since the lighter object moves within the DM mini-
spike and experiences gravitational interactions with the
DM particles, it loses energy via dynamical friction (DF)
[37–39]. In addition, the orbital energy changes through
the emission of gravitational waves. The timescale over
which energy is dissipated through these processes is slow
compared to the orbital timescale for most of the evolu-
tion of the system. Thus, we will treat the dissipation as
an adiabatic process slowly moving the compact object
on a given circular orbit to another circular orbit with a
slightly smaller radius (i.e. a quasi-circular inspiral). In
this process, energy balance is satisfied, in the sense that

dEorb

dt
= �

dEGW

dt
�

dEDF

dt
. (2.11)

Gravitational-wave energy losses (for circular orbits in
the quadrupole approximation) are given by

dEGW

dt
=

32G4M(m1m2)2

5(cr2)5
. (2.12)

Dynamical friction losses are given by

dEDF

dt
= 4⇡(Gm2)

2⇢DM(r2) ⇠(v) v
�1 log ⇤ . (2.13)

The term ⇠(v) denotes the fraction of DM particles mov-
ing more slowly than the orbital speed.1

In Eq. (2.13), log ⇤ is the usual notation for the
Coulomb logarithm, defined in general as [47, App. L]:

⇤ =

s
b2
max

+ b2
90

b2
min

+ b2
90

, (2.14)

where bmin and bmax are the minimum and maximum
impact parameters for which the two-body encounters
that contribute to the phenomenon can be considered
e↵ective. Moreover, b90 is the impact parameter which
produces a 90� deflection of the DM particle:

b90 =
Gm2

v2
0

⇡
m2

m1

r2 = q r2 , (2.15)

with v0 the orbital speed of the compact object. We fix
⇤ =

p
m1/m2, as we discuss in more detail in Sec. III.

It will be convenient to write these losses as a function
of r2 for circular orbits by using the relationship that v =p
GM/r2. Using the chain rule and Eqs. (2.10), (2.12),

and (2.13), we can also write an explicit expression for the
time evolution of the small compact object’s separation:

ṙ2 = �
64G3 M m1 m2

5 c5 (r2)3
�

8⇡G1/2 m2 ⇢sp ⇠ log ⇤ r
�sp
sp

p
Mm1 r

�sp�5/2
2

.

(2.16)

1 This term has typically been neglected in previous studies of DM
dephasing [28, 29]. For the isotropic spike profile with �sp = 7/3
around an IMBH of mass 103 M�, we find ⇠(v) ⇡ 0.58, inde-
pendent of radius. We set ⇠ = 1 in the analytic analysis of this
section, though as we will see in Sec. III, it will be necessary to
include it later to obtain an accurate description of the dynamics.

• Stellar-mass black holes that inspiral around IMBHs can trace 
the presence of either accretion disks or Dark Matter 
overdensities (DM “dresses” or “spikes”)

https://arxiv.org/abs/2108.04154
https://arxiv.org/abs/2211.01362
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Figure 6: [NOTE: mockup]

3 Adiabatic changes in the potential

Dark matter halos are not naturally dense enough to cause significant dynamical friction, so we need additional
processes to enhance their density around a central black hole. While one could imagine that the merger of two DM
halos could increase the central density, the dynamical nature of these processes actually causes a more flattened
profile. Instead, we look towards the baryonic sector, where processes unrelated to the DM halo could lead to the
growth of a central massive object. E↵ectively, this means that there is an external density influencing our DM
halo, which could enhance the central DM density if the baryonic density becomes large enough.

Let us approach the system from a Newtonian perspective, where the dynamics of particles are governed by the
potentials within which they orbit. Newtonian potentials are additive, so we can separate the total potential
� = �DM +�bar into the separate potentials from dark matter and baryonic components. We start out with a DM
+ baryon system that is in equilibrium when some process causes a change in the baryonic component. The DM
distribution should then adjust to the new overall potential as well. We can break apart the baryonic processes
into two di↵erent categories: adiabatic and non-adiabatic. Whether a process is (non-)adiabatic depends on the
di↵erence between the baryonic process timescale tbar and the orbital periods of the particles in the DM halo torb.
If tbar is much larger than the orbital period, then the change per orbit is minimal and the process is adiabatic with
respect to the halo.

3.1 The Gondolo & Silk formalism

[TODO: Make notation clearer, adjust text to better reflect which bits were already in place and which bits weren’t.]
The mathematical formalism for adiabatic changes in the potential was first written down by Gondolo & Silk for
their study of dark matter at the centre of the Milky Way. The GS formalism is constructed as follows. Take a DM
halo that is in equilibrium, with DM that is su�ciently particle-like and non-interacting. A central object is then
allowed to grow adiabatically, with the initial and final states illustrated in Fig. 6. Under these circumstances, the
adiabatic invariants of the orbital actions Ir, I✓ and I� are fixed for each particle. We assume spherical symmetry
of the halo, so that I✓ = L � Lz and I� = Lz, meaning that angular momentum in its totality is conserved. A test
particle will thus slowly change its energy as dictated by the fixed radial energy

I
f
r (Ef , L) = I

i
r(Ei, L) , (3.1)

with the sub/superscripts i and f respectively denoting the initial state of the DM halo and the final state of DM
halo a↵ected by the change in potential. E is the relative energy per unit mass defined as E =  (r) � v

2
/2, with

 (r) = �0 ��(r) the positive-definite relative gravitational potential, so that all particles with E > 0 are on bound
orbits. The radial action is defined as

I
x
r (Ex, L) =

1

⇡

Z rapo

rperi

dr v
x
r (r, Ex, L) (3.2)

v
x
r (r, Ex, L) =

r
2( x(r) � Ex) � L2

r2
, (3.3)

Adiabatic and non-adiabatic 
treatment, simplified scenario:

• Gondolo and Silk, 9906391

• Ullio et al. 0101481

3 ADIABATIC CHANGES IN THE POTENTIAL 10

with the sub/superscripts i and f respectively denoting the initial state of the DM halo and the final state of DM
halo a↵ected by the change in potential. E is the relative energy per unit mass defined as E =  (r) � v

2
/2, with

 (r) = �0 ��(r) the positive-definite relative gravitational potential, so that all particles with E > 0 are on bound
orbits. The radial action is defined as

Ir,x(Ex, L) =
1

⇡

Z rapo

rperi

dr vr,x(r, Ex, L) (3.2)

vr,x(r, Ex, L) =

r
2( x(r) � Ex) � L2

r2
, (3.3)

with x being a placeholder for either i or f , and vr the radial velocity that gets integrated between the pericentre
rperi and the apocentre rapo of an orbit with energy and angular momentum E and L.

