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Positivity: LI case

Coefficients of EFT operators must satisfy inequalities 
(if there is a “standard” UV completion)

Adams, Arkani-Hamed, 
Dubovsky, Nicolis, Rattazzi 06 
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Origin of analyticity

Consequence of microcausality: commutators vanish outside lightcone

246 QUANTUM FIELD THEORY

observation is the basis of the original treatment by Kramers and Kronig of the
diffractive index of light in a medium relating dispersion and absorption. Hence
the name "dispersion relations" for the analytic representations of the scattering
amplitudes.

An example will illustrate these ideas. Consider the elastic scattering of particle
A (mass ma) on a target particle B (mass mb). Both particles are assumed spinless
to avoid cumbersome technical details without changing the essential conclusions,
but may carry a charge. We therefore distinguish particle A from antiparticle A
and use a complex field qJ to describe both of them. If q1 and q2 denote the
initial and final momenta of particle A and P1 and P2 the corresponding ones
of particle B, the connected part of the scattering amplitude may be expressed as

Sfi = - f d4x d4y ei(q,oy-q,oX)(Dy+ + (5-169)

We have absorbed a factor Z-1/2 into the definition of the field. With q1
and q2 inside the forward light cone, the time-ordered product in the right-hand
side ofEq. (5-169)may be replaced by a retarded commutator

TqJ t (y)qJ(x) fJ(y°- x0)[ qJ t (y), qJ(x)J
without affecting the value of Sfi. This can be seen from the original derivation
given in Sec. 5-1-3. Define the source j(x) of the field qJ(x) through

(0 + m;)qJ(x) = j(x) (5-170)

and assume for simplicity that qJ andj commute at equal times. Taking translation
invariance into account we may write

Sfi = (2n)4c54(p2 + qz - P1 - q1)i.:T

(5-171)

Lorentz invariance implies that .:T depends only on the scalar products among
the momenta, i.e., on two out of the three Mandelstam variables for on-shell
particles.

From locality, the retarded commutator (P21 fJ(ZO) [jt(z/2), j( - z/2)J Ip1>
vanishes unless Z2 > 0, Zo > o. Inspection of Eq. (5-171) reveals that .:T is an
analytic function of the four-vector q in the so-called forward tube defined by the
condition that 1m q be a positive time-like vector. This follows from the assumption
that the matrix elements of the fields are tempered (i.e., polynomially bounded)
distributions. Indeed, ifq = qR+ iqI, the exponential in (5-171)provides a damping
factor e- Z • q/ when both z and qI are positive time-like vectors.

This example shows the direct relationship between the local properties of
relativistic field theories and the analyticity of Green functions.

Before we analyze the mathematical consequences of this result let us recall
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Commutator vanishes outside FLC à analytic for Im qµ in FLC

LSZ:

See e.g. Itzykson Zuber’s book

Up to disconnected pieces:
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Similar bounds for non-LI theories?

Motivation: in many interesting situations Lorentz is spontaneously broken

1. Cosmology. In particular Inflation and Dark Energy/Modifications of Gravity

We are particularly interested in “peculiar” theories (Galileon, Ghost 
Condensate...): are they consistent?

2. Condensed Matter.  Can we deduce general inequalities for a system? 

3. QFT at finite T or finite Q

In general the theory is defined with non-linearly realised Lorentz

Cannot be “extrapolated” from a LI invariant theory: think about a fluid



Simply do the same?

Look at p scattering

In a LI theory this is well-defined at arbitrary high energy 
(calculable in EFT only at low energy)

If LI is broken, p is not a good asymptotic state at high energy:
scatter phonons at 10 TeV?

Baumann, Green, Lee, Porto 15 
Grall, Melville 21

w1 w2
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What is the object whose analyticity we want to study? 
What is the analogue of the Froissart bound?



S - Matrix

space and time translations are not.1 The model features two modes: a massless Goldstone

and the radial massive excitation, whose dispersion relations will be studied in section 2. The

model is weakly coupled so that, contrary to the general case discussed above, one can study

the S-matrix of the Goldstones at all energies. Before venturing to make very general claims,

we think it is important to have at least one non-trivial example of an S-matrix in the absence

of Lorentz invariance.

