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ABSTRACT

We present a novel method of inferring the dark matter (DM) content and spatial distribution within galaxies, using convolutional
neural networks (CNNs) trained within state-of-the-art hydrodynamical simulations (Illustris—=TNG100). Within the controlled
environment of the simulation, the framework we have developed is capable of inferring the DM mass distribution within galaxies
of mass ~10''-10"3 M, from the gravitationally baryon-dominated internal regions to the DM-rich, baryon-depleted outskirts
of the galaxies, with a mean absolute error always below ~0.25 when using photometrical and spectroscopic information. With
respect to traditional methods, the one presented here also possesses the advantages of not relying on a pre-assigned shape for
the DM distribution, to be applicable to galaxies not necessarily in isolation, and to perform very well even in the absence of

spectroscopic observations.

Key words: methods: data analysis — software: simulations — galaxies: general — galaxies: haloes —dark matter.

1 INTRODUCTION

The prediction of the formation of galaxies from the initial pertur-
bations of matter seen in the cosmic microwave background (CMB)
within a self-consistent framework, is one remarkable success of the
A cold dark matter (ACDM) paradigm. In particular, the presence
of a gravitationally active, otherwise inert, component of matter —
whose intimate nature is currently unknown — dubbed ‘dark matter’
(DM), is what is believed to allow the density perturbations observed
in the CMB to grow into large-scale structures, providing the leading
‘gravitational texture’ to the fabric of the Universe we observe
today.

Achieving a full theoretical understanding of the evolution and
growth of density perturbations is a very challenging task; semi-
analytical solutions have been devised (Press & Schechter 1974;
Sheth, Mo & Tormen 2001), which are able to capture the growth of
the power spectrum on large and medium scales, down to the size of
bound objects. On smaller scales, the distribution of matter within
galaxies themselves is typically learned through the solution of the
equations describing the growth of an inert component, coupled to
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that of an active component, which requires numerical treatment.
Without any other assumption on the nature of DM other than the
lack of any particle interaction with ordinary matter, one can solve
the equations for the growth of the primordial density perturbations
containing both ordinary matter (hereafter ‘baryons’) and the DM,
into the potential wells that will later become galaxies and galaxy
clusters. This class of methods, generically known as ‘hydrodynamic
simulations’, has been developed in the past two decades by several
groups which have extensively tested different techniques to solve
the evolution of the gaseous component of the Universe using
computational methods from fluid dynamics, which have proven
successful in reproducing a number of properties of visible galaxies.
We list here only a few of these simulations, not attempting an
exhaustive review of the field: the Illustris and the Illustris-TNG
projects (Vogelsberger et al. 2014a, b; Nelson et al. 2018; Pillepich
et al. 2018a), the EAGLE and APOSTOLE projects (Crain et al.
2015; Schaye et al. 2015; Fattahi et al. 2016; Sawala et al. 2016),
the NIHAO simulations suite (Wang et al. 2015), the FIRE project
(Hopkins et al. 2014), and the ERIS simulation (Guedes et al. 2011).
These simulations ultimately aim to satisfy the precise observational
constraints that are (and will be) offered by large-scale-structure
surveys including Sloan Digital Sky Survey (SDSS; Blanton et al.
2017), 2DF (Colless et al. 2001), DEEP2 (Newman et al. 2013), and
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CANDELS (Grogin et al. 2011), and upcoming projects such as Vera
Rubin (also known as LSST) (Ivezié et al. 2019).

Observationally, the DM distribution in objects of diverse masses
and spatial extent is inferred through a host of different methods,
ranging from the use of gravitational lensing in galaxy clusters, to
the solution of inverted Jeans equations for dwarf galaxies, through
to the most famous ‘rotation curve’ technique for disc galaxies.

All of the above methods are based on assumptions known to hold
in what can be considered a ‘controlled environment’, for instance
and only as a non-comprehensive example: the fact that the stellar
disc is rotationally supported in disc galaxies for rotation curve
methods, or some simplifying assumptions on the shape of, e.g. the
anisotropy velocity parameter for reconstructing the DM potential
in dwarf galaxies (Strigari 2018). These assumptions are known to
eventually break down and introduce unavoidable systematics for
which one must account (see e.g. Ullio & Valli 2016).

To overcome limitations in the DM reconstruction related to the
lack of a controlled environment where strict validity/accuracy tests
may be performed, a method to recover the actual DM content of
a galaxy (or a set of galaxies), trusted and validated through an
accuracy test, possibly in a controlled environment, is required. The
existence of numerical simulations, described above, offers an ideal
test bed to address this problem. In such a controlled environment,
one is in control of both the visible and invisible components of
the universe (within the corresponding simulation’s cosmological
box), and is also able to produce images of the visible universe that
emulate the ones actually observed with existing instruments. This
offers the unique chance to perform controlled tests of the methods
devised, and/or to develop brand new ones, based on entirely novel
technologies. Machine-learning (hereafter, ML) techniques have
proven to be powerful tools for classification and regression tasks
in astronomy and astrophysics (e.g. Hezaveh, Perreault Levasseur &
Marshall (2017); Pearson, Li & Dye (2019); Chianese et al. (2020);
Necib et al. (2020)), as they look for correlations between the input
variables and the output variables one wants to infer. It is important
to remark that, in order to achieve this goal, it is necessary to have
a reliable data set for which the input variables are known (in the
present analysis, photometric images and spectroscopy of galaxies),
as well as the output variables (in the present analysis, the underlying
DM distribution).

In this work, we rely on machine learning algorithms, most notably
deep learning, to develop a new method for recovering the DM
distribution within galaxies from photometric and spectroscopic
observations. In order to achieve this goal, we train the machine
learning algorithms in an environment where the underlying ‘fruth’
is known, and on simulated images resembling those obtained from
real observatories with a high degree of approximation. Machines can
thus properly be trained in the data cubes of numerical simulations,
and applied to images of the real, external, environment.

Here we list the key elements of our approach:

(i) We use the Illustris-TNG100 simulation suite, and select
galaxies with total stellar mass in the range of M, € [10'° M,
102 Mg).

(i) We augment the mock galaxy sample with simulations of
realistic telescope observables (such as HI data cubes and velocity
maps) to train our machines in a controlled environment that
resembles the real Universe.

(iii) We thoroughly test deep learning network architectures to
identify the best one suited for our purposes.

(iv) With our machines, we reconstruct the DM density distri-
bution without relying on assumptions of a specific shape for the
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profile, contrary to other methods looking only at the total mass, or
mass enclosed within a particular radius.

(v) Our approach is not limited to isolated rotation-supported
systems like the rotation curve method, but is applicable to the whole
range of galaxies in the local Universe, including those undergoing
mergers, turbulent star formation, etc.

(vi) While the rotation curve method requires accurate photomet-
ric and spectroscopic observations to determine the DM content of
a galaxy, our approach remarkably achieves very good performance
with photometry only.

‘We describe in detail all of these elements in this paper, organized
as follows: In Section 2, we describe the set of cosmological
numerical simulations that we adopt in order to create our sample of
galaxies; in Section 3, we describe the creation of mock images
that resemble (for the galaxies extracted in the simulation) the
observational properties of real observations of galaxies; in Section 4,
we describe the machine learning algorithms (to which we will refer
to as either architectures or machines) that we train inside
the simulation space; in Section 5, we present and discuss our results.
We finally draw our conclusions in Section 6.

2 THE SIMULATIONS

The first numerical solutions of structure formation in a cosmological
environment (hereafter, referred to as ‘cosmological simulations’)
described the formation and growth of DM-only structures, while
subsequent developments improved their realism by including var-
ious aspects of baryonic physics. Due to the vastly different scales
of various processes that govern the behaviour of baryons, this
turns out to be a very demanding task. Within the past decades,
sophisticated simulation frameworks have been developed, which
rely on the modelling of collisional baryonic matter as a fluid,
and are therefore referred to as hydrodynamical simulations. The
baryonic physics below the resolution limit is typically handled
through various prescriptions that are calibrated on a broad range
of observations — for a review see, e.g. Pillepich et al. (2018a).
This approach, aided by the rapid improvement of computational
capabilities, has led to the development of highly reliable simulations,
which can generate spectacularly accurate analogues of our Universe
and manage to reproduce a wide range of empirical relations that are
known to exist in real galaxies.