Through the conservation of radial action we can define a map from initial to final state energy Ef (Ei, L) and
vice versa, thus quantifying the e↵ect of the adiabatic change in potential on the particle. All that is missing is
a switch from distributions in physical space to distributions in energy/momentum space for our DM halo. This
energy/momentum distribution is given by the phase space f(E , L), defined as

⇢(r) =

Z
d3v f(E , L) = 4⇡

Z
dvrdvT vT f(E , L) , (3.4)

where v = (vr, v✓, v�) with vr as defined in Eq. 3.3, and vT =
p

v2✓ + v�2 = L/r. The last equality in Eq. 3.4
only holds for spherically symmetric systems, but does allow for anisotropy. Changing variables to E and L using

dvrdvT =
���@(vr,vt)

@(E,L)

��� dEdL gives us our base equation for the conversion from a phase space distribution to a density

distribution

⇢(r) = 4⇡

Z Emax

Emin

dE

Z Lmax

Lmin

dL
L

r2vr
f(E , L) , (3.5)

where the limits of the integral are defined as Emin = 0 and Lmin = 0 from the bound state requirements, while the
limits

Emax(r) =  f (r) (3.6)

Lmax(r, Ef ) = r

q
2( f (r) � Ef ) , (3.7)

come from the bounds vr = 0. If the central object involves a black hole, then we can add correcting factors to
mimic the e↵ect of general relativity. These result in the modified limits

Emax(r) =  f (r)

✓
1 � 4rS

r

◆
(3.8)

Lmin = 2crS , (3.9)

where rS = 2GNmBH/c
2 the Schwarzschild radius.

Our final necessary ingredient for the GS formalism is the inverted version of Eq. 3.5, which would ideally give us
f(E , L) in terms of ⇢(r). This is however far from straightforward, as a function of one variable cannot uniquely
determine a function of two variables. Physically, this means that there are many di↵erent anisotropic phase spaces
that give the same spherical density. Finding the phase space for an anisotropic system thus requires a priori
knowledge of the anisotropy, and there is no general formula for these calculations. N-body simulations have found
that DM halos have non-zero anisotropy at z = 0 [54, 55], but this anisotropy is poorly constrained observationally.

Simultaneously, primordial DM halos are expected to be isotropic, since they formed from the gravitational collapse
of density perturbations. Isotropic halos have phase spaces that only depend on E , and can thus be uniquely
determined from the density profile. This is given by the Eddington inversion formula [56]:

fk(E) =
1

⇡2
p

8

 Z E

0

d2
⇢k

d 2

d p
E � 

+
(d⇢k/d ) =0p

E

!
, (3.10)

• Realistic scenario: We follow the 
evolution of a small DM + baryon halo


• Supermassive star forms

• Direct collapse into BH

• BH grows adiabatically

2

tion in three phases: i) the growth of the stellar object

at the centre of a DM halo, ii) its collapse to a BH, and

iii) the growth of the BH from the initial seed to its final

mass. We demonstrate here that this process leads to

a DM ovedensity which is time-dependent and shallower

than DM spikes, which we generically refer to as DM

‘Mounds’. While this result has important consequences

for DM-induced dephasing of GW signals, it also places

such calculations on a more realistic footing and opens

the way for population-level studies of DM spikes.

Supermassive star formation. For concreteness,

we will apply our formalism to BHs arising from the

collapse of primordial SMS with mass MSMS = 10
5M�,

forming at redshift 10 < zBH < 20, in halos with mass

10
6 < Mvir/M� < 10

9
. The formation timescale for

a 10
5M� SMS growing at a rate Ṁ = 0.1M�yr

�1
is

tgrowth = M/Ṁ = 10
6

years. This timescale is longer

than the typical dynamical timescale at the radius of

SMS, tdyn =

p
(3⇡)/(32G⇢̄) ⇠ 10

5
years. GB: check

when/where this true
Fiducial values:

• SMS mass: MSMS = 10
5M�

• SMS central density: ⇢c = 1 g cm
3

• Halo virial mass: Mvir = 10
8M�

• Formation redshift: zBH = 15

Adiabatic growth. Adiabatic growth on an extended

object. McGaugh et al. for galaxies, Blumenthal et al,

Young et al. Esp. in the context of dark stars. Even

in the case of high mass accretion rates, he timescale for

the formation of a supermassive star Assuming spher-

ical symmetry, the angular momentum L and the ra-

dial action I(E,L) are adiabatic invariants. If E is the

relative energy per unit mass E =  (r) � v2/2, with

 (r) = �0 � �(r) is the positive-definite relative gravita-

tional potential, so that all particles with E > 0 are on

bound orbits, we can write the radial action as

I(E , L) =
1

⇡

Z rmax

rmin

dr

r
2E � 2 (r) � L

r2
. (1)

For adiabatic changes of the gravitational potential,

ff (Ef , L) = fi(Ei, L). L is conserved, and through the

conservation of the radial action Ii(Ei, L) = If (Ef , L).

The initial and final radial actions are evaluated on a

grid of (Ei, L, Ef ), allow us to evaluate Ei as a function of

Ef and L and hence find ff (Ef , L) from fi(Ei, L). From

there, we reconstruct the final density after adiabatic

growth of the star

⇢f (r) =
4⇡

r2

Z
0

Emin
f

dEf

Z Lmax
f

Lmin
f

dLf
Lf

vr
ff (Ef , Lf ) . (2)

Collapse. Supermassive stars collapse to BH. Com-

parison of free fall time tff ⇠ with dynamical time
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After SMS formation

After DCBH formation

FIG. 2. Density profile of dark matter after the formation of
the supermassive star, and after the collapse to a black hole.
For comparison, we show the Gondolo and Silk solution.

tdyn ⇠ (G⇢)
�1/2

We cannot assume conservation of

adiabatic invariants, but we can assume instantaneous

growth. In that case the energy after collapse Ef is re-

lated to the initial energy Ei as Ef = Ei +� (r), where

� is the di↵erence between the final potential due to

the BH and the initial potential due to the supermassive

star.

In order to evaluate the final density after collapse,

we draw samples of (E , L) to which we assign weights

proportional to f(E , L). For each orbit, defined by (E , L),

we draw a radius, proportional to:

P (r) dr =
dt

T (E , L)
=

1

T (E , L)

dr

vr(r, E , L)
, (3)

where T (E , L) is the period of the orbit and vr(r, E , L) is

the radial velocity at position r. With this, we transform

E ! E + � (r). We can then evaluate the density in

Eq. 2 as a Monte Carlo integral, using the weights of the

samples in place of f(E , L). (BJK: I can provide more

detail if needed.)

Comparison between free-fall time and dynamical

timescale.

Formalism for instantaneous change of gravitational

potential.

Results. In fig. 2 we show..

Discussion. Relativistic corrections allow to extend

inwards profles wrt to Gondolo and Silk. (Ferrer et al)

Details are irrelevant in practice, because at those dis-

tances, losses are dominated by GW emission.

G. Bertone, DG, B. Kavanagh, R. Wierda, in preparation

Preliminary
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Conclusions

•Multiple relevant interplay between BH phenomenology and 
DM searches


•Accretion physics is crucial to set upper limits on the PBH 
abundance


•Need to go beyond the textbook BHL approach

•The CMB bound on PBH abundance seems robust with 

respect to the uncertainties associated to the accretion 
model!


•DM overdensities around IMBHs provide a discovery 
potential  thanks to GW dephasing


•Realistic models that describe the formation of DM 
overdensities are in progress
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Thank you!
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The most distant quasar
Supermassive black holes at the centre of 
Galaxies. 


