
MNRAS 525, 6015–6035 (2023) https://doi.org/10.1093/mnras/stad2614 
Advance Access publication 2023 September 01 

Determining the dark matter distribution in simulated galaxies with deep 

learning 

Mart ́ın de los Rios , 1 , 2 , 3 Mihael Peta ̌c, 4 , 5 Bryan Zaldi v ar, 6 Nina R. Bonaventura, 7 Francesca Calore 

8 and 

Fabio Iocco 

9 ‹

1 ICTP South American Institute for Fundamental Research & Instituto de F ́ısica Te ́orica, Universidade Estadual Paulista, 01140-070 S ̃ ao Paulo-SP, Brazil 
2 Departamento de F ́ısica Te ́orica, Universidad Aut ́onoma de Madrid, E-28049 Madrid, Spain 
3 Instituto de F ́ısica Te ́orica, UAM-CSIC, c/ Nicol ́as Cabrera 13-15, Universidad Aut ́onoma de Madrid, Cantoblanco, E-28049 Madrid, Spain 
4 Center for Astrophysics and Cosmology (CAC) of University of Nova Gorica, Vipavska 11c, 5270 Ajdov ̌s ̌cina, Slovenia 
5 Laboratoire Univers et Particules de Montpellier (LUPM), Universit ́e de Montpellier (UMR-5299) & CNRS, Place Eug ̀ene Bataillon, F-34095 Montpellier 
Cedex 05, France 
6 Institute of Corpuscular Physics (IFIC), University of Valencia and CSIC, Calle Catedr ́atico Jos ́e Beltr ́an 2, E-46980 Paterna, Spain 
7 Cosmic Dawn Center, Niels Bohr Institute, University of Copenhagen, Jagtvej 128, DK-2200 Copenhagen, Denmark 
8 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAPTh, F-74940 Annecy, France 
9 Dipartimento di Fisica ‘Ettore Pancini’ Universit ́a degli studi di Napoli ‘Federico II’ & INFN sezione di Napoli, Complesso Univ. Monte S. Angelo, I-80126 
Napoli, Italy 

Accepted 2023 August 11. Received 2023 July 26; in original form 2021 November 23 

A B S T R A C T 

We present a no v el method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional 
neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris–TNG100). Within the controlled 

environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies 
of mass ∼10 

11 –10 

13 M � from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts 
of the galaxies, with a mean absolute error al w ays below ≈0.25 when using photometrical and spectroscopic information. With 

respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for 
the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of 
spectroscopic observations. 

Key words: methods: data analysis – software: simulations – galaxies: general – galaxies: haloes – dark matter. 
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 I N T RO D U C T I O N  

he prediction of the formation of galaxies from the initial pertur-
ations of matter seen in the cosmic microwave background (CMB) 
ithin a self-consistent framework, is one remarkable success of the 
 cold dark matter ( � CDM) paradigm. In particular, the presence

f a gravitationally active, otherwise inert, component of matter –
hose intimate nature is currently unknown – dubbed ‘dark matter’ 

DM), is what is believed to allow the density perturbations observed 
n the CMB to grow into large-scale structures, providing the leading 
gravitational texture’ to the fabric of the Universe we observe 
oday. 

Achieving a full theoretical understanding of the evolution and 
rowth of density perturbations is a very challenging task; semi- 
nalytical solutions have been devised (Press & Schechter 1974 ; 
heth, Mo & Tormen 2001 ), which are able to capture the growth of

he power spectrum on large and medium scales, down to the size of
ound objects. On smaller scales, the distribution of matter within 
alaxies themselves is typically learned through the solution of the 
quations describing the growth of an inert component, coupled to 
 E-mail: fabio.iocco.astro@gmail.com 
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hat of an active component, which requires numerical treatment. 
ithout any other assumption on the nature of DM other than the

ack of any particle interaction with ordinary matter, one can solve
he equations for the growth of the primordial density perturbations 
ontaining both ordinary matter (hereafter ‘baryons’) and the DM, 
nto the potential wells that will later become galaxies and galaxy
lusters. This class of methods, generically known as ‘hydrodynamic 
imulations’, has been developed in the past two decades by several
roups which have extensively tested different techniques to solve 
he evolution of the gaseous component of the Universe using 
omputational methods from fluid dynamics, which have proven 
uccessful in reproducing a number of properties of visible galaxies. 
e list here only a few of these simulations, not attempting an

 xhaustiv e review of the field: the Illustris and the Illustris-TNG
rojects (Vogelsberger et al. 2014a , b ; Nelson et al. 2018 ; Pillepich
t al. 2018a ), the EAGLE and APOSTOLE projects (Crain et al.
015 ; Schaye et al. 2015 ; Fattahi et al. 2016 ; Sawala et al. 2016 ),
he NIHAO simulations suite (Wang et al. 2015 ), the FIRE project
Hopkins et al. 2014 ), and the ERIS simulation (Guedes et al. 2011 ).
hese simulations ultimately aim to satisfy the precise observational 
onstraints that are (and will be) offered by large-scale-structure 
urv e ys including Sloan Digital Sk y Surv e y (SDSS; Blanton et al.
017 ), 2DF (Colless et al. 2001 ), DEEP2 (Newman et al. 2013 ), and

http://orcid.org/0000-0003-2190-2196
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ANDELS (Grogin et al. 2011 ), and upcoming projects such as Vera
ubin (also known as LSST) (Ivezi ́c et al. 2019 ). 
Observationally, the DM distribution in objects of diverse masses

nd spatial extent is inferred through a host of different methods,
anging from the use of gravitational lensing in galaxy clusters, to
he solution of inverted Jeans equations for dwarf galaxies, through
o the most famous ‘rotation curve’ technique for disc galaxies. 

All of the abo v e methods are based on assumptions known to hold
n what can be considered a ‘controlled environment’, for instance
nd only as a non-comprehensive example: the fact that the stellar
isc is rotationally supported in disc galaxies for rotation curve
ethods, or some simplifying assumptions on the shape of, e.g. the

nisotropy velocity parameter for reconstructing the DM potential
n dwarf galaxies (Strigari 2018 ). These assumptions are known to
ventually break down and introduce una v oidable systematics for
hich one must account (see e.g. Ullio & Valli 2016 ). 
To o v ercome limitations in the DM reconstruction related to the

ack of a controlled environment where strict validity/accuracy tests
ay be performed, a method to reco v er the actual DM content of
 galaxy (or a set of galaxies), trusted and validated through an
ccuracy test, possibly in a controlled environment, is required. The
xistence of numerical simulations, described above, offers an ideal
est bed to address this problem. In such a controlled environment,
ne is in control of both the visible and invisible components of
he universe (within the corresponding simulation’s cosmological
ox), and is also able to produce images of the visible universe that
mulate the ones actually observed with existing instruments. This
ffers the unique chance to perform controlled tests of the methods
evised, and/or to develop brand new ones, based on entirely no v el
echnologies. Machine-learning (hereafter, ML) techniques have
ro v en to be powerful tools for classification and regression tasks
n astronomy and astrophysics (e.g. Hezaveh, Perreault Le v asseur &

arshall ( 2017 ); Pearson, Li & Dye ( 2019 ); Chianese et al. ( 2020 );
ecib et al. ( 2020 )), as they look for correlations between the input
ariables and the output variables one wants to infer. It is important
o remark that, in order to achieve this goal, it is necessary to have
 reliable data set for which the input variables are known (in the
resent analysis, photometric images and spectroscopy of galaxies),
s well as the output variables (in the present analysis, the underlying
M distribution). 
In this work, we rely on machine learning algorithms, most notably

eep learning , to develop a new method for reco v ering the DM
istribution within galaxies from photometric and spectroscopic
bservations. In order to achieve this goal, we train the machine
earning algorithms in an environment where the underlying ‘ truth ’
s known, and on simulated images resembling those obtained from
eal observatories with a high degree of approximation. Machines can
hus properly be trained in the data cubes of numerical simulations,
nd applied to images of the real, external, environment. 

Here we list the key elements of our approach: 

(i) We use the Illustris-TNG100 simulation suite, and select
alaxies with total stellar mass in the range of M � ∈ [10 10 M �,
0 12 M �]. 
(ii) We augment the mock galaxy sample with simulations of

ealistic telescope observables (such as HI data cubes and velocity
aps) to train our machines in a controlled environment that

esembles the real Universe. 
(iii) We thoroughly test deep learning network architectures to

dentify the best one suited for our purposes. 
(iv) With our machines , we reconstruct the DM density distri-

ution without relying on assumptions of a specific shape for the
NRAS 525, 6015–6035 (2023) 
rofile, contrary to other methods looking only at the total mass, or
ass enclosed within a particular radius. 
(v) Our approach is not limited to isolated rotation-supported

ystems like the rotation curve method, but is applicable to the whole
ange of galaxies in the local Universe, including those undergoing
ergers, turbulent star formation, etc. 
(vi) While the rotation curve method requires accurate photomet-

ic and spectroscopic observations to determine the DM content of
 galaxy, our approach remarkably achieves very good performance
ith photometry only. 