In this work we explore a novel simulation-based technique for
determining the DM content of the observed galaxies. Within the
simulations, one has a complete knowledge of all the components of
the Universe (gas, dust, stars, accreting black holes, and DM), thus
being able to create mock observations of galaxies and pair them
to the corresponding DM mass profiles. This setup enables us to
use supervised machine learning techniques to capture the mapping
between the observational data and the underlying DM distribution.
Naturally, the success of the outlined approach crucially relies on
the assumption that the simulations are representative of the real
Universe. As we discuss in the following section, the IllustrisTNG
simulations, on which we base our work, indeed provide an excellent
agreement with a broad range of observations, which go far beyond
the quantities that were used in the calibration of subgrid physics.

2.1 The Illustris TNG simulations

The lustrisTNG simulations (Marinacci et al. 2018; Naiman et al.
2018; Springel et al. 2018; Nelson et al. 2018; Pillepich et al. 2018b)
are built upon the success of their predecessors, namely the original
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Ilustris simulations. While the latter did not include magnetic fields,
and used less refined implementations of AGN feedback, stellar
mass yields and galaxy-wide winds, they were one of the first
simulations to successfully reproduce observed galaxy morphologies
(Vogelsberger et al. 2014b), besides several other global properties;
these include such properties as the halo mass function, galaxy stellar
mass function, luminosity function, Tully—Fisher relation, as well
as a fair approximation to the star formation rate (SFR) and its
evolution (Vogelsberger et al. 2014a). However, the Illustris runs
also suffered from several shortcomings, e.g. in a mismatch in stellar
ages of small-mass galaxies and in the realm of quenching of massive
galaxies (for a complete review of scientific remarks and cautions see
Nelson et al. 2015), which motivated the development of The Next
Generation (TNG) simulation suit. The latter notably improved on the
aforementioned shortcomings (Pillepich et al. 2018a) thanks to the
refined implementation of feedback, as well as the implementation
of magnetic fields. Additionally, the IllustrisTNG simulations have
also proven to perform better when subjected to more stringent
tests, such as the matching against the observed galactic size—
mass (R,—M,) relation (Genel et al. 2018) and the evolution of the
SFR (Donnari et al. 2019), although some discrepancies regarding
the latter still exist at z 2 1 Donnari et al. (2019). Even more
importantly for our work, the IllustrisTNG suite was shown to
result in remarkable agreement between simulated and observed
galaxy morphologies (Huertas-Company et al. 2019); allow for the
generation of representative mock observations for Pan-STARRS
(Chambers et al. 2019) and the SDSS Blanton et al. (2017) survey
(Nelson et al. 2015; Rodriguez-Gomez et al. 2019); and lead to
rotation curves that are similar to the ones observed in Milky Way-
like galaxies (Lovell et al. 2018; Marasco et al. 2020).

In order to build our data-set we use the TNG100-1 simulation
run. Like other TNG simulations, it self-consistently follows the
formation and evolution of galaxies and their environments for 100
snapshots from z = 127 to z = 0 in a ACDM cosmology [, =
0.3089, @, = 0.0486, 2, = 0.6911, og = 0.8159, ny = 0.9667
and & = 0.6774 (Planck Collaboration XIII 2016)]. This simulation
is embedded in a periodic box with sides of 75A~! & 110.7 Mpc
and 2 x 18203 resolution elements, which translates to an average
mass of the baryonic resolution elements of 1.39 x 10°Mg and DM
particles with mass 7.5 x 10° M (Rodriguez-Gomez et al. 2019).

2.2 Selection of galaxies

For the purposes of this work, we use a subset of galaxies from
the TNG100-1 simulation that were selected according to criteria
motivated by the above-described consistency checks of the TNG
suite, as well as the availability of the real-world observations. In
particular, we restrict our attention to snapshot 99, correspond-
ing to redshift z = 0, since in this pilot study we focus on local
galaxies for which reliable independent mass estimates are available
(e.g. the SPARC catalogue (Lelli, McGaugh & Schombert 2016)).
We further restrict our attention to galaxies that have stellar masses
in the range of M, € 10'°-10'2 M, as these are well-resolved by the
simulation and pass a broad range of tests discussed in the previous
section. Furthermore, this stellar-mass range is also well covered
by the existing photometric and interferometric surveys. Apart from
the stellar mass, we also impose a cut on SFR in order to select
only objects with an SFR exceeding 0.1 M, yr~! to avoid quenched
galaxies, which have been reported to possess notable discrepancies
with respect to the observations (Huertas-Company et al. 2019).
Furthermore, the cut on SFR also assures that the objects have
a sufficient amount of gas for creating the corresponding mock
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Table 1. Summary of the criteria used in selecting galaxies from the
simulation.

Property Criterium

99 (z =0)
101 Mg, < M, < 10" Mg
SFR > 0.1 Mg yr~!
SubhaloParent = 0
SubhaloFlag =1

Simulation snapshot
Stellar mass

Star formation rate
Central galaxy
Cosmological origin

interferometric images. Finally, in addition to the cuts on M, and
SFR, we also ensure that the selected galaxies are central galaxies (i.e.
their SubhaloParent = 0, which implies they have no parent in the
hierarchical structure resolved by the Subfind Springel et al. (2001)
algorithm) and that they have been identified as true galaxies by the
Illustris collaboration (i.e. have SubhaloFlag set to 1, which assures
us that they are proper galaxies of cosmological origin). It is to be
noted that the selection criteria described above do not narrow down
our sample of galaxies to a specific morphological type, but includes
all types of objects that can be found in the TNG100-1 simulation and
pass our stellar mass and SFR cuts. Similarly, the selected galaxies
are not necessarily isolated, since we only demand that they are the
central object of the corresponding friend-of-friends group identified
by the Subfind algorithm. The summary of our selection criteria can
be found in Table 1.

3 CREATION OF THE MOCK OBSERVATIONS

The existence of reliable and representative training data is a crucial
precondition for the applicability of supervised machine learning
tools. As explained in the previous section, modern hydrodynam-
ical simulations provide us with a realistic representation of the
Universe and, in particular, its galaxy populations. In combination
with state-of-the-art image generation tools, this gives us a unique
opportunity to create large and realistic sets of mock observations of
galaxies. Furthermore, since the exact underlying DM distribution
can be determined from the simulations, they provide us with all
the required ingredients to apply the standard supervised machine
learning techniques.

The creation of realistic mock observations from hydrodynamical
simulations has been insofar explored by a number of works (Nelson
et al. 2018; Rodriguez-Gomez et al. 2019). Therefore, we chose to
follow the prescriptions therein, as they have been thoroughly tested
and shown to non-trivially reproduce a number of observational
properties. More concretely, throughout the rest of this work we
will rely on mock photometric images of the SDSS (Blanton et al.
2017) and HI interferometry mimicking the characteristics of Karl
G. Jansky Very Large Array (VLA) radio observatory (Lacy et al.
2020). Such a combination of photometric images and gas kinematics
has been frequently used to constrain the DM content in local spiral
galaxies, see, e.g. Lelli et al. (2016).

As detailed in Section 2.2, we apply several selection cuts to
the full sample of galaxies provided by the TNG100-1 simulation. In
particular, our subset corresponds to local central galaxies with stellar
masses in the range of M, € 10°-10'2> M and SFR >0.1 M, yr~'.
After applying these selection criteria, we are left with approximately
2000 individual objects. To increase the size of the data set, we gener-
ate 3 distinct realizations of photometric images and interferometric
data for each galaxy in our subsample, with each realization having
a different randomly selected orientation (i.e. line-of-sight axis) and
distance to the object, which is selected uniformly from the interval

MNRAS 525, 6015-6035 (2023)

20z Adenuer 9| uo Jesn FTYHINIO YOIL0IdId - ITOdVYN VIYINDIONI VLI100VH Aq 9288522/G 1 09/7/52G/a101HE/SeluLu/wod dno-dlwepede//:sdiy woly papeojumod



6018 M. de los Rios et al.

D € 10Mpc - 20 Mpc. All the mock observations are fixed to cover
17.2 arcmin x 17.2 arcmin of the sky, have a resolution of 128 x 128
pixels and are centred on the most gravitationally bound particle
belonging to the object.