News: Observed up to z ~ 10  

Seeds? Probably Heavy 

8 X-ray AGN in a z ⇠ 10 galaxy

Fig. 4 Sketch of the growth of BHs with di↵erent initial seed masses and accretion rates:
BHs formed via the light seed scenario with 10�100M� mass can only reach 104 �105 M�
by z = 10.3 if they accrete at their Eddington limit (blue shaded region), which falls short by
2� 4 orders of magnitude of the BH mass estimated for UHZ1. Implausibly high sustained
accretion at a rate of at least twice the Eddington limit would be required for light seeds
to reach the BH mass close to that of UHZ1 (blue-hatched region). However, for light seeds
continuous accretion at the Eddington limit or above for several hundred of million years is
highly unlikely as noted by [14]. Heavy seed models with 104 � 105 M� initial BH masses
can grow to the mass of the BH powering UHZ1 by z = 10.3 assuming accretion at the
Eddington limit (tan shaded region). All over-plotted models assume a radiative e�ciency
of 10% and continuous accretion. We also show the location of the three previously known
highest redshift quasars at z ⇠ 7.5, which were identified in large-area optical surveys[15–
17]. The systematic uncertainty (not shown) on the BH mass of these quasars is ⇠ 0.5 dex.
The mass range shown for UHZ1 corresponds to the derived estimate as noted in the text.

amplified growth of an embedded light seed from wind-fed accretion[31, 32].
Because information about the initial seeding of BHs is mostly erased during
the complex growth and subsequent evolution of BHs over cosmic time[33, 34],
the detection of the X-ray quasar in UHZ1 at z ⇡ 10.3 opens up a new, exciting
frontier.

Previous SED fitting of the JWST photometric data[2] suggests that the
galaxy has a stellar mass ofM? = 0.4+1.9

�0.2
⇥108 M�, which makes it comparable

to the inferred BH mass. This implies a strikingly di↵erent BH-to-host galaxy
stellar mass ratio than observed in the local Universe, where the mass of the
central BH is roughly 0.1% of the stellar mass. Such a high BH–galaxy mass
ratio is predicted by theoretical studies of high-redshift galaxies seeded with
heavy initial BHs[35]. Heavy seeds and their host galaxies are expected to
inevitably transition through such an Outsize Black Hole Galaxy (OBG) stage
at early times, before feedback-regulated e�cient stellar assembly takes over,

4 X-ray AGN in a z ⇠ 10 galaxy

Fig. 2 JWST and Chandra images of UHZ1: Panel (a) The JWST NIRCam image of the
surroundings of UHZ1, and a zoom-in NIRCam image of UHZ1 in Panels (b and c). Panel (d)
JWST images of UHZ1 in seven filters. The galaxy is detected in all JWST bands except for
F115W. The non-detection in the bluest F115W band clearly indicates the dropout nature
of the galaxy and suggests that it is located at z ⇡ 10. The source is extended, with a
potentially disturbed morphology evocative of late-stage mergers at lower redshift. A bright
nuclear region is apparent in the F150W and F200W bands, and the contrast of this nucleus
against the galaxy outskirts decreases for the redder bands. (e) A JWST/Chandra overlay
showing a 4.2� excess of X-ray counts cospatial with UHZ1. (f) The same Chandra 2�7 keV
Chandra image, this time with UHZ1 represented as black contours. The size of the X-ray
source is consistent with a point source. The location, luminosity, and spectral characteristics
of the source suggest that it is a heavily obscured quasar residing in the z = 10.3 galaxy,
UHZ1. North is up and East is left.

Of this sample of 11 JWST galaxies, we detect a statistically significant X-
ray source associated with UHZ1 (RA=0:14:16.096, Dec=-30:22:40.285); this
galaxy is magnified[2] by a factor of µ = 3.81+0.41

�0.56
. No other galaxies are

located in the vicinity of UHZ1 that could be associated with the X-ray source
(Figure 2). We note that of the galaxy sample, UHZ1 has the highest lensing
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PBH mass ~ horizon mass at the time of formation
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Primordial Black Holes: sirens of the early
Universe

Anne M. Green

Abstract Primordial Black Holes (PBHs) are, typically light, black holes which
can form in the early Universe. There are a number of formation mechanisms, in-
cluding the collapse of large density perturbations, cosmic string loops and bubble
collisions. The number of PBHs formed is tightly constrained by the consequences
of their evaporation and their lensing and dynamical effects. Therefore PBHs are a
powerful probe of the physics of the early Universe, in particular models of inflation.
They are also a potential cold dark matter candidate.

1 Introduction

Primordial Black Holes (PBHs) are black holes which may form in the early Uni-
verse [139, 53]. There are various formation mechanisms: the collapse of large
density fluctuations (Sec. 2.1), cosmic string loops [55] (Sec. 2.2) or bubble col-
lisions [38, 56] (Sec. 2.3). In most cases the PBH mass, MPBH, is roughly equal to
the horizon mass, MH, at the formation epoch (e.g. Ref. [29]):

MPBH ∼MH ∼
c3t
G

∼ 1015
( t

10−23 s

)

g . (1)

For instance PBHs formed at the QCD phase transition at t ∼ 10−6 s would have
mass of order a solar mass, MPBH ∼M# = 2× 1030 kg.

As famously realised by Hawking [54], PBHs radiate thermally and hence evap-
orate on a timescale, τ(MPBH), (e.g. Ref. [29]):

Anne M. Green
School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7
2RD, UK e-mail: anne.green@nottingham.ac.uk

1

Black holes of primordial origin?

BHs formed in the early Universe (before BBN), out of small-scale, large-amplitude 
density fluctuations possibly originated during inflation


[S. Hawking, MNRAS 152 (1971); Carr and Hawking, MNRAS 168 (1974)]

“…it is tempting to 
suppose that the 
major part of the 
mass of the 
Universe is in the 
form of collapsed 
objects. This extra 
density could 
stabilize clusters of 
galaxies which, 
otherwise, appear 
mostly not to be 
gravitationally 
bound.”
Wide mass range for PBHs as DM candidates

M ~ 1016 g (10-17 M⊙) — 1039 g (105 M⊙)

5.1.2 Flatness Problem Revisited

Recall the Friedmann Equation (41) for a non-flat universe

|1 � ⌦(a)| =
1

(aH)2
. (49)

If the comoving Hubble radius decreases this drives the universe toward flatness (rather than away

from it). This solves the flatness problem! The solution ⌦ = 1 is an attractor during inflation.

5.1.3 Horizon Problem Revisited

A decreasing comoving horizon means that large scales entering the present universe were inside the

horizon before inflation (see Figure 2). Causal physics before inflation therefore established spatial

homogeneity. With a period of inflation, the uniformity of the CMB is not a mystery.

‘comoving’

smooth patch

now end

Hubble length
start

Comoving 
 Horizon

Time [log(a)]

Inflation Hot Big Bang

Comoving Scales  

horizon exit horizon re-entry

density fluctuation

Figure 7: Left: Evolution of the comoving Hubble radius, (aH)�1, in the inflationary universe. The

comoving Hubble sphere shrinks during inflation and expands after inflation. Inflation is

therefore a mechanism to ‘zoom-in’ on a smooth sub-horizon patch. Right: Solution of

the horizon problem. All scales that are relevant to cosmological observations today were

larger than the Hubble radius until a ⇠ 10�5. However, at su�ciently early times, these

scales were smaller than the Hubble radius and therefore causally connected. Similarly,

the scales of cosmological interest came back within the Hubble radius at relatively recent

times.

5.2 Conditions for Inflation

Via the Friedmann Equations a shrinking comoving Hubble radius can be related to the acceleration

and the the pressure of the universe

d

dt

✓
H

�1

a

◆
< 0 ) d

2
a

dt2
> 0 ) ⇢ + 3p < 0 . (50)

The three equivalent conditions for inflation therefore are:

27
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WIMPs and PBHs 4

(UCMHs) have ⇢(r) / r
�9/4 density profiles, which has

been confirmed by recent 3D simulations [16]. Since fPBH

is at or well below the percent-level in all but one of our
detection scenarios, we can assume that UCMHs form in
isolation, so we neglect the e↵ects of PBH-PBH interac-
tions on the UCMH profile.