We describe in detail all of these elements in this paper, organized
s follows: In Section 2 , we describe the set of cosmological
umerical simulations that we adopt in order to create our sample of
alaxies; in Section 3 , we describe the creation of mock images
hat resemble (for the galaxies extracted in the simulation) the
bservational properties of real observations of galaxies; in Section 4 ,
e describe the machine learning algorithms (to which we will refer

o as either architectures or machines ) that we train inside
he simulation space; in Section 5 , we present and discuss our results.

e finally draw our conclusions in Section 6 . 

 T H E  SI MULATI ONS  

he first numerical solutions of structure formation in a cosmological
n vironment (hereafter , referred to as ‘cosmological simulations’)
escribed the formation and growth of DM–only structures, while
ubsequent developments improved their realism by including var-
ous aspects of baryonic physics. Due to the vastly different scales
f various processes that go v ern the behaviour of baryons, this
urns out to be a very demanding task. Within the past decades,
ophisticated simulation frameworks have been developed, which
ely on the modelling of collisional baryonic matter as a fluid,
nd are therefore referred to as hydrodynamical simulations . The
aryonic physics below the resolution limit is typically handled
hrough various prescriptions that are calibrated on a broad range
f observations – for a re vie w see, e.g. Pillepich et al. ( 2018a ).
his approach, aided by the rapid impro v ement of computational
apabilities, has led to the development of highly reliable simulations,
hich can generate spectacularly accurate analogues of our Universe

nd manage to reproduce a wide range of empirical relations that are
nown to exist in real galaxies. 
In this work we explore a no v el simulation-based technique for

etermining the DM content of the observed galaxies. Within the
imulations, one has a complete knowledge of all the components of
he Universe (gas, dust, stars, accreting black holes, and DM), thus
eing able to create mock observations of galaxies and pair them
o the corresponding DM mass profiles. This setup enables us to
se supervised machine learning techniques to capture the mapping
etween the observational data and the underlying DM distribution.
aturally, the success of the outlined approach crucially relies on

he assumption that the simulations are representative of the real
niverse. As we discuss in the following section, the IllustrisTNG

imulations, on which we base our work, indeed provide an excellent
greement with a broad range of observations, which go far beyond
he quantities that were used in the calibration of subgrid physics. 

.1 The Illustris TNG simulations 

he IllustrisTNG simulations (Marinacci et al. 2018 ; Naiman et al.
018 ; Springel et al. 2018 ; Nelson et al. 2018 ; Pillepich et al. 2018b )
re built upon the success of their predecessors, namely the original
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Table 1. Summary of the criteria used in selecting galaxies from the 
simulation. 

Property Criterium 

Simulation snapshot 99 ( z = 0) 
Stellar mass 10 10 M � ≤ M � ≤ 10 12 M �
Star formation rate SFR ≥ 0.1 M � yr −1 

Central galaxy SubhaloParent = 0 
Cosmological origin SubhaloFlag = 1 
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llustris simulations. While the latter did not include magnetic fields, 
nd used less refined implementations of AGN feedback, stellar 
ass yields and galaxy-wide winds, they were one of the first

imulations to successfully reproduce observed galaxy morphologies 
Vogelsberger et al. 2014b ), besides several other global properties; 
hese include such properties as the halo mass function, galaxy stellar

ass function, luminosity function, Tully–Fisher relation, as well 
s a fair approximation to the star formation rate (SFR) and its
volution (Vogelsberger et al. 2014a ). However, the Illustris runs 
lso suffered from several shortcomings, e.g. in a mismatch in stellar
ges of small-mass galaxies and in the realm of quenching of massive
alaxies (for a complete re vie w of scientific remarks and cautions see
elson et al. 2015 ), which moti v ated the de v elopment of The Ne xt
eneration (TNG) simulation suit. The latter notably impro v ed on the 

forementioned shortcomings (Pillepich et al. 2018a ) thanks to the 
efined implementation of feedback, as well as the implementation 
f magnetic fields. Additionally, the IllustrisTNG simulations have 
lso pro v en to perform better when subjected to more stringent
ests, such as the matching against the observed galactic size–
ass ( R e –M � ) relation (Genel et al. 2018 ) and the evolution of the
FR (Donnari et al. 2019 ), although some discrepancies regarding 

he latter still exist at z � 1 Donnari et al. ( 2019 ). Even more
mportantly for our work, the IllustrisTNG suite was shown to 
esult in remarkable agreement between simulated and observed 
alaxy morphologies (Huertas-Company et al. 2019 ); allow for the 
eneration of representative mock observations for Pan-STARRS 

Chambers et al. 2019 ) and the SDSS Blanton et al. ( 2017 ) surv e y
Nelson et al. 2015 ; Rodriguez-Gomez et al. 2019 ); and lead to
otation curves that are similar to the ones observed in Milky Way-
ike galaxies (Lo v ell et al. 2018 ; Marasco et al. 2020 ). 

In order to build our data-set we use the TNG100-1 simulation 
un. Like other TNG simulations, it self-consistently follows the 
ormation and evolution of galaxies and their environments for 100 
napshots from z = 127 to z = 0 in a � CDM cosmology [ �m 

=
.3089, �b = 0.0486, �� 

= 0.6911, σ 8 = 0.8159, n s = 0.9667 
nd h = 0.6774 (Planck Collaboration XIII 2016 )]. This simulation 
s embedded in a periodic box with sides of 75 h −1 ≈ 110.7 Mpc
nd 2 × 1820 3 resolution elements, which translates to an average 
ass of the baryonic resolution elements of 1.39 × 10 6 M � and DM

articles with mass 7 . 5 × 10 6 M � (Rodriguez-Gomez et al. 2019 ). 

.2 Selection of galaxies 

or the purposes of this work, we use a subset of galaxies from
he TNG100-1 simulation that were selected according to criteria 

oti v ated by the abo v e-described consistenc y checks of the TNG
uite, as well as the availability of the real-world observations. In
articular, we restrict our attention to snapshot 99 , correspond- 
ng to redshift z = 0, since in this pilot study we focus on local
alaxies for which reliable independent mass estimates are available 
e.g. the SPARC catalogue (Lelli, McGaugh & Schombert 2016 )). 

e further restrict our attention to galaxies that have stellar masses
n the range of M � ∈ 10 10 –10 12 M �, as these are well-resolved by the
imulation and pass a broad range of tests discussed in the previous
ection. Furthermore, this stellar-mass range is also well co v ered 
y the existing photometric and interferometric surv e ys. Apart from
he stellar mass, we also impose a cut on SFR in order to select
nly objects with an SFR exceeding 0.1 M � yr −1 to a v oid quenched
alaxies, which have been reported to possess notable discrepancies 
ith respect to the observations (Huertas-Company et al. 2019 ). 
urthermore, the cut on SFR also assures that the objects have 
 sufficient amount of gas for creating the corresponding mock 
nterferometric images. Finally, in addition to the cuts on M � and
FR, we also ensure that the selected galaxies are central galaxies (i.e.

heir SubhaloParent = 0, which implies they have no parent in the
ierarchical structure resolved by the Subfind Springel et al. ( 2001 )
lgorithm) and that they have been identified as true galaxies by the
llustris collaboration (i.e. have SubhaloFlag set to 1, which assures 
s that they are proper galaxies of cosmological origin). It is to be
oted that the selection criteria described abo v e do not narrow down
ur sample of galaxies to a specific morphological type, but includes
ll types of objects that can be found in the TNG100-1 simulation and
ass our stellar mass and SFR cuts. Similarly, the selected galaxies
re not necessarily isolated, since we only demand that they are the
entral object of the corresponding friend-of-friends group identified 
y the Subfind algorithm. The summary of our selection criteria can
e found in Table 1 . 

 C R E AT I O N  O F  T H E  M O C K  OBSERVAT IO NS  

he existence of reliable and representative training data is a crucial
recondition for the applicability of supervised machine learning 
ools. As explained in the previous section, modern hydrodynam- 
cal simulations provide us with a realistic representation of the 
niverse and, in particular, its galaxy populations. In combination 
ith state-of-the-art image generation tools, this gives us a unique 
pportunity to create large and realistic sets of mock observations of
alaxies. Furthermore, since the exact underlying DM distribution 
an be determined from the simulations, the y pro vide us with all
he required ingredients to apply the standard supervised machine 
earning techniques. 

The creation of realistic mock observations from hydrodynamical 
imulations has been insofar explored by a number of works (Nelson
t al. 2018 ; Rodriguez-Gomez et al. 2019 ). Therefore, we chose to
ollow the prescriptions therein, as they have been thoroughly tested 
nd shown to non-trivially reproduce a number of observational 
roperties. More concretely, throughout the rest of this work we 
ill rely on mock photometric images of the SDSS (Blanton et al.
017 ) and HI interferometry mimicking the characteristics of Karl 
. Jansky Very Large Array (VLA) radio observatory (Lacy et al.
020 ). Such a combination of photometric images and gas kinematics 
as been frequently used to constrain the DM content in local spiral
alaxies, see, e.g. Lelli et al. ( 2016 ). 