In the following section, we first summarize the procedure for
generating mock photometric images in the five SDSS wavebands.
Subsequently, we describe the method used for creating HI intensity
and velocity maps, which were obtained from mock interferometric
data cubes resembling the observations of VLA.

3.1 Creation of mock photometric images

For the creation of mock SDSS images we follow the procedure
established by Rodriguez-Gomez et al. (2019). It relies on the
radiative transfer code SKIRT (Camps & Baes 2015, 2020), which
emulates the stellar emissions and subsequent light-ray propagation
to the observer, taking into account the absorption and re-emission
by dust, for a given cut-out of particles from the hydrodynamical
simulation. It allows us to directly produce the idealized mock images
for the five SDSS broadband filters, while we additionally add the
seeing and sky brightness corrections to each of the simulated bands
according to the characteristics reported by the SDSS collaboration.

The first step in producing mock photometric images for a
simulated galaxy, is obtaining the corresponding cut-outs for stellar
and gas particles from the simulation. For a given object, defined
by the friends-of-friends (FoF) algorithm used in the pre-processing
carried out by the IllustrisTNG collaboration (Springel et al. 2018),
we extract all the stellar and gas particles which lie within a
sphere centred on the corresponding minimum of the gravitational
potential." The radius of the sphere is chosen according to our
prescribed field of view, i.e. covering 17.2 arcmin at a previously
selected random distance D. After extracting the corresponding set
of particles, we apply a random 3D rotation to obtain the final cut-out
which is to be used as an input for the SKIRT code.

Within the SKIRT framework, each imported star particle is
treated as single coeval stellar population. Following the approach
of Rodriguez-Gomez et al. (2019), the spectral energy distributions
(SEDs) of stellar particles older than 10 Myr are modelled with the
Bruzual & Charlot (2003) population synthesis code, for which
the initial mass, metallicity, and age are provided as additional
inputs, obtained directly from the simulation. The stellar particles
younger than 10 Myr are treated as star-bursting regions and their
SEDs are modelled with the MAPPINGS-III photoionization code
(Groves et al. 2008). For the latter, a constant SFR over the last
10 Myr is assumed, along with a compactness parameter log,, C = 5,
interstellar medium pressure of loglo[(PolkB)/cm‘3I(] = 5 and a
cloud covering factor of fppr = 0.2. The corresponding metallicity
values were again obtained directly from the simulation. The SEDs
of both, old stellar populations and star-forming regions, are sampled
using 1000 logarithmic wavelength bins in the range between 0.09
and 100 pm.

For performing the radiative transfer computation, SKIRT uses a
self-consistent description of the gas distribution with the one used
throughout in the simulation. In particular, it reconstitutes the original
Voronoi tessellation that underpins the adaptive moving mesh AREPO
code, upon which the IllustrisTNG suite is built. Following the

I'This procedure selects also particles that are not necessarily assigned to
galaxy in question by the FoF algorithm, but might nonetheless contribute to
the propagation of light along the line-of-sight in the vicinity of the object
(e.g. satellite galaxies or other nearby neighbours).
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Table 2. Seeing PSF and median sky brightness used in the creation of SDSS
images. The values are adopted from SDSS DR162.

Filter Seeing PSF (arcsec) Sky brightness (mag arcsec2)
u 1.53 22.01
g 1.44 21.84
r 1.32 20.84
i 1.26 20.16
z 1.29 18.96

convention of Rodriguez-Gomez et al. (2019), we assume that dust
follows the distribution of star-forming gas and has a constant dust-to-
metal mass ratio of 0.3. The dust composition is modelled using the
multicomponent dust mix of Zubko, Dwek & Arendt (2004), which
consists of graphite, silicate and polycyclic aromatic hydrocarbon
grains. For the dust emissivity we assume a modified blackbody
spectrum, which relies on local thermodynamic equilibrium, and
track it over 1000 logarithmic bins spanned between 0.09 and
100 pm.

The above settings are used to run a Monte Carlo simulation
of radiative transfer for 107 photon packets, which is significantly
higher than what was used in Rodriguez-Gomez et al. (2019)—the
reason for this difference is the fact that we assume the sources are
significantly closer and hence better resolved. Similarly, we use a
frame instrument with 1000 logarithmically spaced bins in the range
between 0.01 and 3.7 um, which leads to significantly better spectral
resolution. Finally, the resulting data cube is convolved with the five
SDSS ugriz broadband filters to obtain the corresponding images of
the optical stellar light emission.

It is worth emphasizing that this procedure yields idealized
photometric images for the simulated galaxies. To produce realistic
mock observations, one needs to, at a minimum, add the ‘blurring’
effects to the simulated light emission that would result if it passed
through the optics of a telescope, as well as the contaminating
contribution to the observed emission from the sky background.
Therefore, we convolve each image with a Gaussian kernel filter
appropriately sized to match the width of the point-spread function
(PSF) in each of the SDSS wavebands, which we adopt from the
SDSS DR16.% Similarly, we add the sky background contribution in
the form of random Gaussian noise to each image pixel, where the
appropriate mean and variance values for each band were again taken
from SDSS DR16.> The adopted PSF and median sky brightness
values are contained in Table 2. Examples of the final output images
are shown in Fig. 1.

3.2 Creation of HI intensity and velocity maps

For the creation of mock HI observations, we follow the procedure
described in Oman et al. (2019), which is conveniently implemented
in the MARTINTI code.? This code allows for the creation of synthetic
resolved HI line observations (i.e. data cubes) directly from the
snapshot of a hydrodynamic simulation. It provides a broad range of
features, ranging from spectral modelling to various observational
effects, such as noise contamination and beam width corrections.
Since the support for the IustrisTNG suite is pre-built within
the MARTINI software, it allows us to easily obtain HI data cubes
from the z = 0 snapshot of the TNG100-1 simulation. For particle
smoothing, we use the cubic spline kernel, which is a standard choice

Zhttps://www.sdss.org/dr16/imaging/other_info/
3https://github.com/kyleaoman/martini
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Figure 1. Examples of the photometric mock SDSS images obtained following the procedure described in Section 3.1 for two random galaxies (subhaloID =

60 744 in the top panel and subhaloID = 108 013 in the bottom panel).

and, in our initial experiments, provided the best numerical stability.
For the spectral dimension of the data cube, we use 64 channels
with spectral resolution of Skms~', which roughly matches the
properties of the THINGS survey (Walter et al. 2008) obtained
with the VLA radio telescope. We also use the corresponding beam
properties, namely a Gaussian PSF with a full width at half-maximum
(FWHM) of 10 arcsec, truncated at 3 x FWHM, and a Gaussian
noise model with a root-mean-square value of 5 x 107%Jy arcsec™>.
Through the data source settings we removed the systemic velocities
of the objects, so the resulting data cubes were produced in the
appropriate galactic rest frames. For the distances to the objects, we
used the same randomly generated values of D as in the case of the
photometric images. Furthermore, to obtain the identical orientations
of the galaxies, we performed a rotation which aligned the particles
extracted from the simulation box to the same line-of-sight direction
as was used in the creation of mock SDSS images.

Using the above setup, the MARTINI code allowed us to obtain
realistic mock HI observations. However, since such data cubes
consist of 64 individual channels, we decided to reduce the amount
of information by projecting out the first three moments of the HI
emission. In particular, we computed the corresponding line-of-sight
intensity, average velocity and velocity dispersion maps, which can
be obtained by evaluating the Oth, 1st and 2nd moments of the
emission intensity across the available frequency channels. In order
to maintain a good signal-to-noise ratio for the 1st and 2nd moments,
we masked regions where the HI intensity dropped below 0.2 Jy per
beam (equivalent to an HI column density of 10'% atoms cm~2), as
suggested in Oman et al. (2019). This resulted in the final images,
which were later used for training the neural network. In Fig. 2 we
present two examples of synthetic HI maps from our final data set.

3.3 Final simulation data sets

Summarizing, the benchmark data-set consists of ~6000 realizations
of galaxies for which we create the SDSS photometric images and
the corresponding HI data cube, from which we compute the first
three momentum maps. The photometric images and the three HI
momentum maps were stacked to create a 128 x 128 x8 grid (128
x 128 pixel images with 8 channels) that serves as the input to

our machine learning model; the output of the network is the DM
profile that consist of 20 scalar quantities, that correspond to the total
DM mass enclosed within 20 radial galactocentric distances that are
logarithmically spaced between 1 and 100kpc. A schematic flow
chart of the pipeline used in this work is depicted in Fig. 3.