Due to the steepness of the profile the DM density
reaches a maximum value at the “annihilation plateau”,
where the DM annihilation rate becomes equal to the
Hubble rate. Due to the large resulting gamma-ray lu-
minosities, UCMHs in the Milky Way would appear as
bright point sources with no counterparts in other wave-
lengths. Previous analyses searching the 3FGL for DM
subhalos [60–62] have identified 19 bright, high-latitude,
non-variable unassociated point sources that are spec-
trally compatible with annihilating DM. As described in
detail in Appendix A, we perform a Monte Carlo simula-
tion to assess the observability of UCMHs by Fermi. We
then use this to determine the 95% confidence level (CL)
upper bound on the WIMP annihilation cross-section in
the zero-velocity limit (�vrel)0. This upper limit depends
on the PBHs’ spatial distribution which we assume tracks
the Milky Way DM distribution. We fix fPBH to the 5th
percentile of the posterior P (fPBH|N), derived in the pre-
vious sections for the detection of N PBH candidates.
We conservatively assume that all 19 compatible unasso-
ciated point sources are UCMHs and set the upper limit
on (�vrel)0 by comparing with the expected number of
UCMHs passing cuts on their integrated gamma-ray flux
and galactic latitude (given MPBH, m� and N).

Annihilation in UCMHs outside the Milky Way over all
redshifts contributes to the di↵use, isotropic extragalac-
tic background (EGB) [63–65], which has been measured
by Fermi [66]. This provides an additional very robust
constraint on the DM self-annihilation cross section since
it requires no assumptions about the PBH spatial distri-
bution. To set a conservative bound we do not assume a
particular background model. Instead, we compute the
expected gamma-ray flux from UCMHs in each of Fermi’s
energy bins, and calculate the likelihood of such an excess
above the observed flux using the statistical and system-
atic uncertainties. As for the point source constraints,
we fix fPBH to the 5th percentile for a given detection
scenario.

An important di↵erence with regard to standard indi-
rect detection analyses is the scaling of signals with the
fractional WIMP abundance f� = ⌦�/⌦DM for under-
abundant thermal relics. Typically, the DM annihilation
rate depends on the combination f�

2(�vrel)0 since it fac-
tors into terms dependent on the integrated DM density
profile squared (J-factor) and the self-annihilation cross
section. In the PBH scenario, the DM density profile it-
self depends on (�vrel)0 since this sets the radius of the
annihilation plateau. As a result, the DM annihilation
rate (and thus the extragalactic di↵use flux from PBHs
and expected number of unassociated point sources) de-
pends on the combination f�

4(�vrel)0; this is derived in
Appendix A.
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FIG. 2. Constraints on DM self-annihilation cross sec-

tion. The solid lines correspond to the 95% CL upper limits
obtained assuming a small number of PBH detections with
LIGO/Virgo O3 (blue), Einstein Telescope (ET, orange) and
SKA (green). The lower dashed lines correspond to con-
straints which would be obtained if the number of PBH ob-
servations are as large as allowed by current limits. The dark
grey region is the envelope of 95% CL profile likelihood con-
tours for several supersymmetric models, while the light grey
region is for singlet scalar scenarios. The horizontal dotted
black line indicates the standard thermal relic cross section
3⇥10�26 cm3/s. The angled dotted black line shows the lower
bound from unitarity for s-wave annihilation. �

Results and discussion. For each detection scenario in
Table I we show as function of WIMP mass the 95% CL
upper limit on f

4

�(�vrel)0 in Fig. 2, where f� = ⌦�/⌦DM

is the fractional contribution of a particle species to the
cosmic DM density. This allows us to compare our pro-
jections with the theoretical predictions in cases where
new particles constitute only a subdominant component
of DM. The colored curves show the most stringent con-
straint arising from gamma-ray observations at a given
WIMP mass, assuming annihilation into b̄b. For our pro-
jected limits assuming a small number of PBH detections
(solid lines), point source constraints dominate at low
WIMP mass, while di↵use constraints are more relevant
at high mass. This can be seen as a ‘kink’ in each of
the solid lines, above which di↵use constraints dominate.
For larger numbers of PBH detections (dashed lines), dif-
fuse constraints generally dominate (see Appendix A for
a more detailed comparison of the limits).

We find that a detection of O(10) PBHs with any of the
methods described above would rule out large ranges of
standard-model extensions with stable relics at the elec-
troweak scale. To illustrate this, we show in dark grey the
envelope of the 95% CL profile-likelihood contours for the
MSSM7 [67] and various GUT-scale SUSY models [68]
obtained by the GAMBIT collaboration. In light grey,
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Observational constraints on gamma rays produced by the annihilation of weakly interacting

massive particles around primordial black holes (PBHs) imply that these two classes of Dark Matter

candidates cannot coexist. We show here that the successful detection of one or more PBHs by radio

searches (with the Square Kilometer Array) and gravitational waves searches (with LIGO/Virgo and

the upcoming Einstein Telescope) would set extraordinarily stringent constraints on virtually all

weak-scale extensions of the Standard Model with stable relics, including those predicting a WIMP

abundance much smaller than that of Dark Matter. Upcoming PBHs searches have in particular

the potential to rule out almost the
entire

parameter space of popular theories such as the minimal

supersymmetric standard model and scalar singlet Dark Matter. � �

Introdu
ction.

The formation and growth of black

holes (BHs) inevitably modifies the Dark Matter (DM)

distribution around them. If DM is in the form of

weakly interacting massive particles (WIMPs) which self-

annihilate, the increase in DM density can significantly

boost the annihilation rate. This process has been dis-

cussed in the context of supermassive BHs at the center

of galaxies [1–7] and intermediate-mass BHs [8–10]. The

argument has been more recently extended to the case

of primordial black holes (PBHs), which can form before

Big Bang nucleosynthesis [11, 12] and could constitute

a significant, yet subdominant, fraction of DM. In this

case, the WIMP annihilation rate around PBHs would

lead to a gamma-ray background exceeding the one ob-

served by the Fermi Large Area Telescope (LAT), leading

to stringent constraints on the relative PBH abundance

fPBH
= ⌦PBH/⌦DM

[13–16].

In this letter, we explore the compatibility of PBHs and

WIMP DM from the opposite viewpoint. We focus on

the prospects for discovering PBHs with upcoming radio

and gravitational wave (GW) searches, and on the impli-

cations such a discovery would have on even a small relic

density of WIMPs in the Universe. Specifically, we con-

sider three discovery scenarios: i) The detection of GWs

produced by the merger of BHs with mass M . 1M�

with LIGO/Virgo; ii) The detection of GWs produced by

the merger of O(10M�) BHs at redshift z > 40 with the

Einstein Telescope; iii) The detection of the radio emis-

sion produced by the accretion of gas onto 1–1000 M�

BHs with the planned Square Kilometer Array (SKA).

The scenarios we consider are summarized in Table I.