As detailed in Section 2.2 , we apply several selection cuts to
he full sample of galaxies provided by the TNG100-1 simulation. In
articular, our subset corresponds to local central galaxies with stellar 
asses in the range of M � ∈ 10 10 –10 12 M � and SFR ≥0.1 M � yr −1 .
fter applying these selection criteria, we are left with approximately 
000 individual objects. To increase the size of the data set, we gener-
te 3 distinct realizations of photometric images and interferometric 
ata for each galaxy in our subsample, with each realization having
 different randomly selected orientation (i.e. line-of-sight axis) and 
istance to the object, which is selected uniformly from the interval
MNRAS 525, 6015–6035 (2023) 
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Table 2. Seeing PSF and median sky brightness used in the creation of SDSS 
images. The values are adopted from SDSS DR16 2 . 

Filter Seeing PSF (arcsec) Sky brightness (mag arcsec −2 ) 

u 1.53 22.01 
g 1.44 21.84 
r 1.32 20.84 
i 1.26 20.16 
z 1.29 18.96 
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 ∈ 10 Mpc - 20 Mpc . All the mock observations are fixed to co v er
7.2 arcmin × 17.2 arcmin of the sk y, hav e a resolution of 128 × 128
ixels and are centred on the most gravitationally bound particle
elonging to the object. 
In the following section, we first summarize the procedure for

enerating mock photometric images in the five SDSS wavebands.
ubsequently, we describe the method used for creating HI intensity
nd velocity maps, which were obtained from mock interferometric
ata cubes resembling the observations of VLA. 

.1 Creation of mock photometric images 

or the creation of mock SDSS images we follow the procedure
stablished by Rodriguez-Gomez et al. ( 2019 ). It relies on the
adiative transfer code SKIRT (Camps & Baes 2015 , 2020 ), which
mulates the stellar emissions and subsequent light-ray propagation
o the observer, taking into account the absorption and re-emission
y dust, for a given cut-out of particles from the hydrodynamical
imulation. It allows us to directly produce the idealized mock images
or the five SDSS broadband filters, while we additionally add the
eeing and sky brightness corrections to each of the simulated bands
ccording to the characteristics reported by the SDSS collaboration.

The first step in producing mock photometric images for a
imulated galaxy, is obtaining the corresponding cut-outs for stellar
nd gas particles from the simulation. For a given object, defined
y the friends-of-friends (FoF) algorithm used in the pre-processing
arried out by the IllustrisTNG collaboration (Springel et al. 2018 ),
e extract all the stellar and gas particles which lie within a

phere centred on the corresponding minimum of the gravitational
otential. 1 The radius of the sphere is chosen according to our
rescribed field of view, i.e. co v ering 17.2 arcmin at a previously
elected random distance D . After extracting the corresponding set
f particles, we apply a random 3D rotation to obtain the final cut-out
hich is to be used as an input for the SKIRT code. 
Within the SKIRT framework, each imported star particle is

reated as single coe v al stellar population. Follo wing the approach
f Rodriguez-Gomez et al. ( 2019 ), the spectral energy distributions
SEDs) of stellar particles older than 10 Myr are modelled with the
ruzual & Charlot ( 2003 ) population synthesis code, for which

he initial mass, metallicity, and age are provided as additional
nputs, obtained directly from the simulation. The stellar particles
ounger than 10 Myr are treated as star -b ursting regions and their
EDs are modelled with the MAPPINGS-III photoionization code
Gro v es et al. 2008 ). For the latter, a constant SFR o v er the last
0 Myr is assumed, along with a compactness parameter log 10 C = 5,
nterstellar medium pressure of log 10 [( P 0 / k B )/cm 

−3 K ] = 5 and a
loud co v ering factor of f PDR = 0.2. The corresponding metallicity
alues were again obtained directly from the simulation. The SEDs
f both, old stellar populations and star-forming regions, are sampled
sing 1000 logarithmic wavelength bins in the range between 0.09
nd 100 μm. 

For performing the radiative transfer computation, SKIRT uses a
elf-consistent description of the gas distribution with the one used
hroughout in the simulation. In particular, it reconstitutes the original
oronoi tessellation that underpins the adaptiv e mo ving mesh AREPO
ode, upon which the IllustrisTNG suite is built. Following the
NRAS 525, 6015–6035 (2023) 

 This procedure selects also particles that are not necessarily assigned to 
alaxy in question by the FoF algorithm, but might nonetheless contribute to 
he propagation of light along the line-of-sight in the vicinity of the object 
e.g. satellite galaxies or other nearby neighbours). 
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onvention of Rodriguez-Gomez et al. ( 2019 ), we assume that dust
ollows the distribution of star-forming gas and has a constant dust-to-
etal mass ratio of 0.3. The dust composition is modelled using the
ulticomponent dust mix of Zubko, Dwek & Arendt ( 2004 ), which

onsists of graphite, silicate and polycyclic aromatic hydrocarbon
rains. For the dust emissivity we assume a modified blackbody
pectrum, which relies on local thermodynamic equilibrium, and
rack it o v er 1000 logarithmic bins spanned between 0.09 and
00 μm. 
The abo v e settings are used to run a Monte Carlo simulation

f radiative transfer for 10 7 photon packets, which is significantly
igher than what was used in Rodriguez-Gomez et al. ( 2019 )—the
eason for this difference is the fact that we assume the sources are
ignificantly closer and hence better resolved. Similarly, we use a
rame instrument with 1000 logarithmically spaced bins in the range
etween 0.01 and 3.7 μm, which leads to significantly better spectral
esolution. Finally, the resulting data cube is convolved with the five
DSS ugriz broadband filters to obtain the corresponding images of

he optical stellar light emission. 
It is worth emphasizing that this procedure yields idealized

hotometric images for the simulated galaxies. To produce realistic
ock observations, one needs to, at a minimum, add the ‘blurring’

ffects to the simulated light emission that would result if it passed
hrough the optics of a telescope, as well as the contaminating
ontribution to the observed emission from the sky background.
herefore, we convolve each image with a Gaussian kernel filter
ppropriately sized to match the width of the point-spread function
PSF) in each of the SDSS wavebands, which we adopt from the
DSS DR16. 2 Similarly, we add the sky background contribution in

he form of random Gaussian noise to each image pixel, where the
ppropriate mean and variance values for each band were again taken
rom SDSS DR16. 2 The adopted PSF and median sky brightness
alues are contained in Table 2 . Examples of the final output images
re shown in Fig. 1 . 

.2 Creation of HI intensity and velocity maps 

or the creation of mock HI observations, we follow the procedure
escribed in Oman et al. ( 2019 ), which is conveniently implemented
n the MARTINI code. 3 This code allows for the creation of synthetic
esolved HI line observations (i.e. data cubes) directly from the
napshot of a hydrodynamic simulation. It provides a broad range of
eatures, ranging from spectral modelling to various observational
ffects, such as noise contamination and beam width corrections. 

Since the support for the IllustrisTNG suite is pre-built within
he MARTINI software, it allows us to easily obtain HI data cubes
rom the z = 0 snapshot of the TNG100-1 simulation. For particle
moothing, we use the cubic spline kernel, which is a standard choice
 https:// www.sdss.org/dr16/ imaging/ other info/ 
 https://github.com/kyleaoman/martini 

https://www.sdss.org/dr16/imaging/other_info/
https://github.com/kyleaoman/martini
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Figure 1. Examples of the photometric mock SDSS images obtained following the procedure described in Section 3.1 for two random galaxies (subhaloID = 

60 744 in the top panel and subhaloID = 108 013 in the bottom panel). 
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nd, in our initial e xperiments, pro vided the best numerical stability.
or the spectral dimension of the data cube, we use 64 channels
ith spectral resolution of 5 km s −1 , which roughly matches the 
roperties of the THINGS surv e y (Walter et al. 2008 ) obtained
ith the VLA radio telescope. We also use the corresponding beam 

roperties, namely a Gaussian PSF with a full width at half-maximum 

FWHM) of 10 arcsec, truncated at 3 × FWHM, and a Gaussian 
oise model with a root-mean-square value of 5 × 10 −6 Jy arcsec −2 . 
hrough the data source settings we remo v ed the systemic velocities
f the objects, so the resulting data cubes were produced in the
ppropriate galactic rest frames. For the distances to the objects, we 
sed the same randomly generated values of D as in the case of the
hotometric images. Furthermore, to obtain the identical orientations 
f the galaxies, we performed a rotation which aligned the particles 
xtracted from the simulation box to the same line-of-sight direction 
s was used in the creation of mock SDSS images. 