Before calculating the S-matrix and evaluating it in various limits of physical interest

(section 4 and appendices B and C), in section 3 (and appendix A) we will derive an LSZ

reduction formula that connects the S-matrix to correlation functions. Here we encounter a

striking di↵erence compared to the Lorentz invariant case: the relation between the S-matrix

and correlation functions involves operators that are non-local in space. This spatial non-

locality arises from the mixing of the two modes, which depends on the momentum. The

presence of this non-locality spoils the analyticity properties of the S-matrix compared to

the Lorentz invariant case. We conclude that even in cases where the S-matrix exists at all

energies one cannot derive positivity bounds using the conventional dispersive arguments.

In section 5 and appendix D we study the decay rate of Goldstones, while conclusions and

future directions are discussed in section 6.

2 The U(1) model

We start with the UV-complete Lagrangian
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· @�+m
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1The unbroken time translations actually correspond to a linear combination of the original time translation
and a U(1) transformation [13].

3

What if the low energy states do exist at high energy?

with Delladio, Janssen, Longo, Senatore 23

Also Hui, Kourkoulou, Nicolis, Podo, Zhou 23
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Thus the Fock space contains two types of particles which are labelled by their three-momentum

k and by an extra label ± indicating which dispersion relates their energy and momentum.

Now that we have established what the asymptotic states are we must choose which fields to

use to interpolate such states. One possibility is to use h and ⇡. They clearly can interpolate

both ± states. The purpose of the next section is to quantify how much they actually do.
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Figure 1: Plot of the dispersion relations of the + (black) and � (orange) states in units of

v for � = 10�2 and µ/v = 3/10. The blue dotted line is the null curve !(k) = |k|, and we

have E±(k) = |k| ± µ
2
/2v +O (|k|�1) as |k| ! 1. Thus the + branch is timelike while the

� branch is spacelike.

so that a single particle asymptotic state of type l with four-momentum k is obtained by
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The first and second equations together imply3

X
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Z
a
l Z̄

b
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a
l Z

b
l

El
= 0 ,

X

l=±
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a
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b
l + Z̄

a
l Z

b
l = 2�ab ,

(19)

where we have suppressed the k-dependence, while the third equation boils down to

X
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�
Z

a
l Z̄

b
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a
l Z

b
l

�
= �i

µ
2
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✏
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. (20)

Furthermore, the factors Za
l must be chosen so that the equations of motion are satisfied. We

find this implies

Z
h
l =

ivk
2
l

Elµ
2
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⇡
l , (21)

where k
2
l = El(k)2 � k2 and this equation holds for l 2 {�,+} separately. The independent

equations in (19)-(20) now read
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whose solutions are
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�
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Explicitly in terms of the spatial momentum,
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4µ4k2
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. (25)

With the relations (21), there are two remaining unfixed phases in the solution. These corre-

spond to our freedom in (16) to rotate a±(k). Choosing Z
⇡
� and Z

h
+ to be positive real, the

explicit expressions for the interpolating factors are
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3Here we use that Za
l (k) is only a function of |k|.
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Imposing EOM and CCR one gets e.g.

From these expressions we see

Z
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h
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1
p
2
, Z

⇡
+(k) ⇠ Z

h
�(k) ⇠ �

i
p
2

as |k| ! 1 . (27)

This means that at high energies the two fields ⇡, h interpolate the two asymptotic states

�,+ equally well. This can also be understood by considering the quadratic Lagrangian (8)

and noticing that, in the high energy limit, the splitting is dominated by the one derivative

operator (µ2
/v)h⇡̇. So at high energies the quadratic Lagrangian reads
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which can be diagonalized yielding
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◆
.

(29)

In the two eigenvalues we recognize the high energy limits of the dispersion relations (12) and

in the eigenvectors we recognize the high energy limits of the Z-factors (27). To conclude we

stress that, since the leading splitting operator (µ2
/v)h⇡̇ is Lorentz-breaking, going to very

high energies is di↵erent from taking the µ = 0 limit.