We estimate the abundance of PBHs in each scenario,

given a number of detections (Fig. 1) and, from that,
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FIG. 1. Constra
ints on the PBH fractio

n from
fu-

ture observ
ations

of PBHs. Median value (solid line)

and symmetric 90% credible intervals [17] (shaded region) of

fPBH
= ⌦PBH/⌦DM, assuming the observation

of N PBH

candidates. In blue, we assume the observation of BH merg-

ers with component masses of 0.5 M� during LIGO O3. In

orange, we assume BH mergers with component masses of

10 M� are observed at redshift z � 40 during 1 year of oper-

ation of Einstein Telescope. In green, we assume the obser-

vation of 100 M� PBHs in the Milky Way in radio and X-ray

searches. The grey hatched boundaries show the current 95%

upper limit on fPBH
for each PBH mass. �

we calculate the gamma-ray luminosity of WIMP over-

densities around PBHs in the Universe. By comparing

this with the observed di↵use extragalactic
gamma-ray

flux and with unidentified gamma-ray point sources in

the 3FGL Fermi -LAT catalogue, we show that a posi-

tive detection of even a small number of PBHs in any

of the above scenarios would set extraordinarily strin-

gent constraints on weak-scale extensions of the Stan-
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Revisiting the Cosmological constraint: Results

• Accretion rate suppression around PBHs is very relevant 

• Dependence on the ionized sound speed

• May weaken the bound


https://files.slack.com/files-pri/T358T8AK1-F05QT2DLWQP/
epsilon.png
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Figure 4. Accretion rates of interstellar gas onto a moving, isolated PBH as a function of its velocity.
The results of [45] (solid blue line) are compared to the phenomenological prescription adopted in [15],
whereby we show the two cases the authors considered: Bondi-Hoyle-Littleton accretion of neutral
gas (orange dashed line) and gas which is considered fully ionized when the timescale for ionization
is shorter than the timescale for the BH to traverse its Bondi sphere (green dot-dashed line). The
rates are expressed as fractions of the Bondi rate, the mass of the PBH is fixed at 100M� and the
ambient gas density and temperature are set to ⇢ = 104 mp cm�3 and T = 102 K respectively. The
vertical dotted line identifies the Mach number where the accretion rate reaches the peak, i.e. where
the ionization front starts to break down.

monotonic decrease of the accretion rate with increasing BH velocity, the simulations show
a more complicated phenomenology. If the BH velocity is supersonic, but the Mach number
is below a critical value MR (MR ' 4 for T ' 104 K), a dense bow shock forms in the
upstream region; behind the bow shock, a D-type (dense) ionization front develops, and
a cometary-shaped HII region can be identified, characterized by low density and velocity.
In this regime, the gas velocity in the reference frame of the moving BH decreases with
increasing BH velocity, hence the accretion rate follows the opposite trend with respect to
the Bondi-Hoyle-Lyttleton formula, i.e. it increases with increasing BH velocity (see Fig.
4). Conversely, when the BH velocity is above MR, the ionization front becomes R-type
(rarefied), and the accretion rate decreases with the BH velocity, e↵ectively returning the
accretion process to Bondi-Hoyle-Littleton-like accretion.

– 10 –

Preliminary
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The inner speed of sound in PR13 accretion model is a key parameter !
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Role of the disc impacts accretion  —> one order of magnitude on  !fPBH
Radiative efficiency of hot accretion flows 1583

Figure 1. The radiative efficiency of hot accretion flows defined in equation (7) as a function of the net accretion rate. The open symbols represent the results of
ADAF or Type I LHAF, while the filled symbols are for the two-phase accretion model. The solid (with data shown as diamonds), dot-dashed (with triangles),
dashed (with squares) and long-dashed (with circles) lines represent δ = 10−3, δ = 10−2, δ = 0.1 and δ = 0.5, respectively. The two-phase model for δ = 10−3

is similar to δ = 10−2, so it is not shown. The dotted curve is the radiative efficiency of standard thin disc model (εSSD ≡ 0.1). The filled hexagons mark the
value of Ṁcr,ADAF for each choice of δ. The results of the power-law fit are presented in equation (11) and Table 1.

4 N U M E R I C A L R E S U LTS

4.1 Radiative efficiency

We set the black hole mass MBH to 10 M#. We find that the results
are similar for supermassive black holes. The outer boundary is
fixed to be Rout = 102Rs. So, we have Ṁnet = (Rin/Rout)sṀ0 =
0.16Ṁ0. Here, Ṁ0 ≡ Ṁ(Rout). We adopt various values of δ, δ =
10−3, 10−2, 0.1 and 0.5. Throughout this paper, we set α = 0.1.
Numerical simulations show that if the α viscosity is intrinsically
the magnetic stress associated with the MHD turbulence driven by
magnetorotational instability, as is widely accepted, we usually have
αβ = constant, with the constant being of order unity (Blackman,
Penna & Varniére 2008). Therefore, we set β = 10.

The results of efficiency are shown in Fig. 1. For given out-
flow strength (s = 0.4), the critical net accretion rates (Ṁcr,ADAF,
Ṁcr,LHAF) are similar for various values of δ: (6.3, 7.1)×10−3ṀEdd

(δ = 10−3), (6.2, 7.1)×10−3ṀEdd (δ = 10−2), (5.9, 6.6)×10−3ṀEdd

(δ = 0.1) and (4.4, 5.3) × 10−3ṀEdd (δ = 0.5). Several results can
be seen from Fig. 1, as follows.

(i) The radiative efficiency for ADAFs is positively corre-
lated with the mass accretion rate, as expected. When Ṁnet !
2 × 10−5ṀEdd, the slopes for various values of δ are similar, and
the efficiency can be described by ε ∝ Ṁ0.7. This is flatter than

previous estimations of ε ∝ Ṁ by Narayan et al. (1998), where
δ = 10−3. This discrepancy is not because of δ or the outflow ef-
fect, but it seems to be simply because the estimation in previous
work is rough. From fig. 7 in Narayan et al. (1998), as the accretion
rate changes by three orders of magnitude (i.e. from 10−4ṀEdd to
10−1ṀEdd), the bolometric luminosity varies by five orders of mag-
nitude (i.e. from 10−7LEdd to 10−2LEdd). So we should also have
ε ∝ Ṁ0.6−0.7, which is fully consistent with our result.

(ii) In the ADAF regime, the radiative efficiency strongly de-
pends on the value of δ. This is because a larger value of δ implies
that more energy will be received by the electrons, and subsequently
there is higher radiative efficiency. However, note that when Ṁ is
small, the efficiency is still very low. In the case of the accretion flow
in Sgr A*, if we adopt the definition of equation (8), the radiative
efficiency will be ∼4 × 10−5, which is lower than that of a stan-
dard thin disc by a factor of 4 × 10−4 (Yuan et al. 2003). Because
Rout = RBondi ≈ 105Rs and s ≈ 0.3 are adopted by Yuan et al. (2003),
the mass loss in the outflow contributes (1/105)0.3 ≈ 0.04. Another
factor (4 × 10−4/0.04 ≈ 10−2) is because of energy advection by
both ions and electrons (see Section 4.2).

(iii) When Ṁnet ∼ Ṁcr,ADAF, for different values of δ, the slopes
are all very steep and the values of ε become comparable. This is
because in this regime of Ṁ , qvis,e is compensated by qie (∼qvis,e) in
the electron energy equation. Moreover, the main radiative process

C© 2012 The Authors, MNRAS 427, 1580–1586
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1 Intermediate mass ratio inspirals in presence of Dark Matter: A simpli-
fied treatment

We consider the following system:

• An IMBH with mass MIMBH = 1000 M� surrounded by a DM spike characterized by
a density profile

⇢(r) = ⇢0

✓
r

r0

◆��

(1.1)

with ⇢0 = 226M�/pc3 and � = 7/3

• A black hole with mass Mtest = 1 M� orbiting around the IMBH and inside the DM
spike with

r0 = 226
GMIMBH

c2

. No initial eccentricity.