Using the abo v e setup, the MARTINI code allowed us to obtain
ealistic mock HI observ ations. Ho we ver, since such data cubes
onsist of 64 individual channels, we decided to reduce the amount 
f information by projecting out the first three moments of the HI
mission. In particular, we computed the corresponding line-of-sight 
ntensity, av erage v elocity and velocity dispersion maps, which can 
e obtained by e v aluating the 0th, 1st and 2nd moments of the
mission intensity across the available frequency channels. In order 
o maintain a good signal-to-noise ratio for the 1st and 2nd moments,
e masked regions where the HI intensity dropped below 0.2 Jy per
eam (equi v alent to an HI column density of 10 19 . 5 atoms cm 

−2 ), as
uggested in Oman et al. ( 2019 ). This resulted in the final images,
hich were later used for training the neural network. In Fig. 2 we
resent two examples of synthetic HI maps from our final data set. 

.3 Final simulation data sets 

ummarizing, the benchmark data-set consists of ∼6000 realizations 
f galaxies for which we create the SDSS photometric images and 
he corresponding HI data cube, from which we compute the first
hree momentum maps. The photometric images and the three HI 

omentum maps were stacked to create a 128 × 128 ×8 grid (128
128 pixel images with 8 channels) that serves as the input to
ur machine learning model; the output of the network is the DM
rofile that consist of 20 scalar quantities, that correspond to the total
M mass enclosed within 20 radial galactocentric distances that are 

ogarithmically spaced between 1 and 100 kpc . A schematic flow 

hart of the pipeline used in this work is depicted in Fig. 3 . 
As is required in supervised machine learning, we split the data-set

nto three subsets, containing 60 per cent , 20 per cent and 20 per cent
f the total number of samples that served as training, validation and
est sets, respectively. In order to a v oid overfitting and to have a
eliable measurement of the algorithm performance, these subsets 
ust be mutually independent, i.e. the observations (galaxies in our 

ase) that are in one subset cannot exist in another subset. 

 T H E  M AC H I N E S  

L, seen as a set of techniques and algorithms that allows for
obust statistical inferences on data, has pro v en v ery useful in physics
roblems where there is limited knowledge of the physical system 

e.g. in the representative case of Indirect Detection searches for DM
n astrophysics). For a deeper re vie w about machine learning tech-
iques we recommend Mitchell ( 1997 ); Murphy ( 2012 ); Goodfellow,
engio & Courville ( 2016 ). The case at hand is similar: the physical
odelling of stellar dynamics in galaxies in this work is limited and

ypically relies on simplifying assumptions, which may not al w ays
e adequate. 
In this work we deal with a complex data-set describing the

inematics, dynamics, and stellar light emission of galaxies, and 
im at inferring the DM content influencing the observed charac- 
eristics and behaviour. This is a representative problem of ‘pattern 
ecognition’, for which state-of-the-art deep learning models such as 
onvolutional Neural Networks are, in general, very good at solving. 
he popularity of neural networks arises from the fact that these
odels are ‘universal approximators’ (they can approximate any 

ontinuous function under quite mild assumptions); since our quan- 
ity of interest is the enclosed DM mass within a given galactocentric
istance, this corresponds to a re gression problem. Giv en a data-set
 = { x i , y i } N i= 1 , with multi v ariate input x and scalar output y (in our

ase, the DM mass), a possible strategy is to first make a proposition
f the probability distribution p ( y | w ) that go v erns our variable of
MNRAS 525, 6015–6035 (2023) 
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Figure 2. Examples of the mock HI intensity, average velocity and velocity dispersion maps obtained following the procedure described in Section 3.2 for tow 

random galaxies (subhaloID = 60 744 in the top panel and subhaloID = 108 013 in the bottom panel). 
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nterest y , and which depends on a number of parameters w . For
xample, we can assume, as is typical, that y follows a Gaussian
istribution with mean μ( x ). Then, we estimate the mean by a
unction f ( x, w ) given by our ML model, a convolutional neural
etwork containing parameters w , described in detail below. 
Concretely, our input variables correspond to the SDSS photomet-

ic images and the first three HI momentum maps, i.e. x i = { SDSS i , u ,
DSS i , g , SDSS i , r , SDSS i , i , SDSS i , z , HI i , 1 , HI i , 2 , HI i , 3 , } ; the output
ariables correspond to the DM mass enclosed within 20 different
adii, i.e. y i = { M i ( r k ) } with k = 1,..., 20. The training is performed by

aximum Likelihood Estimation of the parameters of the network,
here we assume that the output follows a Gaussian distribution. In
ractice, this is equi v alent to minimizing the loss function , being the
ean-squared error (MSE) defined as: 

 ( y i , f ( x i )) = 

1 

20 

20 ∑ 

k= 1 

( ˆ μi ( R k ) − μi ( R k ) ) 
2 , (1) 

here R k corresponds to the radial distance associated with k th output
euron of the network, while ˆ μj ( R k ) and μj ( R k ) denote the base 10
ogarithm of the true and the predicted enclosed DM mass in the
nits of M �. 

.1 Convolutional neural networks 

hen dealing with images, standard networks like the ones defined
bo v e – even if, in principle, are able to successfully perform any
egression or classification task – consider the images as tabula rasa
nd do not exploit their spatial structure. For example, they treat
NRAS 525, 6015–6035 (2023) 
qually pixels which are close together or far apart, or do not make
se of translation and rotation invariance (e.g. the fact that a cat in
 photograph is still a cat, regardless of its orientation or location in
 photo). Convolutional netw orks (Krizhevsky, Sutsk ever & Hinton
012 ), or Convnets for short, are especially designed to work with
mages while exploiting spatial structure. For the task of pattern
ecognition, they are faster to train than traditional networks, and
hus they can deal with more complex data sets while giving a very
igh performance. 
The ConvNets have some important characteristics: 

(i) A datum (pixels of an image in this case) is not treated as
 row vector in the data set, but as a squared array of pixels, like
he image itself. Similarly, some of the layers in ConvNets are
lso a set of stacked squared 2D arrays. These layers are called
n Appendix C ‘2D convolution’. Ho we v er the y are defined via a
onlinear transformation of the input, in a similar way as happens
ith traditional networks. A typical nonlinear transformation used
owadays is the so-called Rectified Linear Unit function (ReLU in
ppendix C ). 
(ii) Not all the pixels of the image affect all the variables (or units)

f the first hidden layer. Instead, different (but partially o v erlapped)
mall regions of the input are connected to different units of the
onvolutional layer. The size of those small regions has to do with
he kernel size . The degree of o v erlapping of those re gions determines
he stride length (see Appendix C ). 

(iii) The parameters connecting the input to the first hidden layer
re the same (are shared) for all the units. The same applies to
he parameters connecting the first hidden layer to the second, and
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Figure 3. Flow-chart of the analysis pipeline used in our work. 
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o on. This configuration, together with the previous characteristic, 
educes greatly the amount of parameters with respect to the one in
 fully connected architecture. On the other hand it implies that all
he units of the hidden layer ‘learn’ the same feature (e.g. an edge, or
nother spatial structure) of the image, but placed on different spatial 
ocations; this is the way in which ConvNets implement translation 
nvariance. These shared weights define one kernel, and typically 
onvNets use several of them (see in Appendix C how different 
onvolutional layers have different number of kernels). 

(iv) Another type of transformation is pooling , which defines 
 type of layer (see Appendix C ). This sort of transformation is
ypically applied right after a convolutional layer, and the idea is
o reduce the information, by going from a 2D array of some size
corresponding to the 2D convolution), to another 2D array of a 
maller size. For example, in Appendix C , we use a pooling size of
 × 2 pixels, meaning that the convolutional layer has been reduced 
y a half. The effect of pooling is that, after learning the presence of
 spatial structure, its exact location is thrown away; there are many
ossible ways to reduce information in a pooling layer. A typical 
ne, which is also used in our work, is max-pooling , which just takes
he pixel with the highest value of the weight in the 2 × 2 pixel
ubregion. 

(v) Finally, ConvNets have a few dense (traditional, fully con- 
ected) layers, which are the ones determining the output. The idea 
s that, once the spatial structures present in the images are learned by
he previous convolutional layers, then a traditional network is very 
ood at predicting the output, whether classification or regression. 

In order to reduce o v erfitting, we used, apart from the training/test
plitting of the data commented abo v e, sev eral common techniques
hat have been proven to prevent the network from memorizing the 
raining data, but instead, force a generalization of the data. To this
nd we used data-augmentation (creating different observations of 
he same galaxy by randomly varying the distance and orientation) 
nd the regularization technique called dropout , that simply discards, 
t random, some connections inside a hidden layer (being convolu- 
ional or dense). As we show in Appendix C , we have used dropout
here 25 per cent of the connections are set to zero. 
For all the training we use the Adam optimizer, which is a state-of-

he-art implementation of the Stochastic Gradient Descent technique 
o optimize a function. We use a starting learning rate of 10 −4 . 

It is worth remarking that the architecture of the network can be
rbitrarily chosen. In principle, increasing the number of layers in a
NN may impro v e the results, but at some point, very deep models
ill become too difficult to train and may suffer for some instabilities
n their performance. 
For this reason we decided to train and test different CNN

rchitectures with an increasing level of complexity. In Appendix C 

e described the CNNs used in our analysis. 
We also train and test Residual neural networks (ResNets) (He et al.