3 LSZ reduction formula and lack of analyticity

In this section we will derive the LSZ reduction formula, following the polology argument of

Weinberg [14]. This is of course well-know material in the Lorentz invariant case and we will

highlight the di↵erences in the absence of Lorentz invariance. We want to prove the following

relation between the T-ordered Green functions and the S-matrix elements

nY
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Z
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ipi·yi
mY

j
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�ikj ·xjh0|T (⇡(y1) . . . ⇡(yn)⇡(x1) . . . ⇡(xm))|0i ⇠

nY

i

iZ
⇡
�(pi)

p0 2i � E2
�(pi) + i"

mY

j

iZ̄
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k0 2
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�(kj) + i"
hp1 . . .pn|S|k1 . . .kmi

(30)

The symbol ⇠ indicates the equality holds in the limit all particles go on shell: p0i ! E�(pi)

and k
0
j ! E�(kj). Notice we are taking the convention that p0i > 0 and k

0
i > 0. The matrix

elements were defined above as

Z
h
±(k) ⌘ h⌦|h(0)|k,±i . (31)

(In the standard Lorentz invariant treatment, these would reduce to a factor
p
Z, which

describes the wavefunction normalization.) [[[LS: why
p
Z and not Z]]] We are here

looking at the scattering of � particles: if one were interested in + particles, one should use

7

From these expressions we see

Z
⇡
�(k) ⇠ Z

h
+(k) ⇠

1
p
2
, Z

⇡
+(k) ⇠ Z

h
�(k) ⇠ �

i
p
2

as |k| ! 1 . (27)

This means that at high energies the two fields ⇡, h interpolate the two asymptotic states

�,+ equally well. This can also be understood by considering the quadratic Lagrangian (8)

and noticing that, in the high energy limit, the splitting is dominated by the one derivative

operator (µ2
/v)h⇡̇. So at high energies the quadratic Lagrangian reads

L(2) ⇠
1

2

�
⇡ h

�✓ �@
2

�(µ2
/v)@t

(µ2
/v)@t �@

2

◆✓
⇡

h

◆
(28)

which can be diagonalized yielding

L(2) ⇠
1

2
⇥

1
p
2

�
⇡ � ih h� i⇡

�✓ �@
2 + i(µ2

/v)@t 0

0 �@
2
� i(µ2

/v)@t

◆
1
p
2

✓
⇡ + ih

h+ i⇡

◆
.

(29)

In the two eigenvalues we recognize the high energy limits of the dispersion relations (12) and

in the eigenvectors we recognize the high energy limits of the Z-factors (27). To conclude we

stress that, since the leading splitting operator (µ2
/v)h⇡̇ is Lorentz-breaking, going to very

high energies is di↵erent from taking the µ = 0 limit.

3 LSZ reduction formula and lack of analyticity

In this section we will derive the LSZ reduction formula, following the polology argument of

Weinberg [14]. This is of course well-know material in the Lorentz invariant case and we will

highlight the di↵erences in the absence of Lorentz invariance. We want to prove the following

relation between the T-ordered Green functions and the S-matrix elements

nY

i

Z
d4
yi e

ipi·yi
mY

j

Z
d4
xj e

�ikj ·xjh0|T (⇡(y1) . . . ⇡(yn)⇡(x1) . . . ⇡(xm))|0i ⇠

nY

i

iZ
⇡
�(pi)

p0 2i � E2
�(pi) + i"

mY

j

iZ̄
⇡
�(kj)

k0 2
j � E2

�(kj) + i"
hp1 . . .pn|S|k1 . . .kmi

(30)

The symbol ⇠ indicates the equality holds in the limit all particles go on shell: p0i ! E�(pi)

and k
0
j ! E�(kj). Notice we are taking the convention that p0i > 0 and k

0
i > 0. The matrix

elements were defined above as

Z
h
±(k) ⌘ h⌦|h(0)|k,±i . (31)