We define the total mass and symmetric mass ratio as follows:

Mtot = MIMBH +Mtest (1.2)

⌫ =
MIMBH Mtest

M2
(1.3)

We follow the motion of the solar-mass black hole around the IMBH (which is kept
fixed at r = 0) by integrating the equation of motion:

Mtest r̈ = Fgrav(r, v) + Fdyn(r, v) + Frad(r, v) (1.4)

The forces we take into account are:

- The gravitational pull of the IMBH + DM halo

Fgrav(r, v) = �Mtest

G(MIMBH +Mhalo,enclosed)

r3
r (1.5)

– 1 –

(a) Orbit (b) Velocity evolution

(c) Time evolution of the energy of the binary system

Figure 1: Time evolution of the system with radiation reaction and dynamical friction taken
into account.

- The dynamical friction due to the gravitational interactions with the particles making
up the DM spike. We write Chandrasekhar formula as follows (See for instance [2]):

Fdyn(r, v) = �Mtest

4⇡ ln(⇤)G2Mtest ⇢(r)

v3
v, (1.6)

where, in our case, ln(⇤) = 3

– 2 –

clarify this point...

- The radiation reaction due to GW emission, modeled at 3.5PN order as in [1] (eq. 226):

Frad(r, v) = �32

5
Mtest

G3M3
tot ⌫

c5r4

✓
1 + �

✓
�743

336
� 11

4
⌫

◆◆
v (1.7)

The initial conditions are:

(x0, y0) =

✓
0, 226

GMIMBH

c2

◆

(vx0, vy0) =

 r
G(MIMBH +Mhalo,enclosed)

r
, 0

!

We get r(t) and v(t) by integrating the equation of motion.
We define the total energy of the black-hole-binary system as

Ebin(t) = �1

2

GMIMBHMtest

r(r)
(1.8)

We want to monitor the evolution of Ebin with time while the small black hole inpirals
towards the IMBH (part of the energy is lost because of gravitational friction (and eventually
heats up the DM halo), part of the energy is lost to gravitational waves).

The results of the numerical integration of the equation of motion can be seen in Fig. 1

2 Intermediate mass ratio inspirals in presence of Dark Matter: Numerical
simulations

3 Discussion

4 Summary

– 3 –
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• Stellar-mass black holes that inspiral around IMBHs can trace 
the presence of either accretion disks or Dark Matter 
overdensities (DM “dresses” or “spikes”)

https://arxiv.org/abs/2108.04154
https://arxiv.org/abs/2211.01362
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11[Eda et al. 1301.5971, 1408.3534; see also 1302.2646, 1404.7140, 1404.7149 and others (sorry)]

5 years to merger

Nvacuum
cycles � 6 � 106
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m1 = 103 M�

m2 = 1M�

Assuming: 
• quasi-circular orbits 
• Newtonian dynamics 
• Isotropic DM spike

[BJK, Nichols, Gaggero & Bertone, 2002.12811]
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�Ncycles ⇠ O(104) cycles ⇠ % level e↵ect

Feedback effect becomes 
smaller as  decreases, 
but so does the size of 
the dephasing effect…

q

• Stellar-mass black holes that inspiral around IMBHs can trace 
the presence of either accretion disks or Dark Matter 
overdensities (DM “dresses” or “spikes”)

https://arxiv.org/abs/2108.04154
https://arxiv.org/abs/2211.01362


Torino - January 2024

24

Black Hole Environments

Black Holes (BHs) are extreme environments allowing us to probe high densities, long timescales…

Particle Dark Matter  
‘Spikes’ or ‘Dresses’

‘Gravitational Atoms’ of 
Ultralight Bosons

Baryonic  
Accretion Disks

30

LISA can discriminate environmental effects

24

Black Hole Environments

Black Holes (BHs) are extreme environments allowing us to probe high densities, long timescales…

Particle Dark Matter  
‘Spikes’ or ‘Dresses’

‘Gravitational Atoms’ of 
Ultralight Bosons

Baryonic  
Accretion Disks

2 BLACK HOLE ENVIRONMENTS 6

m2 � m and velocity v0. The change in velocity parallel to the orbit of the secondary object is then given by

�v = �2v0
m

m2

✓
1 +

b
2

b2
90

◆�1

, (2.2)

where b is the impact parameter between the two particles and b90 is the 90� deflection radius given by GNm2/v0.
We then need to sum over all possible encounters the secondary object has to calculate the total change in velocity.
The number of encounters the secondary object has in the interval [t, t + dt], with impact parameters between b

and b + db is given by

Nencdtdb = 2⇡
⇢DM(r)

m
bdb v0dt , (2.3)

which is simply the local number density times the volume between to cylinders of radius b and b + db and length
v0dt. Integrating over all physical impact parameters would then give us the total rate of change of the velocity,
were it not that the primary contribution to dynamical friction comes from dark matter particles that are moving
slower than the compact object. This e↵ect is captured by ⇠(v0) the fraction of dark matter particles moving more
slowly than the secondary object, and we refer the reader to Galactic Dynamics for the calculation of ⇠(v0). The
total change in velocity of the secondary object is then given by

dv

dt
= 2⇡v0⇢DM(r)⇠(v)

Z bmax

0

db b�v (2.4)

= �2⇡v2
0

⇢DM(r)⇠(v0)

m2

b
2

90
log

�
⇤2

�
, (2.5)

where the Coulomb logarithm log ⇤ is given by

log ⇤ = log

✓
bmax

b90

◆
. (2.6)

The energy losses the secondary object experiences due to dynamical friction are thus given by

dE

dt
= m2v0

dv

dt
= �4⇡(GNm2)2⇢DM(r)⇠(v0)

v0
log ⇤ , (2.7)

where we substituted the value of b90 as well. Comparing with Eq. (2.1), we can see that GW energy losses scale
with r

�5, and should thus be very dominant regardless of environmental e↵ects close to the central black hole.
The e↵ects become less pronounced further away from the black hole, and a su�ciently high ⇢DM should allow for
sizeable contributions to the total energy loss from dynamical friction.

There are some caveats with this treatment of dynamical friction here. First of all, there is a secondary contribu-
tion to dynamical friction from particles moving faster than the secondary object. This contribution has long been
assumed to be negligible, but Ref. [33] showed that this assumption breaks down for densities that roughly follow
⇢DM(r) / r

�� with � < 1. The secondary contribution increases the energy losses significantly, leading to a much
higher dephasing than with the original formulation, up to two order of magnitude even.

A larger caveat is the e↵ect of dynamical friction on the dark matter particles. These particles have their energies
increased and thus their orbits significantly altered, thus altering the density profile. The HaloFeedback code
from Ref. [29] implemented this additional e↵ect, and Fig. 4 shows an example system where they kept the orbital
radius of the secondary object constant. We can see a clear depletion of particles contributing to dynamical friction
at radii smaller than the orbital radius, which would lead to smaller total dynamical friction during an actual
inspiral. This e↵ect should further be modified when angular momentum is taken into account, as the secondary
object exchanges angular momentum with the DM particles as well. This would cause the DM halo to slowly start
co-rotating with the inspiral, further increasing the drag force and thus the total dephasing of the system. This is
an estimate however, and great care should be taken to further research the co-evolution of the secondary object
and the DM halo.