015 ). This kind of model is a very deep CNN that overcomes some
f the problems pointed out abo v e using the skip connections method,
o reduce the difficulties in training deep CNNs. This is a state-of-
he-art architecture that has been used with much success in several
stronomical applications, including detecting strong gravitational 
enses (Lanusse et al. 2018 ), inferring DM subhaloes in strong lensing
mages (Alexander et al. 2020 ), and the identification of Sunyaev–
el’dovich galaxy clusters (Lin et al. 2021 ), among many others. 

 RESULTS  

he key goal of this work is to explore the capabilities of convo-
utional neural networks in reconstructing the DM mass profile of 
imulated galaxies using different sets of realistic mock observations. 
ere we present our results, beginning with tests of different neural
etwork typologies, namely three ‘custom built’ models, as well 
s the ResNet50, which were described in the previous section. 
ubsequently, we turn our attention to the impact of using different
ets of observations, namely various bands of the SDSS photometric 
mages and projected moments of the HI interferometric data, as 
ell as their different combinations. This provides us with intriguing 

esults, which show that the convolutional neural networks are able 
o extrapolate the DM mass profile of galaxies with reasonable 
ccuracy directly from the photometric images, a v oiding the need
or observationally costly kinematic measurements, which are the 
entrepiece of traditional methods. Following these initial bench- 
arks, we additionally explore the uncertainties in the predictions 

f the networks using a method based on bootstrapping; by applying
t to a sample of test objects, we demonstrate that it indeed provides
s with a reasonable estimate for the errors. We further validate
he performance of our network by examining the sensitivity maps, 
hich clearly show that network’s predictions are indeed driven by 
hysically meaningful segments of the input images. 

.1 Accuracy of the networks 

fter training the neural networks, we tested their performance by 
pplying them to our test data set. To quantify their accuracy, we
ompared their predictions for the enclosed DM mass with the true
alues using the normalized root-mean-squared error, � MSE , and 
ean absolute error, � MAE , summary statistics: 

 MSE ( R i ) = 

[ 
1 
N 

∑ N 

j= 1 

(
μj ( R i ) − ˆ μj ( R i ) 

)2 
] 1 / 2 

, (2) 
MNRAS 525, 6015–6035 (2023) 
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Figure 4. Root-mean-squared error, � MSE , and mean absolute error, � MAE , shown in the left- and right-hand side plots, respectively, as obtained for network 
architectures A, B, C, and ResNet50 when using the u , r , and z-band photometric images along with the HI intensity, l.o.s. velocity and l.o.s. velocity dispersion 
map as inputs for the networks. 
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 MAE ( R i ) = 

1 
N 

∑ N 

i= j | μj ( R i ) − ˆ μj ( R i ) | , (3) 

here R i corresponds to the radial distance associated with i th output
euron of the network, j runs o v er all the galaxies in the test set, while
j ( R i ) and ˆ μj ( R i ) denote the base 10 logarithm of the predicted and

rue enclosed DM mass in the units of M �. 
We note here that equation ( 3 ) is a customary estimate of the

erformance of the ML output, applied it to μ and ˆ μ. In our case, the
achines being trained on the logarithm of the masses and being this

uantity the output, we used the logarithm of the masses to assess
he performance of the network. 

In Fig. 4 we show the obtained values of � MSE ( R ) and � MAE ( R )
or the four network architectures considered in this work, trained on
 observational channels, namely the u , r , and z-band SDSS images
nd the HI intensity av erage v elocity and v elocity dispersion maps
analogous results for different combinations of input data are shown
n Appendix B ). As can be seen from the plots, all four networks
erform roughly equally well: they reach � MSE � 0.2 ( � MAE �
.15) around R ∼ 10 kpc, while the errors gradually increase to
 MSE ∼ 0.3 ( � MAE ∼ 0.2) in the outskirts and rapidly grow at R
 3 kpc, where they can surge up to � MSE � 0.4 ( � MAE � 0.25).
hese trends are in good agreement with our expectations, since

he observations provide the strongest handle on the DM content
t intermediate radii, where the DM halo begins to dominate the
ynamics of the galaxy, but one still has a sufficient amount of
aryons to trace its gravitational influence. On the other hand, at
he largest few radial points the networks are extrapolating the DM

ass profiles well beyond the extent of baryons, which naturally
eads to increasing errors. In the innermost parts (i.e. R � 3 kpc)
he performance of the networks rapidly decreases, which implies
eak correlations between the distribution and kinematics of visible
atter with the underlying DM mass. This is again in agreement with

ur expectations, since the central parts of the galaxies are known to
NRAS 525, 6015–6035 (2023) 
e dominated by baryonic physics. Furthermore, due to the difficulty
f performing accurate measurements, as well as the complexity of
he central regions, the traditional techniques of inferring the DM
istribution are known to be even less successful in the inner few
pcs of the galaxies (see e.g. Oman et al. 2019 ) 
Another important result that can be drawn from Fig. 4 (as well

s the analogous plots for different combinations of input data,
resented in Appendix B ), is that all of our benchmark network
rchitectures show similar performance at all radii, despite drastic
ifferences in the corresponding number of free parameters—as
escribed in the previous section, ResNet50 contains approximately
0 × more free parameters than network architecture A. While there is
 slight trend of more complex networks reaching better accuracies,
hich becomes most noticeable at large radii, the differences are

maller than the typical variations in the performance encountered
n retraining the networks from a random initialization state. For this
eason, we will in the following adopt network architecture B as our
enchmark example; ho we ver, we explicitly checked that analogous
esults hold also for the other three architectures. 

.2 Comparison of different obser v ational inputs 

ll the benchmark network architectures presented in the previ-
us section lead to good performance in inferring the DM mass
rofile from a combination of SDSS photometric images and HI
nterferometric data. Ho we ver, an equally important question is how
he performance varies when only a subset of the aforementioned
bservations is available. 
In Fig. 5 we show the obtained � MSE and � MAE of the network

rchitecture B when trained with various combinations of the input
ata (analogous results for other network architectures can be found
n Appendix A ). As expected, the best performance is achieved
hen the network is supplied with the most information, i.e. for the
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Figure 5. Root-mean-squared error, � MSE , and mean absolute error, � MAE , shown in the left- and right-hand side plot, respectively, as obtained for network 
architectures B for various combinations of input observations. 
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ombination of u , r , and z-band photometric images and HI intensity,
v erage v elocity and v elocity dispersion maps. The errors increase if
he networks are provided only with SDSS i -band photometric and 
I l.o.s. velocity map or HI interferometric data alone. Ho we ver, the
ecrease in the performance is relatively minor and most pronounced 
t large radii, while at intermediate R ∼ 7 kpc the network still
anages to reach � MSE ∼ 0.2 ( � MAE ∼ 0.15). Further decrease 

n performance can be observed if the network is provided only 
ith photometric images. The errors in the central part of the objects

ncrease by roughly the same amount, regardless if only single i -band
r u , r , and z-band photometry is used. On the other hand, at R �
 kpc the three-channel network performs notability better, reaching 
he minimal � MSE ∼ 0.23 ( � MAE ∼ 0.17) around R ∼ 10 kpc. 

A particularly important conclusion, which follows from the 
bo v e-described results, is that our method of inferring the DM mass
rofiles of galaxies works reasonably well, even if only photometric 
bserv ations are av ailable. This interesting and unforeseen result 
ppears to be in line with that of similar studies to ours in the
iterature, particularly Wu & Boada ( 2019 ). These authors train 
 CNN directly on real SDSS imaging and spectroscopic data to 
nd that their ML model learns a representation of the galaxy gas-
hase metallicity from the optical imaging alone, even beyond what 
s normally only accessible through the conventional spectroscopic 
nalysis of oxygen spectral lines. Such successful examples of ML 

pplications in astrophysics lend us the hope and support that, 
hat we are detecting in this study, is a true correlation between
alaxy morphology, resolved features, luminosity (stellar mass by 
roxy), and the galaxy halo mass. A reco v ery of the stellar-to-
alo mass relation would not be surprising in this case, as galaxy
tellar mass is directly measured from image photometry (via a 
houghtfully chosen mass-to-light ratio), and has been shown to be 
ightly coupled to galaxy halo mass (see e.g. Girelli et al. ( 2020 ) and
osti et al. ( 2020 )) and internal structure (see e.g. Kauffmann et al.
 2003 )). 
B  
Since obtaining resolved HI data cubes is highly time demanding, 
omputationally e xpensiv e and currently possible only for several 
undreds of galaxies within the local Universe, the possibility of 
nferring the DM mass profiles directly from photometric images 
rovides a major advantage. Furthermore, the traditional methods 
f studying DM distribution within galaxies (with the exception of 
ravitational lensing) all require accurate kinematic measurements, 
hich are equally difficult to obtain. Therefore, our approach appears 

o provide a unique tool for determining the DM mass directly from
ast photometric catalogues which are readily available, such as the 
ne of SDSS. 