(In the standard Lorentz invariant treatment, these would reduce to a factor
p
Z, which

describes the wavefunction normalization.) [[[LS: why
p
Z and not Z]]] We are here

looking at the scattering of � particles: if one were interested in + particles, one should use
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(Another procedure is to write creation/annihilation operators 
in terms of fields: different LSZ expression, but same conclusions)

LSZ formula, using polology



Lack of analyticity

Z+’s and also use the dispersion relations E
2
+(·). In this way of deriving the LSZ reduction

[[[‘forluma’ [[?]]], one is free to use any field to interpolate the particles of interest, provided

there is a nonzero overlap. For instance, one could write a similar formula [[[‘replace’! ‘by

replacing’]]]] some (or all) the fields ⇡ with fields h. Since the overlap between a � particle

and the h field goes to zero at low energy, it is more natural to use ⇡.

To prove the expression above one focus on the regions of integration y
0
i ! +1 and

x
0
i ! �1 since this is the region that gives rise to the poles [[[[why?]]]]. In the regime all

the y’s are after all the x’s and the T-ordered product factorises as

h0|T (⇡(y1) . . . ⇡(yn))T (⇡(x1) . . . ⇡(xm))|0i . (32)

We can thus insert a complete sets of states (twice) in the middle

X

↵,�

h0|T (⇡(y1) . . . ⇡(yn))|↵outih↵out|�inih�in|T (⇡(x1) . . . ⇡(xm))|0i . (33)

The object h↵out|�ini is the S-matrix. In the late-time limit, after the wave packets of the

various particles are separated, the matrix element on the left is dominated by a state with

n particles

lim
y0i !+1

h0|T (⇡(y1) . . . ⇡(yn))|↵outi ⇠ h0|T (⇡(y1) . . . ⇡(yn))|q1 . . . qniout ⇠

nY

i

h0|⇡(yi)|qiiout ⇠

nY

i

Z
⇡
�(qi)e

�iqi·yi
(34)

Notice that if the theory were invariant under boosts, then Z would not depend on k: as

we will see, this is a crucial di↵erence. (We have been here sloppy with permutations, which

will eventually cancel with the normalization of states with identical particles.) Taking into

account the integration over final states each term in the product gives
Z

d4
yid⌦qie

ipi·yiZ⇡
�(qi)e

�iqi·yi =

Z
dtid⌦qi(2⇡)

3
�
(3)(pi � qi)Z

⇡
�(qi)e

i(p0i�q0i )ti , (35)

where we did the integral over the spatial variables. Then doing the integral over the phase

space one gets

=

Z
dti

1

2E�(pi)
Z

⇡
�(pi)e

i(p0i�E�(pi))ti ⇠
iZ

⇡
�(pi)

p0 2i � E2
�(pi) + i"

, (36)

where the last equality is valid up to term that vanishes as one goes close to the pole. The

same arguments work for the in-coming particles proving the LSZ formula (30).

We can now proceed to study the analyticity of the 2 ! 2 S-matrix. In this case the LSZ

formula gives

S = �

Z
d4
xd4

y e
i(q2·y�q1·x)

�@
2
y0 � E

2
�(�i@yi)

Z⇡
�(�i@yi)

�@
2
x0 � E

2
�(�i@xi)

Z̄⇡
�(�i@xi)

hp2|T (⇡(y)⇡(x))|p1i . (37)

8

We slightly changed the notation calling q1 and p1 the incoming momenta (q2 and p2 are

outgoing). This simplifies the comparison with the book of Itzykson & Zuber book, whose

logic we will follow. As in the Lorentz invariant case one can replace the T-ordered correlation

function with the retarded 2-point function: the di↵erence only contributes to a disconnected

piece of the S-matrix. Therefore one has

S = �

Z
d4
xd4

y e
i(q2·y�q1·x)

�@
2
y0 � E

2
�(�i@yi)

Z⇡
�(�i@yi)

�@
2
x0 � E

2
�(�i@xi)

Z̄⇡
�(�i@xi)

hp2|✓(y
0
�x

0)[⇡(y)⇡(x))]|p1i .