As is required in supervised machine learning, we split the data-set
into three subsets, containing 60 per cent, 20 per centand 20 per cent
of the total number of samples that served as training, validation and
test sets, respectively. In order to avoid overfitting and to have a
reliable measurement of the algorithm performance, these subsets
must be mutually independent, i.e. the observations (galaxies in our
case) that are in one subset cannot exist in another subset.

4 THE MACHINES

ML, seen as a set of techniques and algorithms that allows for
robust statistical inferences on data, has proven very useful in physics
problems where there is limited knowledge of the physical system
(e.g. in the representative case of Indirect Detection searches for DM
in astrophysics). For a deeper review about machine learning tech-
niques we recommend Mitchell (1997); Murphy (2012); Goodfellow,
Bengio & Courville (2016). The case at hand is similar: the physical
modelling of stellar dynamics in galaxies in this work is limited and
typically relies on simplifying assumptions, which may not always
be adequate.

In this work we deal with a complex data-set describing the
kinematics, dynamics, and stellar light emission of galaxies, and
aim at inferring the DM content influencing the observed charac-
teristics and behaviour. This is a representative problem of ‘pattern
recognition’, for which state-of-the-art deep learning models such as
Convolutional Neural Networks are, in general, very good at solving.
The popularity of neural networks arises from the fact that these
models are ‘universal approximators’ (they can approximate any
continuous function under quite mild assumptions); since our quan-
tity of interest is the enclosed DM mass within a given galactocentric
distance, this corresponds to a regression problem. Given a data-set
D = {x;, yi}¥,, with multivariate input x and scalar output y (in our
case, the DM mass), a possible strategy is to first make a proposition
of the probability distribution p(y|w) that governs our variable of
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Figure 2. Examples of the mock HI intensity, average velocity and velocity dispersion maps obtained following the procedure described in Section 3.2 for tow
random galaxies (subhaloID = 60 744 in the top panel and subhaloID = 108 013 in the bottom panel).

interest y, and which depends on a number of parameters w. For
example, we can assume, as is typical, that y follows a Gaussian
distribution with mean w(x). Then, we estimate the mean by a
function f(x, w) given by our ML model, a convolutional neural
network containing parameters w, described in detail below.

Concretely, our input variables correspond to the SDSS photomet-
ric images and the first three HI momentum maps, i.e. x; = {SDSS; ,,
SDSS, 2 SDSS,W re SDSS,’ i SDSS, Zs HI, 1s HI,'W 2, HI," 3, }, the output
variables correspond to the DM mass enclosed within 20 different
radii, i.e. y; = {M;(ry)} with k = 1,..., 20. The training is performed by
Maximum Likelihood Estimation of the parameters of the network,
where we assume that the output follows a Gaussian distribution. In
practice, this is equivalent to minimizing the loss function, being the
mean-squared error (MSE) defined as:

1 20
L0 [0i) = 55> (iR = (R ey
k=1

where Ry corresponds to the radial distance associated with kth output
neuron of the network, while /i ;(Ry) and u;(Ry) denote the base 10
logarithm of the true and the predicted enclosed DM mass in the
units of M.

4.1 Convolutional neural networks

When dealing with images, standard networks like the ones defined
above — even if, in principle, are able to successfully perform any
regression or classification task — consider the images as rabula rasa
and do not exploit their spatial structure. For example, they treat
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equally pixels which are close together or far apart, or do not make
use of translation and rotation invariance (e.g. the fact that a cat in
a photograph is still a cat, regardless of its orientation or location in
a photo). Convolutional networks (Krizhevsky, Sutskever & Hinton
2012), or Convnets for short, are especially designed to work with
images while exploiting spatial structure. For the task of pattern
recognition, they are faster to train than traditional networks, and
thus they can deal with more complex data sets while giving a very
high performance.
The ConvNets have some important characteristics:

(1) A datum (pixels of an image in this case) is not treated as
a row vector in the data set, but as a squared array of pixels, like
the image itself. Similarly, some of the layers in ConvNets are
also a set of stacked squared 2D arrays. These layers are called
in Appendix C ‘2D convolution’. However they are defined via a
nonlinear transformation of the input, in a similar way as happens
with traditional networks. A typical nonlinear transformation used
nowadays is the so-called Rectified Linear Unit function (ReLU in
Appendix C).

(i1) Not all the pixels of the image affect all the variables (or units)
of the first hidden layer. Instead, different (but partially overlapped)
small regions of the input are connected to different units of the
convolutional layer. The size of those small regions has to do with
the kernel size. The degree of overlapping of those regions determines
the stride length (see Appendix C).

(iii) The parameters connecting the input to the first hidden layer
are the same (are shared) for all the units. The same applies to
the parameters connecting the first hidden layer to the second, and
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Figure 3. Flow-chart of the analysis pipeline used in our work.

so on. This configuration, together with the previous characteristic,
reduces greatly the amount of parameters with respect to the one in
a fully connected architecture. On the other hand it implies that all
the units of the hidden layer ‘learn’ the same feature (e.g. an edge, or
another spatial structure) of the image, but placed on different spatial
locations; this is the way in which ConvNets implement translation
invariance. These shared weights define one kernel, and typically
ConvNets use several of them (see in Appendix C how different
convolutional layers have different number of kernels).

(iv) Another type of transformation is pooling, which defines
a type of layer (see Appendix C). This sort of transformation is
typically applied right after a convolutional layer, and the idea is
to reduce the information, by going from a 2D array of some size
(corresponding to the 2D convolution), to another 2D array of a
smaller size. For example, in Appendix C, we use a pooling size of
2 x 2 pixels, meaning that the convolutional layer has been reduced
by a half. The effect of pooling is that, after learning the presence of
a spatial structure, its exact location is thrown away; there are many
possible ways to reduce information in a pooling layer. A typical
one, which is also used in our work, is max-pooling, which just takes
the pixel with the highest value of the weight in the 2 x 2 pixel
subregion.

(v) Finally, ConvNets have a few dense (traditional, fully con-
nected) layers, which are the ones determining the output. The idea
is that, once the spatial structures present in the images are learned by
the previous convolutional layers, then a traditional network is very
good at predicting the output, whether classification or regression.

In order to reduce overfitting, we used, apart from the training/test
splitting of the data commented above, several common techniques
that have been proven to prevent the network from memorizing the
training data, but instead, force a generalization of the data. To this
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end we used data-augmentation (creating different observations of
the same galaxy by randomly varying the distance and orientation)
and the regularization technique called dropout, that simply discards,
at random, some connections inside a hidden layer (being convolu-
tional or dense). As we show in Appendix C, we have used dropout
where 25 per cent of the connections are set to zero.

For all the training we use the Adam optimizer, which is a state-of-
the-art implementation of the Stochastic Gradient Descent technique
to optimize a function. We use a starting learning rate of 1074,

It is worth remarking that the architecture of the network can be
arbitrarily chosen. In principle, increasing the number of layers in a
CNN may improve the results, but at some point, very deep models
will become too difficult to train and may suffer for some instabilities
on their performance.

For this reason we decided to train and test different CNN
architectures with an increasing level of complexity. In Appendix C
we described the CNNs used in our analysis.

We also train and test Residual neural networks (ResNets) (He et al.
2015). This kind of model is a very deep CNN that overcomes some
of the problems pointed out above using the skip connections method,
to reduce the difficulties in training deep CNNs. This is a state-of-
the-art architecture that has been used with much success in several
astronomical applications, including detecting strong gravitational
lenses (Lanusse et al. 2018), inferring DM subhaloes in strong lensing
images (Alexander et al. 2020), and the identification of Sunyaev—
Zel’dovich galaxy clusters (Lin et al. 2021), among many others.