.3 Error estimates via bootstrapping 

s demonstrated abo v e, the neural networks are capable of inferring
he enclosed DM mass with good accuracy over a wide range
f galactocentric distances. Ho we ver, for practical applications it 
s equally important to provide reliable error estimates for the 
etwork’s predictions. To achieve this, we adopt a technique based 
n bootstrapping, which has been suggested as a possible way of
roviding the error estimates in the given context (Cowan 1998 ). In
his work, we implement it by re-training randomly initialized neural 
etwork 100 times, with each run using a distinct bootstrapped data-
et that was obtained from resampling the original training set with
eplacements (i.e. same object can appear multiple times within each 
ootstrapped data-set). After all the networks completed the training, 
ne can use them to obtain a distribution of the predictions, for which
he central values and the corresponding credibility intervals can be 
omputed. As we demonstrate below, this approach indeed provides 
s with reasonable error estimates for the predictions of the neural
etworks. 
In Fig. 6 we show the median predictions and the corresponding

8 per cent credibility intervals for neural networks with architecture 
, along with the true DM mass profiles for two galaxies from
MNRAS 525, 6015–6035 (2023) 
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M

Figure 6. Comparison of the true DM mass profiles with the predictions of 
neural networks with architecture B for two random galaxies of the test data 
set. We show the results for networks trained either on SDSS u , r , and z-bands 
images only (blue), as well as the networks which were additionally provided 
with HI intensity, average velocity and velocity dispersion maps along the 
line-of-sight (orange). The central marks correspond the median value while 
the error bars denote the corresponding 68 per cent credibility intervals, as 
obtained through the bootstrapping method. 
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he test set, which were not exposed to the networks during the
raining procedure. As can be seen from the plots, our networks
rovide fairly accurate predictions for the DM mass profiles and
he true values mostly lie within the error estimates provided by the
ootstrapping technique. Furthermore, we explicitly checked that the
verage size of the 68 per cent credibility interval predicted by the
ootstrapping method provides a good match with the typical value
f � MSE ( R i ) in all the radial bins. In the case of object 108013, shown
n the lower panel of Fig. 6 , we can also see that the bootstrapping
echnique correctly accounts for the highly asymmetric errors in the
redictions. This illustrates that providing the uncertainty estimates
n the inferred DM mass profiles is crucial, since using only the
edian values can induce significant bias due to the possible skew

n the distribution of the predictions. 
From the same Fig. 6 , we can additionally appreciate the differ-

nces in the performance of the networks that were trained with
nd without the HI interferometric data. In particular, the networks
hat were trained using both, photometric and interferometric data,
erform noticeably better and also lead to smaller error bars.
o we ver, e ven in the case when only the photometric images were
sed, the inferred DM mass profiles are reasonably accurate and in
ost cases bracket the values predicted by the networks that were

dditionally provided with the HI maps. 
NRAS 525, 6015–6035 (2023) 
As a final note, we stress that the errors obtained through the
ootstrapping technique are capable of accounting only for the
ncertainties stemming from the non-optimal regression of the
eural networks. For practical applications, one would have to
dditionally account for systematic errors arising from the inaccuracy
f hydrodynamical simulations themselves. Unfortunately, assessing
he latter is still a topic of active research and falls beyond the scope
f this work. 

.4 Understanding the neural network output with sensitivity 
aps 

hile the traditional methods for inferring the DM content of
 galaxy are based on well-established physical laws, the inner
orkings of neural networks are, to a large degree, opaque. This
ften represents a crucial weakness of studies based on machine
earning, since performing consistency checks in the analysis pipeline
s notoriously difficult, if not impossible. This issue opens up a
hole new area in the machine-learning community, which searches

or methods that allow us to have a deeper understanding and
nterpretation of the ML models. For a deeper re vie w on methods
hat explain machine learning results, we recommend Gilpin et al.
 2018 ). 

In the case of CNN, several methods have been proposed that offer
alidation that the networks are indeed relying on the input features
hich are known to be crucial for the given task. In this work we

dopt the approach of inspecting the sensitivity maps (sometimes
lso referred to as saliency maps), which allow us to quantify the
mportance of each pixel in the input images for obtaining a given
esult. Formally, the sensitivity map can be defined as the deri v ati ve, 

 ij ≡ ∂ y 

∂ x ij 
, (4) 

here y denotes the output of the network, and x ij represents the
ixel corresponding to coordinate pair ( i , j ) in the input image. In the
ase of multiple input channels and output variables, we will have
 distinct map for the sensitivity of each channel in predicting each
utput neuron. On the other hand, in practice it turns out that with the
bo v e definition, sensitivity maps are often very noisy and can be very
ifferent if a tiny change is introduced in the inputs. To address this
ssue, we follow the so-called SmoothGrad approach, introduced
n Smilkov et al. ( 2017 ). We used the numerical implementation
hat is publicly available in the tf-keras-vis module (Yasuhiro,
ohyoung & Alexander 2021 ), which advocates for averaging the

ensitivity maps obtained via equation ( 4 ) o v er a sufficiently large set
f slightly perturbed input images. This allows us to obtain smoother
ensitivity maps and, hence, establish more reliably which parts of
he input image are most important for the CNN. 

In Fig. 7 we show the input images o v erlaid with the smoothed
ensitivity maps of the mass enclosed within 6 kpc and 48 kpc (top
nd lower panels respectively) for the benchmark neural network
architecture B) trained on SDSS i -band photometry and HI line-
f-sight velocity information. The colour-coding and units for the
nput images are the same as in Figs 2 and 1 , respectively, while the
ensitivity map is displayed in green scale proportional to the pixel
mportance computed using the SmoothGrad algorithm. Hence,
hite pixels represent regions with very low importance on the final
redictions, while, on the other hand, darker pixels represent regions
ith higher importance on the final output. As can be seen from the
lots, the gradients of the outputs (and hence the sensitivity of the
utput to those pixels) are the largest when taken with respect to
he central part of the input images, as one would naively expect.
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Figure 7. Input images o v erlaid with the corresponding sensitivity maps for neural network with architecture B that was trained using SDSS I -band photometry 
and HI average velocity along the line-of-sight. The colour-coding and units for v HI and SDSS I-band maps are same as in Figs 2 and 1 , respectively, while 
green colouring is proportional to the pixel importance computed using the SmoothGrad algorithm (we omit the corresponding scale since we are primarily 
interested in a qualitative properties). 
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urthermore, the sensitivity maps seem to nicely follow the irregular 
hapes of the input images, while the blank areas (i.e. parts of
he input images that are devoid of baryonic emissions) bear no 
ignificance for the final result. Additional confirmation that the 
etw orks w ork as expected comes from comparing the top and
ottom panels of the same Fig. 7 , which show the sensitivity maps for
he output neurons corresponding to the enclosed DM mass at R =
 kpc and R = 48 kpc. While the general patterns are similar in both
ases, the sensitivity maps obtained for the outer radius is noticeably 
ore sensitive to the outskirts of the central galaxy, as well as the

mall satellite galaxies that are visible in the photometric image. 
hese considerations provide us with compelling evidence that the 
eural network is indeed using the physically rele v ant features in the
nput images to infer the DM mass profile. 

.5 Comparison with Tully–Fisher relation 

n this section we perform a comparison between the results we obtain 
hrough the use of the ML algorithms developed and described until 
ow and those obtained by a Tully–Fisher relation. The goal of this
ection is to understand whether the uncertainties in the outcome of
he ML method here proposed will make the method competitive 
.r.t. existing empirical relations, such as the TF, once it will be fine-

uned to be applied to a real-case scenario. With that in mind, within
he synthetic universe of the simulations only, and keeping also in

ind that the physical consistency of the simulation (i.e. the capacity
f the simulation to reproduce empirically known relationships) has 
een tested by their developers (Vogelsberger et al. 2014a ), we have
hosen one formulation of the empirical Tully–Fisher relations, and 
ompared the uncertainties introduced by its formulation with those 
ntroduced by our method. 

The Tully–Fisher (Tully & Fisher 1977 ) relation is an empirical
elationship that correlates the luminosity of a spiral galaxy with its
otation velocity. It provides a way to estimate the total mass of a
piral galaxy based on its observable properties. In Hall et al. ( 2012 )
he y hav e calibrated the relation using 3041 spiral galaxies from the
DSS DR7 with available rotational velocities from HI line widths, 
nd found the best-fitting parameters: 

og(V rot ) = (0 . 264 ± 0 . 010)Log(M � ) − (0 . 558 ± 0 . 101) (5) 

here V rot is the circular velocity at twice the stellar half-mass radius
 � , and M � is the galaxy stellar mass. 
MNRAS 525, 6015–6035 (2023) 
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Figure 8. Comparison between the rotational velocity estimated with the 
machine learning versus the one obtained by using a Tully–Fisher relation. 
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4 This technique is different, and more complex than that adopted in most 
of the literature, where the total enclosed mass at galactocentric distance is 
computed from within the enclosed mass as read within the simulation, and a 
rotation velocity constructed simply for that amount of mass. (Marasco et al. 
2020 ). 
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In a real-Universe scenario, one uses the observed stellar mass
rom photometric images, and by making use of the abo v e relation-
hip, makes prediction of the expected V rot , which is a proxy for the
otal gravitational mass enclosed in the mentioned radius. 