Finally, not all DM models are capable of producing extreme DM densities [27]. If DM is self-interacting, then
collisions between particles modulate the DM density in the inner regions of a halo through Brownian-esque motion,
flattening the DM halo profile. Similarly, self-annihilation between WIMPs (weakly-interacting massive particles)
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Figure 5: An accretion disk being perturbed by an inspiral with mass ratio q = 10�3. Streams of particles from
upstream flow to downstream as they interact with the secondary object, as is further highlighted in the zoom-in
panel. From [49].

on the mass ratio of the system. For Type I torques with q < 10�4, the secondary object can be treated as a
perturbation of the disk and the disk response is linear. When q > 10�4 as with Type II torques, the secondary
object carves out a lower-density gap in the accretion disk, and the disk response becomes highly non-linear [48,
49]. EMRIs have 10�8

< q < 10�5 and thus EMRIs in accretion disks would experience purely Type I gas torques.

Since Type I torque is linear, direct analytical calculations exist that give us [50]

TI = �⌃(r)r4⌦2
q
2M2

, (2.8)

where ⌃(r) is the surface density of the disk, ⌦ is the orbital angular velocity and M the Mach number which
quantifies the thickness of the disk. The energy loss of the secondary object due to torque is given by

dEtorque

dt
=

1

4
m1TI

✓
GN

r3M

◆1/2

, (2.9)

from which we can see that energy losses for Type I torques actually scale with r
1/2⌃(r), meaning that gas torque

losses could actually dominate over gravitational wave losses for su�ciently dense accretion disks. This is obviously
a simplistic argument and fully numerical simulations are needed to get a better grasp on Type I gas torques. A
better understanding of their dependence on disk parameters would then open up the possibility for LISA to probe
AGN disks as never before.

The physics behind accretion disks is a wholly di↵erent beast from the physics behind dark matter halos due to
its baryonic nature. Hydrodynamical simulations are required to resolve large parts of the parameter space, while
dark matter halos can utilise more semi-analytical approaches guided by N-body simulations. The devil now lies
in the details, and more specifically the initial conditions. We will focus on dark matter, where dynamical friction
requires very high densities to have a significant e↵ect on the inspiral. Our main question for this thesis is thus
becomes: what sort of processes would allow for these extreme dark matter densities?
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its baryonic nature. Hydrodynamical simulations are required to resolve large parts of the parameter space, while
dark matter halos can utilise more semi-analytical approaches guided by N-body simulations. The devil now lies
in the details, and more specifically the initial conditions. We will focus on dark matter, where dynamical friction
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• Collisionless DM overdensity

• Spherical symmetry

• Dynamical friction at work

• Feedback on the halo is important

2 BLACK HOLE ENVIRONMENTS 8

Figure 5: An accretion disk being perturbed by an inspiral with mass ratio q = 10�3. Streams of particles from
upstream flow to downstream as they interact with the secondary object, as is further highlighted in the zoom-in
panel. From [49].

on the mass ratio of the system. For Type I torques with q < 10�4, the secondary object can be treated as a
perturbation of the disk and the disk response is linear. When q > 10�4 as with Type II torques, the secondary
object carves out a lower-density gap in the accretion disk, and the disk response becomes highly non-linear [48,
49]. EMRIs have 10�8

< q < 10�5 and thus EMRIs in accretion disks would experience purely Type I gas torques.

Since Type I torque is linear, direct analytical calculations exist that give us [50]

TI = �⌃(r)r4⌦2
q
2M2

, (2.8)

where ⌃(r) is the surface density of the disk, ⌦ is the orbital angular velocity and M the Mach number which
quantifies the thickness of the disk. The energy loss of the secondary object due to torque is given by

dEtorque

dt
=

1

4
m1TI

✓
GN

r3M

◆1/2

, (2.9)

from which we can see that energy losses for Type I torques actually scale with r
1/2⌃(r), meaning that gas torque

losses could actually dominate over gravitational wave losses for su�ciently dense accretion disks. This is obviously
a simplistic argument and fully numerical simulations are needed to get a better grasp on Type I gas torques. A
better understanding of their dependence on disk parameters would then open up the possibility for LISA to probe
AGN disks as never before.

The physics behind accretion disks is a wholly di↵erent beast from the physics behind dark matter halos due to
its baryonic nature. Hydrodynamical simulations are required to resolve large parts of the parameter space, while
dark matter halos can utilise more semi-analytical approaches guided by N-body simulations. The devil now lies
in the details, and more specifically the initial conditions. We will focus on dark matter, where dynamical friction
requires very high densities to have a significant e↵ect on the inspiral. Our main question for this thesis is thus
becomes: what sort of processes would allow for these extreme dark matter densities?

• Differentially rotating 
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• Disk is perturbed by 
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object. Asymmetric 
“wake”


• Perturbation back-
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torques
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Figure 7: (a) The density (dashed) and relative potential (black) of the power-law profile with ⇢0 = 226 M� pc�3

and � = 1.2 with an exponential cuto↵ at 10 kpc, and the combined potential (pink) with the BH of mass 106M�.
The DM density increases asymptotically towards r = 0 while the relative potential flattens out, giving ⇢( )
its asymptotic behaviour. (b) The phase space of the power-law profile calculated from the Eddington-inversion
formula Eq. (3.10) (pink), and the theoretical prediction (yellow). (c) The ratio between the reconstructed profile
(pink) and the original profile (black), with the densities shown in the inset. While the numerical f(E) deviates
from the theoretical prediction as E !  max, the impact on the reconstruction is limited to ⇠ 10% at small radii.

where k denotes the component for which the phase space is being calculated, while  =
P

k  k the total grav-
itational potential of a system. This is a tricky aspect of the calculation when dealing with composite systems,
because attempting to construct the Eddington phase space for a component that is not actually in equilibrium will
result in negative regions for the phase space [57]. Luckily, any system that starts out in equilibrium that is then
evolved adiabatically will still be in equilibrium. So as long as we take care of our starting conditions, we can rest
assured that the Eddington inversion formula will give us physical results.

With a phase space function in hand, we can calculate the phase space function in the final state as ff (Ef , Lf ) =
fi(Ei(Ef , Lf )). The final state density is thus explicitly given by

⇢f (r) = 4⇡

Z Emax
f

Emin
f

dE

Z Lmax

Lmin

dL
L

r2vr,f
fi(Ei(Ef , Lf ), Lf ) . (3.11)

The core of the GS formalism is the conservation of the radial action in the initial and final state. By transforming
to phase space, we can use this equivalence to map the energies between the two states. The final density is then
recovered by going back to real space.

3.2 Numerical implementation

Computationally, the core of the GS formalism is thus captured by Eqs. (3.1), (3.2), (3.10) & (3.11). We are now
faced with the challenging task of numerically implementing these formulas and verify their results. For the verifica-
tion, we will directly follow the setup presented in GS, starting with a power-law density profile ⇢i(r) = ⇢0(r/r0)�� ,
at the centre of which a black hole grows from mass 0 to 106 M�. We fix � = 1.2, r0 = 8 kpc and ⇢0 = 226
M� pc�3. A regular power-law profile has a divergent gravitational potential, so we multiply with an exponential
cuto↵ ⇠ e

r/rcut with rcut = 10 kpc to give the density a finite size. The initial and final state potentials can be seen
in Fig. 7a.