(38)

Using translational invariance one can factor out the delta function of energy and momentum

conservation

S = (2⇡)4�(4)(p2 + q2 � p1 � q1)iT (39)

T = i

Z
d4
z e

iqz
�@

2
z0/2 � E

2
�(�i@zi/2)

Z⇡
�(�i@zi/2)

�@
2
z0/2 � E

2
�(�i@zi/2)

Z̄⇡
�(�i@zi/2)

hp2|✓(z
0)[⇡(

z

2
)⇡(�

z

2
))]|p1i (40)

In the Lorentz invariant case the Z’s are just constants and the di↵erential operators are the

Klein-Gordon one, ⇤ + m
2. In this case these operators can be brought inside the matrix

element and the integrand is thus non-zero only for z
µ in the forward lightcone. Therefore

T (qµ) is analytic if Im q
µ lies in the forward lightcone. (In this region the integral converges,

assuming polynomial boundedness of the matrix elements and it thus defines an analytic

function.) This primitive domain of analyticity is the stepping stone for the use of dispersion

arguments of the S-matrix. Here, however, the di↵erential operators acting on the matrix

element are non-local. In particular, from the explicit expression of Z⇡
� and E

2
� one sees the

presence of branch points for complex spatial momenta. These singularities are there for any

value of the time-components of the momenta. This means there is no cone of analyticity for

Im q
µ.

Another way to see the absence of analyticity is to look at the fields built only with the

creation/annihilation operators of � (or respectively +) states:

'l(t,x) ⌘

Z
d
3
k

(2⇡)32El(k)

�
al(k)e

�i(El(k)t�k·x) + h.c.
�
, l = ± . (41)

These fields interpolate only one of the two eigenstates, so that h0|'l(0)|q liout = 1. The '’s

however are not microcausal, i.e. they do not commute outside the lightcone. The simplest

way to see this is to look at the Fourier representation of the retarded Green function

GR l(!,k) =
i

(! + i✏)2 � El(k)2
. (42)

Necessary and su�cient condition for the vanishing of the retarded Green function outside

the lightcone is that its Fourier representation is analytic when the imaginary part of the

4-vector (!,k) is in the forward light-cone. This property does not hold here since El(k) has
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Using translational invariance one can factor out the delta function of energy and momentum
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In the Lorentz invariant case the Z’s are just constants and the di↵erential operators are the

Klein-Gordon one, ⇤ + m
2. In this case these operators can be brought inside the matrix

element and the integrand is thus non-zero only for z
µ in the forward lightcone. Therefore

T (qµ) is analytic if Im q
µ lies in the forward lightcone. (In this region the integral converges,

assuming polynomial boundedness of the matrix elements and it thus defines an analytic

function.) This primitive domain of analyticity is the stepping stone for the use of dispersion

arguments of the S-matrix. Here, however, the di↵erential operators acting on the matrix

element are non-local. In particular, from the explicit expression of Z⇡
� and E

2
� one sees the

presence of branch points for complex spatial momenta. These singularities are there for any

value of the time-components of the momenta. This means there is no cone of analyticity for

Im q
µ.

Another way to see the absence of analyticity is to look at the fields built only with the

creation/annihilation operators of � (or respectively +) states:

'l(t,x) ⌘

Z
d
3
k

(2⇡)32El(k)

�
al(k)e

�i(El(k)t�k·x) + h.c.
�
, l = ± . (41)

These fields interpolate only one of the two eigenstates, so that h0|'l(0)|q liout = 1. The '’s

however are not microcausal, i.e. they do not commute outside the lightcone. The simplest

way to see this is to look at the Fourier representation of the retarded Green function

GR l(!,k) =
i

(! + i✏)2 � El(k)2
. (42)

Necessary and su�cient condition for the vanishing of the retarded Green function outside

the lightcone is that its Fourier representation is analytic when the imaginary part of the

4-vector (!,k) is in the forward light-cone. This property does not hold here since El(k) has
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The usual arguments of S-matrix analyticity breaks down