Here, we work in a synthetic universe where our goal is the
ollowing: to compare the intrinsic spread introduced by the physical
elationship in equation ( 5 ) with that introduced by the ML method.

To this aim, we select a group of galaxies within the simulation.
irst, for each galaxy within the sample we assess, in turn, the real

otal mass, the rotational velocity, and the real baryonic mass,
ll known from within the simulation. Then, for each galaxy we
dopt two separate and different procedures to obtain the following
uantity, a proxy for the total mass of the galaxy, V rot ( r � ). In order
o estimate it using the two methods at comparison here, for each
alaxy within the sample we adopt: 

(i) Procedure A: Estimate the rotational velocity at twice the stellar
alf-mass radius using the DM mass predicted by our ML method,

 rot = 

√ 

G [ M ML ( R ) + M b ( R ) ] 
R 

, to which we add the real baryonic mass
stimated from the simulation. This procedures relies on the use of
ur ML algorithms developed and described in this paper. 
(ii) Procedure B: Assess the rotational velocity at twice the stellar

alf-mass radius with the empirical Tully Fisher relationship in
quation ( 5 ), by using as input the stellar mass as known from the
imulation (in fact, we could use the estimate provided by photo-
etric mock images, but they introduce an additional uncertainty
hich we prefer to ignore here for the goal of this test). This
rocedures relies on the use of our the TF as a predictive empirical
elation. 

In Fig. 8 we show the results of both procedures –A in orange, B
n magenta– placing the actual rotation velocity V rot ( r � ), as known
rom within the simulation, on the X axis. 

While keeping in mind –as mentioned abo v e– that the Tully Fisher
elationship has been validated in the simulation universe by the team
eveloping the latter (see fig. 23 of Vogelsberger et al. 2014a ), here
e only perform the comparison between the outcome of Procedures
 & B with the goal of understanding whether the uncertainties in

he outcome of the ML method here proposed will make the method
ompetitive once it will be fine-tuned to be applied to a real-case
cenario. 

From our test, we learn that: a) ML and TF results are definitely
ompatible within uncertainties; b) the uncertainties of the ML
NRAS 525, 6015–6035 (2023) 
ethod are smaller both individually (statistics), and considering the
pread as a systematic envelope; c) the ML method tends to slightly
 v erestimate the total mass at the low-mass end of the galaxy sample
onsidered, whereas the TF tends to underestimate it. At the higher
ass end, they follow the same trend. Whereas the latter is certainly a

oint to be examined in detail in future studies, most interesting in this
ontext is the information one obtains about the uncertainties. The
ndividual uncertainty (on the total mass /rotation velocity) obtained
or each data point/galaxy, is typically smaller in the ML case, than
t is from the TF prediction. Also, the one sigma spread band for
he ML case is smaller than the same uncertainty band for the TF,
hus making the ML method potentially predictive in a future real
niverse application. 

.6 Comparison with the rotation cur v e method 

he DM density profile of a disc galaxy is customarily inferred
hrough the analysis of its stellar and/or gaseous rotation curve, as the
missing’ component that is required to explain the rotational speeds
hat appear too large to be explained purely by the visible components
f matter. One key aspect of this analysis is the assumption that the
isc is rotationally supported and that the chosen physical tracer
f the gravitational potential, HI gas in this work, follows circular
rbits, although there are several hints that in some systems this is
ot the case (Dalcanton & Stilp 2010 ). If some of these assumptions
re not fulfilled, una v oidable systematics will be introduced to the
nal results (see e.g. Oman et al. 2019 ). It is interesting to note

hat, although this method has been widely used in the literature
or many years, there is no clear analysis, to the best of our
nowledge, on the precision and accuracy to which this method
eco v ers the true underlying DM profile nor about the systematics
ntroduced. 

In this work, we conveniently possess knowledge of the individual
omponents of galaxies in a synthetic universe, and therefore are
mpowered to test the Rotation Curve method in an absolute sense,
nd also in comparison to our ML tool described in the paragraphs
bo v e. While a full description and comparison of the performances
btained with different methods for reconstructing the DM profiles
f disc galaxies is beyond the scope of this paper, we present
ere a handful of examples of synthetic galaxies for which we
ave performed such analysis, directly comparing the profile of
nclosed mass as reconstructed from both the Rotation Curve and
L methods, to the actual profile known from the simulations. To

his end, we randomly select four synthetic galaxies to be analysed
ith both the Rotation Curve and the ML methods developed
ere. 
For each of the simulated galaxies in our test sample, we construct

he ‘observed’ rotation curve by analysing the mock observations of
he HI data cube, using the 3 D BAROLO code (Di Teodoro & Fraternali
015 ). It is to be noted that this method is used to generate a realistic
otation curve through an understanding of the natural processes
aking place in a physical galaxy: namely via the estimation of the
elocity of a chosen target tracer of the rotational speed of the disc
t the given position – in this case, the HI gaseous component. 4 

hrough this process we are therefore in possession of the ‘observed’
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otation curv e, giv en the method’s assumptions for tracing the total
ravitational potential of the galaxy. 
Equipped with the mock galaxy rotation curves, we reconstruct the 

M distribution in these galaxies through standard methods. First, 
o obtain the contribution of the visible component, which we take 
s purely stellar emission, we assume an exponential light profile 
 ( r ) to describe the disc, and perform a fit (using the AUTOPROF
 ython softw are (Stone et al. 2021 )) to the photometric SDSS g -band
mages of the synthetic galaxies. The resulting luminosity profiles are 

ultiplied by an appropriately chosen mass-to-light ratio to obtain 
 stellar mass profile: we employ a Bayesian analysis (discussed 
urther below) to sample the best-fitting mass-to-light ratio for each 
alaxy from the range of values prescribed by Bell et al. ( 2003 ) for
he measured L(r) value and expected range of SDSS g-r colours 
f the synthetic galaxies. For a given mass-to-light ratio �� , and 
ssuming that the stars are distributed in a thin exponential disc, we
stimate the stellar mass contribution to the rotation curve v � from
he light profile calculated by AUTOPROF (eq. 11.30 of Mo, van den
osch & White ( 2010 )) 

 

2 
� = −4 πG �� � 0 R d y 

2 [ I 0 ( y) K 0 ( y) − I 1 ( y) K 1 ( y) ] (6) 

where G is the Newton constant, � 0 is the surface density 
istribution, R d is the scale length of the disc, I 0, 1 , K 0, 1 are the
odified Bessel functions and y = R / R d . 
Second, we model the observed rotation curve as the sum of the

M and stellar contributions (Lelli et al. 2016 ; Li et al. 2020 ), 

 obs = 

√ 

v 2 DM 

+ v 2 � (7) 

where the DM contribution to the rotation curve v DM 

can be com-
uted analytically assuming an NFW profile for the DM distribution 
hat depends on V 200 and C 200 (Navarro, Frenk & White 1996 ). 

In addition, as explained in Li et al. ( 2018 ), we apply the following
orrections to the measured rotational velocities introduced by 
ncertainties on the distance ( D ) to and inclination ( i ) of each galaxy: 

 

′ 
� = v � 

√ 

D 

′ 

D 

; v ′ obs = v obs 

s i n ( i ′ ) 
s i n ( i ) 

(8) 

Summarizing, we have 5 free parameters that we fit to the observed
otation curve; these correspond to 2 parameters that describe the 
M distribution ( V 200 and C 200 ), 1 parameter that models the mass-

o-light ratio ( �� ), and 2 parameters that describe the geometry of
he system ( D and i ). 

For the fitting, we perform a Bayesian analysis using the python 
ackage emcee (F oreman-Macke y et al. 2013 ). We apply a con-
erv ati ve flat prior on �� from [0–20], in order to include the
xpected values as described by Bell et al. ( 2003 ). In addition,
e impose a Gaussian prior on D (around its real value) and on

 (around the value estimated with 3 D Barolo ). For the parameters 
 200 and C 200 we impose a flat prior around [10–800] and [1–1000],

espectively. 
To test the reliability of our Rotation Curve analysis described 

bo v e, we performed a sanity check that considers the idealized sce-
ario that bypasses the uncertainties arising from this ‘observational’ 
rocedure, and instead measures directly the DM distribution already 
nown from the simulated galaxy data, for the 4 simulated galaxies 
f Fig. 9 . For this test, we first extracted the stellar mass profile (i.e.
he stellar mass enclosed at different radii) from the 3 D distribution
f stellar simulated particles; and from this profile, we computed the 
ctual stellar contribution to the rotation curve v � . thus computed 
he actual rotation curve (proxy of the total gravitational potential) 
f the galaxy with the assumption of a rotationally supported disc 
crucial to the Rotation Curve method). We fed the first curve
s that of the ‘baryonic’ component, and the second as that of
he ‘observed’ rotation curve to our Bayesian analysis algorithm 

escribed abo v e, and reconstructed the Dark Matter density profile
y fitting an NFW spherical distribution. We found that the best-
tting NFW profile thus reconstructed agrees very well with the 
ark Matter distribution found in the simulated galaxies. This sanity 

heck pro v es that our adopted RC procedure is able to reco v er the
hysical reality underneath observational data within the controlled 
nvironment of the simulations, in an idealized case, without the 
nevitable uncertainties arising from the ‘observational’ procedure. 