5 RESULTS

The key goal of this work is to explore the capabilities of convo-
lutional neural networks in reconstructing the DM mass profile of
simulated galaxies using different sets of realistic mock observations.
Here we present our results, beginning with tests of different neural
network typologies, namely three ‘custom built’ models, as well
as the ResNet50, which were described in the previous section.
Subsequently, we turn our attention to the impact of using different
sets of observations, namely various bands of the SDSS photometric
images and projected moments of the HI interferometric data, as
well as their different combinations. This provides us with intriguing
results, which show that the convolutional neural networks are able
to extrapolate the DM mass profile of galaxies with reasonable
accuracy directly from the photometric images, avoiding the need
for observationally costly kinematic measurements, which are the
centrepiece of traditional methods. Following these initial bench-
marks, we additionally explore the uncertainties in the predictions
of the networks using a method based on bootstrapping; by applying
it to a sample of test objects, we demonstrate that it indeed provides
us with a reasonable estimate for the errors. We further validate
the performance of our network by examining the sensitivity maps,
which clearly show that network’s predictions are indeed driven by
physically meaningful segments of the input images.

5.1 Accuracy of the networks

After training the neural networks, we tested their performance by
applying them to our test data set. To quantify their accuracy, we
compared their predictions for the enclosed DM mass with the true
values using the normalized root-mean-squared error, Aysg, and
mean absolute error, Ayag, Summary statistics:

1/2
Awse(R) = [+ 0 (iR — ai(R))Y] @
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Figure 4. Root-mean-squared error, Aysg, and mean absolute error, Apag, shown in the left- and right-hand side plots, respectively, as obtained for network
architectures A, B, C, and ResNet50 when using the u, r, and z-band photometric images along with the HI intensity, l.o.s. velocity and l.0.s. velocity dispersion

map as inputs for the networks.

Avar(R) = % L i (R) — (R 3)

where R; corresponds to the radial distance associated with ith output
neuron of the network, j runs over all the galaxies in the test set, while
1;j(R;) and [1;(R;) denote the base 10 logarithm of the predicted and
true enclosed DM mass in the units of M.

We note here that equation (3) is a customary estimate of the
performance of the ML output, applied it to  and /i. In our case, the
machines being trained on the logarithm of the masses and being this
quantity the output, we used the logarithm of the masses to assess
the performance of the network.

In Fig. 4 we show the obtained values of Apysg(R) and Apag(R)
for the four network architectures considered in this work, trained on
6 observational channels, namely the u, r, and z-band SDSS images
and the HI intensity average velocity and velocity dispersion maps
(analogous results for different combinations of input data are shown
in Appendix B). As can be seen from the plots, all four networks
perform roughly equally well: they reach Aysg < 0.2 (Amae S
0.15) around R ~ 10 kpc, while the errors gradually increase to
Amse ~ 0.3 (Amag ~ 0.2) in the outskirts and rapidly grow at R
< 3 kpc, where they can surge up to Avsg 2 0.4 (Amag = 0.25).
These trends are in good agreement with our expectations, since
the observations provide the strongest handle on the DM content
at intermediate radii, where the DM halo begins to dominate the
dynamics of the galaxy, but one still has a sufficient amount of
baryons to trace its gravitational influence. On the other hand, at
the largest few radial points the networks are extrapolating the DM
mass profiles well beyond the extent of baryons, which naturally
leads to increasing errors. In the innermost parts (i.e. R < 3 kpc)
the performance of the networks rapidly decreases, which implies
weak correlations between the distribution and kinematics of visible
matter with the underlying DM mass. This is again in agreement with
our expectations, since the central parts of the galaxies are known to
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be dominated by baryonic physics. Furthermore, due to the difficulty
of performing accurate measurements, as well as the complexity of
the central regions, the traditional techniques of inferring the DM
distribution are known to be even less successful in the inner few
kpcs of the galaxies (see e.g. Oman et al. 2019)

Another important result that can be drawn from Fig. 4 (as well
as the analogous plots for different combinations of input data,
presented in Appendix B), is that all of our benchmark network
architectures show similar performance at all radii, despite drastic
differences in the corresponding number of free parameters—as
described in the previous section, ResNet50 contains approximately
40x more free parameters than network architecture A. While there is
a slight trend of more complex networks reaching better accuracies,
which becomes most noticeable at large radii, the differences are
smaller than the typical variations in the performance encountered
in retraining the networks from a random initialization state. For this
reason, we will in the following adopt network architecture B as our
benchmark example; however, we explicitly checked that analogous
results hold also for the other three architectures.

5.2 Comparison of different observational inputs

All the benchmark network architectures presented in the previ-
ous section lead to good performance in inferring the DM mass
profile from a combination of SDSS photometric images and HI
interferometric data. However, an equally important question is how
the performance varies when only a subset of the aforementioned
observations is available.

In Fig. 5 we show the obtained Aysg and Apag of the network
architecture B when trained with various combinations of the input
data (analogous results for other network architectures can be found
in Appendix A). As expected, the best performance is achieved
when the network is supplied with the most information, i.e. for the
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Figure 5. Root-mean-squared error, Aypsg, and mean absolute error, Apmag, shown in the left- and right-hand side plot, respectively, as obtained for network

architectures B for various combinations of input observations.

combination of u, r, and z-band photometric images and HI intensity,
average velocity and velocity dispersion maps. The errors increase if
the networks are provided only with SDSS i-band photometric and
HI L.o.s. velocity map or HI interferometric data alone. However, the
decrease in the performance is relatively minor and most pronounced
at large radii, while at intermediate R ~ 7 kpc the network still
manages to reach Aysg ~ 0.2 (Apmag ~ 0.15). Further decrease
in performance can be observed if the network is provided only
with photometric images. The errors in the central part of the objects
increase by roughly the same amount, regardless if only single i-band
or u, r, and z-band photometry is used. On the other hand, at R 2,
5 kpc the three-channel network performs notability better, reaching
the minimal Aygg ~ 0.23 (Apmag ~ 0.17) around R ~ 10 kpc.

A particularly important conclusion, which follows from the
above-described results, is that our method of inferring the DM mass
profiles of galaxies works reasonably well, even if only photometric
observations are available. This interesting and unforeseen result
appears to be in line with that of similar studies to ours in the
literature, particularly Wu & Boada (2019). These authors train
a CNN directly on real SDSS imaging and spectroscopic data to
find that their ML model learns a representation of the galaxy gas-
phase metallicity from the optical imaging alone, even beyond what
is normally only accessible through the conventional spectroscopic
analysis of oxygen spectral lines. Such successful examples of ML
applications in astrophysics lend us the hope and support that,
what we are detecting in this study, is a true correlation between
galaxy morphology, resolved features, luminosity (stellar mass by
proxy), and the galaxy halo mass. A recovery of the stellar-to-
halo mass relation would not be surprising in this case, as galaxy
stellar mass is directly measured from image photometry (via a
thoughtfully chosen mass-to-light ratio), and has been shown to be
tightly coupled to galaxy halo mass (see e.g. Girelli et al. (2020) and
Posti et al. (2020)) and internal structure (see e.g. Kauffmann et al.
(2003)).

Since obtaining resolved HI data cubes is highly time demanding,
computationally expensive and currently possible only for several
hundreds of galaxies within the local Universe, the possibility of
inferring the DM mass profiles directly from photometric images
provides a major advantage. Furthermore, the traditional methods
of studying DM distribution within galaxies (with the exception of
gravitational lensing) all require accurate kinematic measurements,
which are equally difficult to obtain. Therefore, our approach appears
to provide a unique tool for determining the DM mass directly from
vast photometric catalogues which are readily available, such as the
one of SDSS.

5.3 Error estimates via bootstrapping

As demonstrated above, the neural networks are capable of inferring
the enclosed DM mass with good accuracy over a wide range
of galactocentric distances. However, for practical applications it
is equally important to provide reliable error estimates for the
network’s predictions. To achieve this, we adopt a technique based
on bootstrapping, which has been suggested as a possible way of
providing the error estimates in the given context (Cowan 1998). In
this work, we implement it by re-training randomly initialized neural
network 100 times, with each run using a distinct bootstrapped data-
set that was obtained from resampling the original training set with
replacements (i.e. same object can appear multiple times within each
bootstrapped data-set). After all the networks completed the training,
one can use them to obtain a distribution of the predictions, for which
the central values and the corresponding credibility intervals can be
computed. As we demonstrate below, this approach indeed provides
us with reasonable error estimates for the predictions of the neural
networks.