Most of our calculations are integrals, and most have integrands with asymptotic behaviour. We have thus chosen
to use the trapezoidal rule for all our integrations, as this allows us to manually choose an integration grid which
properly captures the divergent behaviours of our integrands. Starting with finding the phase space representation
of the initial density, our first order of business is finding ⇢i( i) and di↵erentiating twice. This is a less-than-trivial
operation, as ⇢i(r) has an asymptote at r = 0 while  i(r) is almost flat, see Fig. 7a. We employ three di↵erent
di↵erentiation techniques, and choose the one that gives the best Eddington phase space function.

3 ADIABATIC CHANGES IN THE POTENTIAL 11

(a) (b) (c)

Figure 7: (a) The density (dashed) and relative potential (black) of the power-law profile with ⇢0 = 226 M� pc�3

and � = 1.2 with an exponential cuto↵ at 10 kpc, and the combined potential (pink) with the BH of mass 106M�.
The DM density increases asymptotically towards r = 0 while the relative potential flattens out, giving ⇢( )
its asymptotic behaviour. (b) The phase space of the power-law profile calculated from the Eddington-inversion
formula Eq. (3.10) (pink), and the theoretical prediction (yellow). (c) The ratio between the reconstructed profile
(pink) and the original profile (black), with the densities shown in the inset. While the numerical f(E) deviates
from the theoretical prediction as E !  max, the impact on the reconstruction is limited to ⇠ 10% at small radii.

where k denotes the component for which the phase space is being calculated, while  =
P

k  k the total grav-
itational potential of a system. This is a tricky aspect of the calculation when dealing with composite systems,
because attempting to construct the Eddington phase space for a component that is not actually in equilibrium will
result in negative regions for the phase space [57]. Luckily, any system that starts out in equilibrium that is then
evolved adiabatically will still be in equilibrium. So as long as we take care of our starting conditions, we can rest
assured that the Eddington inversion formula will give us physical results.

With a phase space function in hand, we can calculate the phase space function in the final state as ff (Ef , Lf ) =
fi(Ei(Ef , Lf )). The final state density is thus explicitly given by

⇢f (r) = 4⇡

Z Emax
f

Emin
f

dE

Z Lmax

Lmin

dL
L

r2vr,f
fi(Ei(Ef , Lf ), Lf ) . (3.11)

The core of the GS formalism is the conservation of the radial action in the initial and final state. By transforming
to phase space, we can use this equivalence to map the energies between the two states. The final density is then
recovered by going back to real space.

3.2 Numerical implementation

Computationally, the core of the GS formalism is thus captured by Eqs. (3.1), (3.2), (3.10) & (3.11). We are now
faced with the challenging task of numerically implementing these formulas and verify their results. For the verifica-
tion, we will directly follow the setup presented in GS, starting with a power-law density profile ⇢i(r) = ⇢0(r/r0)�� ,
at the centre of which a black hole grows from mass 0 to 106 M�. We fix � = 1.2, r0 = 8 kpc and ⇢0 = 226
M� pc�3. A regular power-law profile has a divergent gravitational potential, so we multiply with an exponential
cuto↵ ⇠ e

r/rcut with rcut = 10 kpc to give the density a finite size. The initial and final state potentials can be seen
in Fig. 7a.

Most of our calculations are integrals, and most have integrands with asymptotic behaviour. We have thus chosen
to use the trapezoidal rule for all our integrations, as this allows us to manually choose an integration grid which
properly captures the divergent behaviours of our integrands. Starting with finding the phase space representation
of the initial density, our first order of business is finding ⇢i( i) and di↵erentiating twice. This is a less-than-trivial
operation, as ⇢i(r) has an asymptote at r = 0 while  i(r) is almost flat, see Fig. 7a. We employ three di↵erent
di↵erentiation techniques, and choose the one that gives the best Eddington phase space function.

3 ADIABATIC CHANGES IN THE POTENTIAL 10

with the sub/superscripts i and f respectively denoting the initial state of the DM halo and the final state of DM
halo a↵ected by the change in potential. E is the relative energy per unit mass defined as E =  (r) � v

2
/2, with

 (r) = �0 ��(r) the positive-definite relative gravitational potential, so that all particles with E > 0 are on bound
orbits. The radial action is defined as

Ir,x(Ex, L) =
1

⇡

Z rapo

rperi

dr vr,x(r, Ex, L) (3.2)

vr,x(r, Ex, L) =

r
2( x(r) � Ex) � L2

r2
, (3.3)

with x being a placeholder for either i or f , and vr the radial velocity that gets integrated between the pericentre
rperi and the apocentre rapo of an orbit with energy and angular momentum E and L.

Through the conservation of radial action we can define a map from initial to final state energy Ef (Ei, L) and
vice versa, thus quantifying the e↵ect of the adiabatic change in potential on the particle. All that is missing is
a switch from distributions in physical space to distributions in energy/momentum space for our DM halo. This
energy/momentum distribution is given by the phase space f(E , L), defined as

⇢(r) =

Z
d3v f(E , L) = 4⇡

Z
dvrdvT vT f(E , L) , (3.4)

where v = (vr, v✓, v�) with vr as defined in Eq. 3.3, and vT =
p

v2✓ + v�2 = L/r. The last equality in Eq. 3.4
only holds for spherically symmetric systems, but does allow for anisotropy. Changing variables to E and L using

dvrdvT =
���@(vr,vt)

@(E,L)

��� dEdL gives us our base equation for the conversion from a phase space distribution to a density

distribution

⇢(r) = 4⇡

Z Emax

Emin

dE

Z Lmax

Lmin

dL
L

r2vr
f(E , L) , (3.5)

where the limits of the integral are defined as Emin = 0 and Lmin = 0 from the bound state requirements, while the
limits

Emax(r) =  f (r) (3.6)

Lmax(r, Ef ) = r

q
2( f (r) � Ef ) , (3.7)

come from the bounds vr = 0. If the central object involves a black hole, then we can add correcting factors to
mimic the e↵ect of general relativity. These result in the modified limits

Emax(r) =  f (r)

✓
1 � 4rS

r

◆
(3.8)

Lmin = 2crS , (3.9)

where rS = 2GNmBH/c
2 the Schwarzschild radius.

Our final necessary ingredient for the GS formalism is the inverted version of Eq. 3.5, which would ideally give us
f(E , L) in terms of ⇢(r). This is however far from straightforward, as a function of one variable cannot uniquely
determine a function of two variables. Physically, this means that there are many di↵erent anisotropic phase spaces
that give the same spherical density. Finding the phase space for an anisotropic system thus requires a priori
knowledge of the anisotropy, and there is no general formula for these calculations. N-body simulations have found
that DM halos have non-zero anisotropy at z = 0 [54, 55], but this anisotropy is poorly constrained observationally.

Simultaneously, primordial DM halos are expected to be isotropic, since they formed from the gravitational collapse
of density perturbations. Isotropic halos have phase spaces that only depend on E , and can thus be uniquely
determined from the density profile. This is given by the Eddington inversion formula [56]:

fk(E) =
1

⇡2
p

8

 Z E

0

d2
⇢k

d 2

d p
E � 

+
(d⇢k/d ) =0p

E

!
, (3.10)

Radial Action is Conserved

• Adiabatic BH growth:

• Initial density follows a “cuspy” profile

• A BH forms and grows adiabatically

• Eddington analysis

• Conservation laws are applied

• Final density is computed
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