Vanishes outside FLC in z

Without Lorentz invariance Z(k) and E(k) introduce non-analyticities

analytic for Im qµ in FLC
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Conserved currents

1. Assume to flow to a CFT in UV (general?)

2. UV behaviour of and are known:

3. At low energy EFT (is not conformal and) breaks LI spontaneously

4. Analyticity and unitarity of and + UV limit above

à positivity properties in EFT
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Superfluid
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Tµ⌫ = 2P 0(X)@µ�@⌫�+ P (X)gµ⌫ ⇢ = 2P 0X � P p = P uµ =
@µ�p
�X

E.g. P(X) = X2 gives w = 1/3: radiation fluid

Poincarè x U(1) à Spacetime translations x Rotations (x Shift)

Given approximate shift 
symmetry, good starting point 
for inflation and dark energy 

(K-inflation, K-essence)

Real 
superfluids

Superfluid:

Expanded as f = c t + p(t,x) it describes a perfect fluid w/o vortices



Conformal superfluid

Superfluid:

Expanded as f = c t + p(t,x) it describes a perfect fluid w/o vortices
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E.g. P(X) = X2 gives w = 1/3: radiation fluid

Poincarè x U(1) à Spacetime translations x Rotations (x Shift)

Conformal superfluid: add non-linearly realised conformal symmetry

SO(d,2) x U(1) à Spacetime translations x Rotations (x Shift)

CFT at finite chemical potential µ. U(1) spontaneously broken. 
At E << µ system is described by an EFT 

U(1)



CFTs at large charge

Hellerman, Orlando, Reffert, 
Watanabe 15; Monin, Pirtskhalava, 

Rattazzi, Seibold 16

P. Romatschke, L. Santoni, S. Shenker, E. Silverstein, M. Serone and G. Villadoro for useful
discussions.

A EFT operators
In this appendix we aim to obtain the independent operators of the EFT at each order
in the derivative expansion. The simplest way to write operators that non-linearly realize
the full conformal group is to use the modified metric ĝµ⌫ ⌘ gµ⌫ |g

↵�
@↵�@��| [35], where

� = µt + ⇡(t, x). The metric ĝµ⌫ is Weyl invariant so that any diffeomorphism invariant
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(There is no difference between @µ and @̂µ, but we use this notation to emphasize that indices
are raised and contracted with ĝµ⌫ .) These two are the only operators at this order, as we are
now going to show. The only other operator one has to consider is

´
d3
x
p
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Since 2̂� is Weyl invariant � and �̃ have the same transformation properties: one could use
�̃ instead of � to build the metric ĝµ⌫ and construct out of it the operators in the action. One
can thus use this field redefinition in the leading action Eq. (114) to get rid of an operator.
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18In fact, a conformal transformation combined with a suitable diffeomorphism amounts to a Weyl rescaling
of the metric. The conformal group is non-linearly realized because � has a vev.

19We assume parity invariance, otherwise one could write a term with a single extra derivative [29].
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↵�
@↵�@��| [35], where
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contains some specific large parameter. To get a quick idea it su�ces to consider a powerlike

potential V (r) = cr↵ in which case !2
r
= (↵ + 2)m2/I2. The parameter ↵ thus controls the

rigidity of the rotor: for ↵ � 1 we have !r � !✓ and r can be integrated out to e↵ectively

describe the system as a rigid rotor term plus a series of 1/↵ suppressed higher derivative

terms describing deviations from perfect rigidity. In the case ↵ � 1 we can thus describe

the system in terms of the pure SO(3)/SO(2) �-model, but generically we expect degrees

of freedom with comparable mass to those of ✓ dictated by the � model over the rotating

solution. This situation occurs also in the case of genuine field theories that we shall consider

later. However in that case the dynamics of the massless modes, the analogues of ⌘, is more

consequential than in the case of the rigid rotor. The truly robust predictions in the CFT

case concern the latter degrees of freedom, as it will become clear later on.