In Fig. 6 we show the median predictions and the corresponding
68 per cent credibility intervals for neural networks with architecture
B, along with the true DM mass profiles for two galaxies from
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Figure 6. Comparison of the true DM mass profiles with the predictions of
neural networks with architecture B for two random galaxies of the test data
set. We show the results for networks trained either on SDSS u, r, and z-bands
images only (blue), as well as the networks which were additionally provided
with HI intensity, average velocity and velocity dispersion maps along the
line-of-sight (orange). The central marks correspond the median value while
the error bars denote the corresponding 68 per cent credibility intervals, as
obtained through the bootstrapping method.

the test set, which were not exposed to the networks during the
training procedure. As can be seen from the plots, our networks
provide fairly accurate predictions for the DM mass profiles and
the true values mostly lie within the error estimates provided by the
bootstrapping technique. Furthermore, we explicitly checked that the
average size of the 68 per cent credibility interval predicted by the
bootstrapping method provides a good match with the typical value
of Aymsg(R;) in all the radial bins. In the case of object 108013, shown
in the lower panel of Fig. 6, we can also see that the bootstrapping
technique correctly accounts for the highly asymmetric errors in the
predictions. This illustrates that providing the uncertainty estimates
on the inferred DM mass profiles is crucial, since using only the
median values can induce significant bias due to the possible skew
in the distribution of the predictions.

From the same Fig. 6, we can additionally appreciate the differ-
ences in the performance of the networks that were trained with
and without the HI interferometric data. In particular, the networks
that were trained using both, photometric and interferometric data,
perform noticeably better and also lead to smaller error bars.
However, even in the case when only the photometric images were
used, the inferred DM mass profiles are reasonably accurate and in
most cases bracket the values predicted by the networks that were
additionally provided with the HI maps.
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As a final note, we stress that the errors obtained through the
bootstrapping technique are capable of accounting only for the
uncertainties stemming from the non-optimal regression of the
neural networks. For practical applications, one would have to
additionally account for systematic errors arising from the inaccuracy
of hydrodynamical simulations themselves. Unfortunately, assessing
the latter is still a topic of active research and falls beyond the scope
of this work.

5.4 Understanding the neural network output with sensitivity
maps

While the traditional methods for inferring the DM content of
a galaxy are based on well-established physical laws, the inner
workings of neural networks are, to a large degree, opaque. This
often represents a crucial weakness of studies based on machine
learning, since performing consistency checks in the analysis pipeline
is notoriously difficult, if not impossible. This issue opens up a
whole new area in the machine-learning community, which searches
for methods that allow us to have a deeper understanding and
interpretation of the ML models. For a deeper review on methods
that explain machine learning results, we recommend Gilpin et al.
(2018).

In the case of CNN, several methods have been proposed that offer
validation that the networks are indeed relying on the input features
which are known to be crucial for the given task. In this work we
adopt the approach of inspecting the sensitivity maps (sometimes
also referred to as saliency maps), which allow us to quantify the
importance of each pixel in the input images for obtaining a given
result. Formally, the sensitivity map can be defined as the derivative,

oy
Sij =5
I ax,-]-

where y denotes the output of the network, and x;; represents the
pixel corresponding to coordinate pair (i, j) in the input image. In the
case of multiple input channels and output variables, we will have
a distinct map for the sensitivity of each channel in predicting each
output neuron. On the other hand, in practice it turns out that with the
above definition, sensitivity maps are often very noisy and can be very
different if a tiny change is introduced in the inputs. To address this
issue, we follow the so-called SmoothGrad approach, introduced
in Smilkov et al. (2017). We used the numerical implementation
that is publicly available in the t £ -keras-vis module (Yasuhiro,
Dohyoung & Alexander 2021), which advocates for averaging the
sensitivity maps obtained via equation (4) over a sufficiently large set
of slightly perturbed input images. This allows us to obtain smoother
sensitivity maps and, hence, establish more reliably which parts of
the input image are most important for the CNN.

In Fig. 7 we show the input images overlaid with the smoothed
sensitivity maps of the mass enclosed within 6 kpc and 48 kpc (top
and lower panels respectively) for the benchmark neural network
(architecture B) trained on SDSS i-band photometry and HI line-
of-sight velocity information. The colour-coding and units for the
input images are the same as in Figs 2 and 1, respectively, while the
sensitivity map is displayed in green scale proportional to the pixel
importance computed using the SmoothGrad algorithm. Hence,
white pixels represent regions with very low importance on the final
predictions, while, on the other hand, darker pixels represent regions
with higher importance on the final output. As can be seen from the
plots, the gradients of the outputs (and hence the sensitivity of the
output to those pixels) are the largest when taken with respect to
the central part of the input images, as one would naively expect.

“
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Figure 7. Inputimages overlaid with the corresponding sensitivity maps for neural network with architecture B that was trained using SDSS /-band photometry
and HI average velocity along the line-of-sight. The colour-coding and units for vygy and SDSS I-band maps are same as in Figs 2 and 1, respectively, while
green colouring is proportional to the pixel importance computed using the SmoothGrad algorithm (we omit the corresponding scale since we are primarily

interested in a qualitative properties).

Furthermore, the sensitivity maps seem to nicely follow the irregular
shapes of the input images, while the blank areas (i.e. parts of
the input images that are devoid of baryonic emissions) bear no
significance for the final result. Additional confirmation that the
networks work as expected comes from comparing the top and
bottom panels of the same Fig. 7, which show the sensitivity maps for
the output neurons corresponding to the enclosed DM mass at R =
6 kpc and R = 48 kpc. While the general patterns are similar in both
cases, the sensitivity maps obtained for the outer radius is noticeably
more sensitive to the outskirts of the central galaxy, as well as the
small satellite galaxies that are visible in the photometric image.
These considerations provide us with compelling evidence that the
neural network is indeed using the physically relevant features in the
input images to infer the DM mass profile.

5.5 Comparison with Tully—Fisher relation

In this section we perform a comparison between the results we obtain
through the use of the ML algorithms developed and described until
now and those obtained by a Tully—Fisher relation. The goal of this
section is to understand whether the uncertainties in the outcome of

the ML method here proposed will make the method competitive
w.r.t. existing empirical relations, such as the TF, once it will be fine-
tuned to be applied to a real-case scenario. With that in mind, within
the synthetic universe of the simulations only, and keeping also in
mind that the physical consistency of the simulation (i.e. the capacity
of the simulation to reproduce empirically known relationships) has
been tested by their developers (Vogelsberger et al. 2014a), we have
chosen one formulation of the empirical Tully—Fisher relations, and
compared the uncertainties introduced by its formulation with those
introduced by our method.

The Tully—Fisher (Tully & Fisher 1977) relation is an empirical
relationship that correlates the luminosity of a spiral galaxy with its
rotation velocity. It provides a way to estimate the total mass of a
spiral galaxy based on its observable properties. In Hall et al. (2012)
they have calibrated the relation using 3041 spiral galaxies from the
SDSS DR7 with available rotational velocities from HI line widths,
and found the best-fitting parameters:

Log(Vior) = (0.264 £ 0.010)Log(M,) — (0.558 £ 0.101) 5)
where V. is the circular velocity at twice the stellar half-mass radius

7., and M, is the galaxy stellar mass.
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Figure 8. Comparison between the rotational velocity estimated with the
machine learning versus the one obtained by using a Tully—Fisher relation.

In a real-Universe scenario, one uses the observed stellar mass
from photometric images, and by making use of the above relation-
ship, makes prediction of the expected V,o, which is a proxy for the
total gravitational mass enclosed in the mentioned radius.

Here, we work in a synthetic universe where our goal is the
following: to compare the intrinsic spread introduced by the physical
relationship in equation (5) with that introduced by the ML method.

To this aim, we select a group of galaxies within the simulation.
First, for each galaxy within the sample we assess, in turn, the real
total mass, the rotational velocity, and the real baryonic mass,
all known from within the simulation. Then, for each galaxy we
adopt two separate and different procedures to obtain the following
quantity, a proxy for the total mass of the galaxy, Vio(7,). In order
to estimate it using the two methods at comparison here, for each
galaxy within the sample we adopt:

(1) Procedure A: Estimate the rotational velocity at twice the stellar
half-mass radius using the DM mass predicted by our ML method,

Viet = w, to which we add the real baryonic mass

estimated from the simulation. This procedures relies on the use of
our ML algorithms developed and described in this paper.

