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Why String Theory in Cosmology?

* Consistent theory of Quantum Gravity

* Avoid the Classical Big Bang Singularity

* Go beyond EFT approach to Inflation (Transplanckian problem)
* No need for ad-hoc fields to drive Inflation

* Possible observational signature of String Theory



What does String Theory suggest?

* The existence of a low energy massless multiplet {¢, gy, B,y }

* Pre Big-Bang scenario instead of Slow-Roll (Bouncing Cosmology)

* A systematic way to implement higher order curvature corrections
(o' expansion)

* A systematic way to implement higher order string coupling
expansion in a perturbative way g? = exp(d) (Genus Expansion)

* Additional simmetry in space-time with d abelian isometries, O(d.,d;
invariance in the field space (Continuous generalisation of T-duality
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* General criteria to have bouncing solutions using Hohm
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perturbative vacuum of String Theory

 Dilaton stabilisation, FLRW and de-Sitter attractor
from non-perturbative dilaton potential

* |sotropisation mechanism via o' corrections and
Dilaton potential
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The Routhian formalism and the all order &' Hamiltonian.

Legendre transform only a subset of the variables of the Lagrangian [3;

EoM
'_2 hdl pl
¢ = 2h(z;) + 2V, zi:z,,;gb—%—g, gbzzizigg | %‘;
Advantages:

* Specify only two functions to have a non-perturbative description of the system.
* Simple 'hamiltonians’ capture all &’ corrections and generate bouncing solutions they
have another zero except the trivial one. In general they come from non-holomorphic F. In

the isotropic case we used: d 4
h(z) = 5(22 — 04/?)
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The phenomenological non-perturbative
dilaton potential

Dilaton Potential with Istantonic
behaviour not captured by string

Potential)
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s it possible to reach a final state with a frozen dilaton?

 Stabilisation of the dilaton implies stabilisation of
the Newton’s constant

* What is the final geometry?

* Is the final configuration an attractor?
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Dilaton Stabilisation and FLRW attractor

Asymptotic Matter FLRW geometry 6=0

Vo=0

6(t) = do+ 2 sin(wt +6)

Ht) = 2 {1 + Vd cos(wt + «9)}

w:m\/czl—l

m2 — V”(qu)
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Dilaton Stabilisation and de-Sitter attractor

Asymptotic de-Sitter geometry 6 # O

V(): V(qu) > ()
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Dilaton Stabilisation and de-Sitter attractor
VaH

Asymptotic de-Sitter geometry 6 # 0 | epandingpre-y
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Vo=V (¢m) > 0
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Dilaton Stabilisation and de-Sitter attractor
VaH
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Dilaton Stabilisation and de-Sitter attractor
VaH

Asymptotic de-Sitter geometry 6 # O | epandingpre-y
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Dilaton Stabilisation and de-Sitter attractor
VaH

Asymptotic de-Sitter geometry 6 # O | epandingpre-y
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Is this solution a stable attractor? 2



Numerical analysis of the attraction basin: Isotropic case

B controls the height of the
first peak.

* Conserved quantity from the
EoM used to fix the initial
condition of the dilaton.

€_¢Z — HJ_l

Variation of the height of the first peak (B) and the amplitude A

100 -3 2, =001 a=10
¢g=1 6=001A=0.01 A=0.1 A=05
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Numerical analysis of the attraction basin: Isotropic case

Variation of the height of the first peak (B) and the amplitude A
B controls the height of the " =3 z.=001 a=10

first peak. G0 0.014=001 4=01 A=05
e Conserved quantity from the N
EoM used to fix the initial < |
condition of the dilaton. P
e %y =K1 A
0.01 .
g controls the asymptotic S O
behaviour of the dilaton Va1riation of the asymptotic behaviour (q) and the number of spatial dimensions d
potential. 050 d=3 d=6 d=9
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potential 0.100 —,—I—'—,_‘
e 0<qg<1: Asymptotically constant | ose
potential
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Anisotropic case: Isotropisation mechanism

Whenever there is a late-time attractor with constant ¢ and z; the attractor must be

isotropic, i.e z; = z = 29, and consequently H; = H = H,.
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Anisotropic case: Isotropisation mechanism

Whenever there is a late-time attractor with constant ¢ and z; the attractor must be

isotropic, i.e z; = z = 29, and consequently H; = H = H,.
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Case study: Bianchi | geometry with two isotropic d and n
dimensional subspaces

h(zi)= 53,20 — S 2. 2| .

Anisotropic “Hamiltonian”
consistent at the first order in o’
with the perturbative result
obtained for F in heterotic string d=1 n=2
theory 32
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Anisotropic case: numerical analysis of the attraction basin

* Constant quantity
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Anisotropic case: numerical analysis of the attraction basin

* Constant quantity
o of [dHl +n Ho
vd+n

Past-asymptotic low
curvature solutions.
* Scale factors:

a; ~~ (—t)_%
* Hubble functions:

] —(1+dy1+nv2) € : Anisotropy parameter

de Sitter attraction basin in the {¢,x} space
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Y2 =/ (1+de)/(d+n)
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Future research and developments

e Stabilizing mechanism for the internal compact dimensions
* Add the Kalb-Ramond B,,,, field

 Compute perturbations (scalar and tensor) to bound the model
with observational data

* Can the Lagrangians, Hamiltonians, or Routhians that
implement a regular bounce correspond to the dimensional
reduction of some general covariant action.



Thanks for your attention!

E-mail: eliseo.pavone@ba.infn.it

This presentation was based on:
P. Conzinu, G.Fanizza, M.Gasperini, E. Pavone, L. Tedesco, G. Veneziano, From the string vacuum
to FLRW or de Sitter via o' corrections ,JCAP 12, 019 (2023).
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