It is worth noting that in real observations we will not have access
o the actual stellar mass distribution nor to the actual rotation curve,
nd we only may infer those profiles from the photometry and
pectroscopy of a galaxy; this, in turn, will introduce uncertainties 
n these quantities. In order to mimic this behaviour, in the following
e assume a 10 per cent uncertainty on both quantities, in line with

he median uncertainties in the observed quantities (Di Teodoro & 

raternali 2015 ). 
In Fig. 9 , we display the ‘real’ DM distribution as inferred

irectly from the output of the TNG100-1 simulation suite (green 
olid line), and the rotation curve fitting (in brown triangles) that
hows a reasonable but unclear pattern of performance. Whereas a 
ystematic analysis of the validity of the rotation curve method within
 controlled environment—and its validity in the real Universe—is 
ot a goal of this paper, we would like to attract attention to an
nteresting feature of our rotation curve results: the diversity of their
hape, and the non-regularity of their behaviour with respect to the
actual’ DM profile from within the synthetic universe. This could 
ffer an element of reckoning on the persisting problem of ‘rotation
urv e div ersity’ (Sales, Wetzel & F attahi 2022 ). 

Compared to the rotation curve method, the ML algorithm devel- 
ped here provides at face value a better agreement with the input
ata along a more consistent pattern. It is worth reminding the reader
hat the tests provided here apply within the ‘synthetic’ universe: both
he ML learning and the rotation curve tools are used on mock data of
tar-forming galaxies with masses spanning two o.o.m. around that 
f the MW, and compared against the DM distribution within that
ni verse. The v alidity of these results when analysing real galaxies
ill depend on the degree to which the cosmological simulations 
irror reality. Also, a careful assessment of reconstruction perfor- 
ance in the presence of instrumental effects will be needed in

rder to analyse ‘real’ images of galaxies. Nonetheless, our approach 
nd method of comparison demonstrates the potential ability of 
achine learning methods to impro v e upon current traditional 

nalyses. 

 C O N C L U S I O N S  

e have addressed the problem of determining the DM mass 
istribution in galaxies through a no v el approach based on machine
earning. 

We have made use of the Illustris-TNG100 suite of simulated 
alaxies in a cosmological framework, and have used this as a well-
ontrolled environment to develop, test and train convolutional neural 
etworks. 
We have presented a thorough analysis of the architectures consid- 

red, tested with an increasing level of complexity until satisfactory 
erformances were achieved. 
Our algorithm is able to reconstruct the DM distribution profile 

ith high-performance throughout the full extent of a galaxy, 
chieving the highest in the intermediate regions with a mean square
MNRAS 525, 6015–6035 (2023) 
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M

Figure 9. Comparison between the DM profile estimated through different methods and the real one depicted by the green line. The brown triangles trace the 
result obtained with the rotation curve analysis, while the blue dots represent the results obtained with the ML method. 
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rror below 0.20 or 0.30 by using all the available input information,
r only the photometric information, respectively. 
We stress that our reconstruction of the DM distribution is

ompletely data-driven, and does not require any assumption on
he shape or the functional form of the DM profile. 

The method developed here is applicable to different types of
tar-forming galaxies (spiral, elliptical, turbulent galaxies, ongoing
ergers) since it does not rely on explicit physical assumptions

egarding the dynamical state of the system. 
We have also shown that convolutional neural networks are

apable of reconstructing the DM distribution beyond the radial
ange co v ered by baryons, thus allowing a determination of the DM
ass in the outskirt of the halo within a unified framework, while

raditional methods require extrapolations based on different types
f approximations and scaling laws. Our ML method also performs
etter than the traditional Rotation Curve method, reconstructing the
eal (synthetic) DM distribution more accurately within our synthetic
niverse. 
The results achieved have been obtained for galaxies with total

ark-plus-baryonic masses in the range ∼10 11 –10 13 M �, but the
ethodology can be extended to a broader mass range. 
Eventually, training and testing the network o v er different simu-

ation suites that implement different subgrid physics models can
orsen the performance of the algorithm. Ho we ver, this bias is

xpected to be within the standard deviation uncertainty, as recently
hown in Villanueva-Domingo et al. ( 2021 ). 

The method presented here has been developed on simulated
mages that were modified to emulate real galaxy images to a high
pproximation. We anticipate that an application to real galaxies is
ossible within our framework and that a dedicated applicability
NRAS 525, 6015–6035 (2023) 

6

tudy needs to be performed. This will be presented in a forthcoming
nalysis. 
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PPENDIX  A :  DATA  SET  C O M PA R I S O N  (FOR  A  

n this appendix, we provide Figs A1 , A2 and A3 the comparisons of 
or the studied network architectures. 
NRAS 525, 6015–6035 (2023) 

igure A1. Root- mean-squared error (left) and mean absolute error (right) obtained for different sets of observations in the case of neural network architecture 
. 

igure A2. Root-mean-squared error (left) and mean absolute error (right) obtained for different sets of observations in the case of neural network architecture 
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Figure A3. Root-mean-squared error (left) and mean absolute error (right) obtained for different sets of observations in the case of ResNet50. 

Figure B1. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI line-of-sight 
velocity maps. 
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PPENDIX  B:  N E T WO R K  C O M PA R I S O N  (FOR  A

n the following, we provide in Figs B1 –B6 comparisons of performa
f observational inputs. 
MNRAS 525, 6015–6035 (2023) 
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Figure B2. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI intensity, 
line-of-sight velocity and line-of-sight velocity dispersion maps. 

Figure B3. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on SDSS I-band 
images. 
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MNRAS 525, 6015–6035 (2023) 

Figure B4. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on SDSS U , R , and 
Z -band images. 

Figure B5. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI line-of-sight 
velocity maps and SDSS I -band images. 
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M

Figure B6. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI intensity, 
line-of-sight velocity and line-of-sight velocity dispersion maps as well as SDSS U , R , and Z -band images. 

Table C1. The structure of network architecture A. The network has in total ∼7 × 10 5 trainable 
weights (exact number depends on the number of input channels). 

Layer Details 

2D convolution 64 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
2D max pooling 2 px pooling 
Dropout 25 per cent dropout fraction 
Batch normalization 

2D convolution 128 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
2D max pooling 2 px pooling 
Dropout 25 per cent dropout fraction 
Batch normalization 

2D convolution 128 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
2D max pooling 2 px pooling 
Dropout 25 per cent dropout fraction 
Batch normalization 

Dense 256 units, ReLU acti v ation 
Dropout 25 per cent dropout fraction 
Batch normalization 

Dense 128 units, ReLU acti v ation 
Dropout 25 per cent dropout fraction 
Batch normalization 

Dense 64 units, ReLU acti v ation 
Dropout 25 per cent dropout fraction 
Batch normalization 

Dense (output) 20 units, linear acti v ation 

A

I e the architectures of custom networks used in our work. For the structure 
o
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PPENDIX  C :  N E T WO R K  DESCRIPTION  

n the following, we provide in Tables C1 , C2 and C3 that summariz
f ResNet50 see Chollet et al. ( 2015 ) and He et al. ( 2015 ). 
NRAS 525, 6015–6035 (2023) 
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Table C2. The structure of network architecture B. The network has in total ∼1.3 × 10 6 

trainable weights (exact number depends on the number of input channels). 

Layer Details 

2D max pooling 2 px pooling 
Dropout 50 per cent dropout fraction 
Batch normalization 

2D convolution 128 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
2D max pooling 2 px pooling 
Dropout 50 per cent dropout fraction 
Batch normalization 

2D convolution 256 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
Batch normalization 

Dense 256 units, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

Dense 128 units, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

Dense 64 units, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

Dense (output) 20 units, linear acti v ation 

Table C3. The structure of network architecture C. The network has in total ∼2.2 × 10 6 

trainable weights (exact number depends on the number of input channels). 

Layer Details 

2D convolution 64 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
2D max pooling 2 px pooling 
Dropout 50 per cent dropout fraction 
Batch normalization 

2D convolution 128 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

2D convolution 256 kernels, 5 × 5 px kernel size, 2 px stride, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

2D convolution 256 kernels, 3 × 3 px kernel size, 1 px stride, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

Dense 256 units, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

Dense 64 units, ReLU acti v ation 
Dropout 50 per cent dropout fraction 
Batch normalization 

Dense (output) 20 units, linear acti v ation 
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