(i1) Procedure B: Assess the rotational velocity at twice the stellar
half-mass radius with the empirical Tully Fisher relationship in
equation (5), by using as input the stellar mass as known from the
simulation (in fact, we could use the estimate provided by photo-
metric mock images, but they introduce an additional uncertainty
which we prefer to ignore here for the goal of this test). This
procedures relies on the use of our the TF as a predictive empirical
relation.

In Fig. 8 we show the results of both procedures —A in orange, B
in magenta— placing the actual rotation velocity Vi (r,), as known
from within the simulation, on the X axis.

While keeping in mind —as mentioned above— that the Tully Fisher
relationship has been validated in the simulation universe by the team
developing the latter (see fig. 23 of Vogelsberger et al. 2014a), here
we only perform the comparison between the outcome of Procedures
A & B with the goal of understanding whether the uncertainties in
the outcome of the ML method here proposed will make the method
competitive once it will be fine-tuned to be applied to a real-case
scenario.

From our test, we learn that: a) ML and TF results are definitely
compatible within uncertainties; b) the uncertainties of the ML
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method are smaller both individually (statistics), and considering the
spread as a systematic envelope; ¢) the ML method tends to slightly
overestimate the total mass at the low-mass end of the galaxy sample
considered, whereas the TF tends to underestimate it. At the higher
mass end, they follow the same trend. Whereas the latter is certainly a
point to be examined in detail in future studies, most interesting in this
context is the information one obtains about the uncertainties. The
individual uncertainty (on the total mass /rotation velocity) obtained
for each data point/galaxy, is typically smaller in the ML case, than
it is from the TF prediction. Also, the one sigma spread band for
the ML case is smaller than the same uncertainty band for the TF,
thus making the ML method potentially predictive in a future real
Universe application.

5.6 Comparison with the rotation curve method

The DM density profile of a disc galaxy is customarily inferred
through the analysis of its stellar and/or gaseous rotation curve, as the
‘missing’ component that is required to explain the rotational speeds
that appear too large to be explained purely by the visible components
of matter. One key aspect of this analysis is the assumption that the
disc is rotationally supported and that the chosen physical tracer
of the gravitational potential, HI gas in this work, follows circular
orbits, although there are several hints that in some systems this is
not the case (Dalcanton & Stilp 2010). If some of these assumptions
are not fulfilled, unavoidable systematics will be introduced to the
final results (see e.g. Oman et al. 2019). It is interesting to note
that, although this method has been widely used in the literature
for many years, there is no clear analysis, to the best of our
knowledge, on the precision and accuracy to which this method
recovers the true underlying DM profile nor about the systematics
introduced.

In this work, we conveniently possess knowledge of the individual
components of galaxies in a synthetic universe, and therefore are
empowered to test the Rotation Curve method in an absolute sense,
and also in comparison to our ML tool described in the paragraphs
above. While a full description and comparison of the performances
obtained with different methods for reconstructing the DM profiles
of disc galaxies is beyond the scope of this paper, we present
here a handful of examples of synthetic galaxies for which we
have performed such analysis, directly comparing the profile of
enclosed mass as reconstructed from both the Rotation Curve and
ML methods, to the actual profile known from the simulations. To
this end, we randomly select four synthetic galaxies to be analysed
with both the Rotation Curve and the ML methods developed
here.

For each of the simulated galaxies in our test sample, we construct
the ‘observed’ rotation curve by analysing the mock observations of
the HI data cube, using the 3’?BAROLO code (Di Teodoro & Fraternali
2015). It is to be noted that this method is used to generate a realistic
rotation curve through an understanding of the natural processes
taking place in a physical galaxy: namely via the estimation of the
velocity of a chosen target tracer of the rotational speed of the disc
at the given position — in this case, the HI gaseous component.*
Through this process we are therefore in possession of the ‘observed’

4This technique is different, and more complex than that adopted in most
of the literature, where the total enclosed mass at galactocentric distance is
computed from within the enclosed mass as read within the simulation, and a
rotation velocity constructed simply for that amount of mass. (Marasco et al.
2020).
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rotation curve, given the method’s assumptions for tracing the total
gravitational potential of the galaxy.

Equipped with the mock galaxy rotation curves, we reconstruct the
DM distribution in these galaxies through standard methods. First,
to obtain the contribution of the visible component, which we take
as purely stellar emission, we assume an exponential light profile
L(r) to describe the disc, and perform a fit (using the AUTOPROF
python software (Stone et al. 2021)) to the photometric SDSS g-band
images of the synthetic galaxies. The resulting luminosity profiles are
multiplied by an appropriately chosen mass-to-light ratio to obtain
a stellar mass profile: we employ a Bayesian analysis (discussed
further below) to sample the best-fitting mass-to-light ratio for each
galaxy from the range of values prescribed by Bell et al. (2003) for
the measured L(r) value and expected range of SDSS g-r colours
of the synthetic galaxies. For a given mass-to-light ratio T",, and
assuming that the stars are distributed in a thin exponential disc, we
estimate the stellar mass contribution to the rotation curve v, from
the light profile calculated by AUTOPROF (eq. 11.30 of Mo, van den
Bosch & White (2010))

v} = —4n G ZoRay* [Io()Ko(y) — (M) K1 ()] (6)

where G is the Newton constant, ¥, is the surface density
distribution, Ry is the scale length of the disc, Iy 1, Ko 1 are the
modified Bessel functions and y = R/Rj.

Second, we model the observed rotation curve as the sum of the
DM and stellar contributions (Lelli et al. 2016; Li et al. 2020),

Vobs = \/ U%M + UE (7)

where the DM contribution to the rotation curve vpy can be com-
puted analytically assuming an NFW profile for the DM distribution
that depends on Vg and Cyop (Navarro, Frenk & White 1996).

In addition, as explained in Li et al. (2018), we apply the following
corrections to the measured rotational velocities introduced by
uncertainties on the distance (D) to and inclination (i) of each galaxy:

o = /D o = sin(i’) @®)
*x . Ux D ’ obs — Vobs Sll’l(l)

Summarizing, we have 5 free parameters that we fit to the observed
rotation curve; these correspond to 2 parameters that describe the
DM distribution (Vag9 and Cy), 1 parameter that models the mass-
to-light ratio (), and 2 parameters that describe the geometry of
the system (D and i).

For the fitting, we perform a Bayesian analysis using the python
package emcee (Foreman-Mackey et al. 2013). We apply a con-
servative flat prior on T, from [0-20], in order to include the
expected values as described by Bell et al. (2003). In addition,
we impose a Gaussian prior on D (around its real value) and on
i (around the value estimated with *’Barolo). For the parameters
V0o and Cypo we impose a flat prior around [10-800] and [1-1000],
respectively.

To test the reliability of our Rotation Curve analysis described
above, we performed a sanity check that considers the idealized sce-
nario that bypasses the uncertainties arising from this ‘observational’
procedure, and instead measures directly the DM distribution already
known from the simulated galaxy data, for the 4 simulated galaxies
of Fig. 9. For this test, we first extracted the stellar mass profile (i.e.
the stellar mass enclosed at different radii) from the 3D distribution
of stellar simulated particles; and from this profile, we computed the
actual stellar contribution to the rotation curve v,. thus computed
the actual rotation curve (proxy of the total gravitational potential)
of the galaxy with the assumption of a rotationally supported disc
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(crucial to the Rotation Curve method). We fed the first curve
as that of the ‘baryonic’ component, and the second as that of
the ‘observed’ rotation curve to our Bayesian analysis algorithm
described above, and reconstructed the Dark Matter density profile
by fitting an NFW spherical distribution. We found that the best-
fitting NFW profile thus reconstructed agrees very well with the
Dark Matter distribution found in the simulated galaxies. This sanity
check proves that our adopted RC procedure is able to recover the
physical reality underneath observational data within the controlled
environment of the simulations, in an idealized case, without the
inevitable uncertainties arising from the ‘observational’ procedure.

It is worth noting that in real observations we will not have access
to the actual stellar mass distribution nor to the actual rotation curve,
and we only may infer those profiles from the photometry and
spectroscopy of a galaxy; this, in turn, will introduce uncertainties
on these quantities. In order to mimic this behaviour, in the following
we assume a 10 per cent uncertainty on both quantities, in line with
the median uncertainties in the observed quantities (Di Teodoro &
Fraternali 2015).

In Fig. 9, we display the ‘real’ DM distribution as inferred
directly from the output of the TNG100-1 simulation suite (green
solid line), and the rotation curve fitting (in brown triangles) that
shows a reasonable but unclear pattern of performance. Whereas a
systematic analysis of the validity of the rotation curve method within
a controlled environment—and its validity in the real Universe—is
not a goal of this paper, we would like to attract attention to an
interesting feature of our rotation curve results: the diversity of their
shape, and the non-regularity of their behaviour with respect to the
‘actual’ DM profile from within the synthetic universe. This could
offer an element of reckoning on the persisting problem of ‘rotation
curve diversity’ (Sales, Wetzel & Fattahi 2022).

Compared to the rotation curve method, the ML algorithm devel-
oped here provides at face value a better agreement with the input
data along a more consistent pattern. It is worth reminding the reader
that the tests provided here apply within the ‘synthetic’ universe: both
the ML learning and the rotation curve tools are used on mock data of
star-forming galaxies with masses spanning two 0.0.m. around that
of the MW, and compared against the DM distribution within that
universe. The validity of these results when analysing real galaxies
will depend on the degree to which the cosmological simulations
mirror reality. Also, a careful assessment of reconstruction perfor-
mance in the presence of instrumental effects will be needed in
order to analyse ‘real’ images of galaxies. Nonetheless, our approach
and method of comparison demonstrates the potential ability of
machine learning methods to improve upon current traditional
analyses.

6 CONCLUSIONS

We have addressed the problem of determining the DM mass
distribution in galaxies through a novel approach based on machine
learning.

We have made use of the Illustris-TNG100 suite of simulated
galaxies in a cosmological framework, and have used this as a well-
controlled environment to develop, test and train convolutional neural
networks.

We have presented a thorough analysis of the architectures consid-
ered, tested with an increasing level of complexity until satisfactory
performances were achieved.

Our algorithm is able to reconstruct the DM distribution profile
with high-performance throughout the full extent of a galaxy,
achieving the highest in the intermediate regions with a mean square
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Figure 9. Comparison between the DM profile estimated through different methods and the real one depicted by the green line. The brown triangles trace the
result obtained with the rotation curve analysis, while the blue dots represent the results obtained with the ML method.

error below 0.20 or 0.30 by using all the available input information,
or only the photometric information, respectively.

We stress that our reconstruction of the DM distribution is
completely data-driven, and does not require any assumption on
the shape or the functional form of the DM profile.

The method developed here is applicable to different types of
star-forming galaxies (spiral, elliptical, turbulent galaxies, ongoing
mergers) since it does not rely on explicit physical assumptions
regarding the dynamical state of the system.

We have also shown that convolutional neural networks are
capable of reconstructing the DM distribution beyond the radial
range covered by baryons, thus allowing a determination of the DM
mass in the outskirt of the halo within a unified framework, while
traditional methods require extrapolations based on different types
of approximations and scaling laws. Our ML method also performs
better than the traditional Rotation Curve method, reconstructing the
real (synthetic) DM distribution more accurately within our synthetic
universe.

The results achieved have been obtained for galaxies with total
dark-plus-baryonic masses in the range ~10''-10'3My, but the
methodology can be extended to a broader mass range.

Eventually, training and testing the network over different simu-
lation suites that implement different subgrid physics models can
worsen the performance of the algorithm. However, this bias is
expected to be within the standard deviation uncertainty, as recently
shown in Villanueva-Domingo et al. (2021).

The method presented here has been developed on simulated
images that were modified to emulate real galaxy images to a high
approximation. We anticipate that an application to real galaxies is
possible within our framework and that a dedicated applicability
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study needs to be performed. This will be presented in a forthcoming
analysis.
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APPENDIX A: DATA SET COMPARISON (FOR A FIXED NETWORK)

In this appendix, we provide Figs A1, A2 and A3 the comparisons of performance obtained with different combinations of observational inputs
for the studied network architectures.

Architecture A
VHI = Iy, VHI, OHI SDSS-1 = SDSS-URZ = SDSS-I+ vy = SDSS-URZ + Iy, vgg, ou1
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Figure A1. Root- mean-squared error (left) and mean absolute error (right) obtained for different sets of observations in the case of neural network architecture

A.
Architecture C
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Figure A2. Root-mean-squared error (left) and mean absolute error (right) obtained for different sets of observations in the case of neural network architecture
C.
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ResNet50
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Figure A3. Root-mean-squared error (left) and mean absolute error (right) obtained for different sets of observations in the case of ResNet50.
VHI
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Figure B1. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI line-of-sight
velocity maps.

APPENDIX B: NETWORK COMPARISON (FOR A FIXED DATA SET)

In the following, we provide in Figs B1-B6 comparisons of performance obtained with different network architectures for a given combination
of observational inputs.
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Iy, var, o
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Figure B2. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI intensity,
line-of-sight velocity and line-of-sight velocity dispersion maps.
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Figure B3. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on SDSS I-band
images.
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Figure B4. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on SDSS U, R, and
Z-band images.
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Figure BS. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI line-of-sight

velocity maps and SDSS /-band images.
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Figure B6. Root-mean-squared error (left) and mean absolute error (right) obtained for different neural network architectures when trained on HI intensity,
line-of-sight velocity and line-of-sight velocity dispersion maps as well as SDSS U, R, and Z-band images.

Table C1. The structure of network architecture A. The network has in total ~7 x 10° trainable

weights (exact number depends on the number of input channels).

Layer

Details

2D convolution
2D max pooling
Dropout

Batch normalization

2D convolution
2D max pooling
Dropout

Batch normalization

2D convolution
2D max pooling
Dropout

Batch normalization

Dense
Dropout

Batch normalization

Dense
Dropout

Batch normalization

Dense
Dropout

Batch normalization

Dense (output)

64 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation

2 px pooling

25 per cent dropout fraction

128 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation

2 px pooling

25 per cent dropout fraction

128 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation

2 px pooling

25 per cent dropout fraction

256 units, ReLLU activation
25 per cent dropout fraction

128 units, ReLU activation
25 per cent dropout fraction

64 units, ReLU activation
25 per cent dropout fraction

20 units, linear activation

APPENDIX C: NETWORK DESCRIPTION

In the following, we provide in Tables C1, C2 and C3 that summarize the architectures of custom networks used in our work. For the structure
of ResNet50 see Chollet et al. (2015) and He et al. (2015).
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Table C2. The structure of network architecture B. The network has in total ~1.3 x 10°
trainable weights (exact number depends on the number of input channels).

Layer

Details

2D max pooling
Dropout
Batch normalization

2D convolution

2D max pooling
Dropout

Batch normalization

2D convolution
Batch normalization

Dense
Dropout
Batch normalization

Dense
Dropout
Batch normalization

Dense
Dropout
Batch normalization

Dense (output)

2 px pooling
50 per cent dropout fraction

128 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation
2 px pooling
50 per cent dropout fraction

256 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation

256 units, ReLU activation
50 per cent dropout fraction

128 units, ReLLU activation
50 per cent dropout fraction

64 units, ReLU activation
50 per cent dropout fraction

20 units, linear activation

Table C3. The structure of network architecture C. The network has in total ~2.2 x 10°
trainable weights (exact number depends on the number of input channels).

Layer

Details

2D convolution

2D max pooling
Dropout

Batch normalization

2D convolution
Dropout
Batch normalization

2D convolution
Dropout
Batch normalization

2D convolution
Dropout
Batch normalization

Dense
Dropout
Batch normalization

Dense
Dropout
Batch normalization

Dense (output)

64 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation
2 px pooling
50 per cent dropout fraction

128 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation
50 per cent dropout fraction

256 kernels, 5 x 5 px kernel size, 2 px stride, ReLU activation
50 per cent dropout fraction

256 kernels, 3 x 3 px kernel size, 1 px stride, ReLU activation
50 per cent dropout fraction

256 units, ReLLU activation
50 per cent dropout fraction

64 units, ReLLU activation
50 per cent dropout fraction

20 units, linear activation
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