3 Path integral at fixed charge and Goldstone bosons

The approach of ref. [8] can be viewed as a field theoretic version of the quantum mechanical

example of the previous section. Our goal is to present the results of ref. [8] from a di↵erent

perspective and to extend them to the case of multiple, possibly non abelian, charges. Con-

sidering a general d-dimensional CFT with a global (internal) symmetry group G of rank N

we want to study the properties of primary operators O ~Q,a
carrying large values of the con-

served charges ~Q = (Q1, . . . , QN) associated to the Cartan generators bQI . Here the index a

labels dimension, spin and possibly extra discrete quantum numbers. In particular, working

on the Euclidean plane Rd, the goal is to systematically distill the universal properties of

correlators of the form

hO� ~Q,a
(xout)Om(xm) . . .O1(x1)O ~Q,a

(xin)i (3.1)

where by O� ~Q,a
we indicate the operator corresponding to the Hermitian conjugate of O ~Q,a

in the Minkowskian continuation5 while the Oj’s are operators with finite values of all the

quantum numbers, including the QI . For instance they could include the energy momentum

tensor and the conserved G currents. In order to proceed it is convenient to map to the

cylinder R ⇥ Sd�1 and exploit the operator state correspondence. In polar coordinates

x ⌘ (r = |x|,n) is mapped to (⌧ = R ln r/R,n), where R is the radius of the Sd�1 sphere.

Normally units where R = 1 are chosen, but for later purposes (dimensional analysis) we

keep the radius arbitrary.

5In the Euclidean theory with radial quantization, considering for instance a scalar primary of dimension

�, we have instead the relation O{Q}(x)
† = x

�2�O{�Q}(R̂x) where R̂x is the image of x under space

inversion (see for instance ref. [14]).
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Large Q limit of:

By operator-state correspondence, one is in a state at large Q on Sd-1x R

For large Q, one has an EFT with a single Goldstone and CFT results 
can be obtained as an expansion in 1/Q: 1/µR ~ 1/Q1/2

(5.20):

�Q =
2

3

Q3/2

p
2⇡c1

+ 8⇡c2

r
Q

2⇡c1
� 0.0937256 +O

�
Q�1/2

�
. (5.25)

The third term on the rhs of this equation is a true prediction of the theory: no local

counterterm can renormalize it, since the local EFT (5.15) does not contain operators that

scale as Q0 when evaluated on the background solution.

6 CFT at large global charge: U(1)⇥ U(1)

An interesting question is how things change for more complicated internal symmetries,

di↵erent from a simple U(1). In this section we set out with exploring the next-to-simplest

case of a CFT with a U(1)⇥ U(1) symmetry, focussing on the sector with non-zero charges

Q1 and Q2 (corresponding to each of the two Abelian factors).

It is instructive to first look at a simple example which nicely illustrates some of the subtle

aspects of the general construction. To this end, consider a 4d (Minkowskian) classical CFT

featuring two complex scalars �1 and �2 with charges (1, 0) and (0, 1) under the two groups

L = |@�1|2 + |@�2|�
�1

4
|�1|4 �

�2

4
|�2|4 �

�12

2
|�1|2|�1|2 . (6.1)

In a state with both U(1) charges non-zero and large, one generically expects that the vevs

of both scalars are non-vanishing, so that they can be parametrized in terms of the radial

modes and phases

�i =
aip
2
ei�i , (6.2)

where the index i = 1, 2 runs over the two U(1) groups. As before, projecting onto the

appropriate state with non-zero Qi amounts to adding the operator �
P

i
�̇iQi/Vol to the

Lagrangian. Requiring then that the Lagrangian is stationary with respect to variations of

fields at boundaries fixes the two charge densities as

⇢i ⌘
Qi

Vol
= a2

i
�̇i . (6.3)

Just as for a rigid rotor, non-zero values of the charge densities provide centrifugal forces

that keep the radial modes’ vevs away from zero, and to find the latter one has to minimize

the following e↵ective potential

Ve↵ =
⇢21
2a21

+
⇢22
2a22

+
�1

4
a41 +

�2

4
a42 +

�12

2
a21a

2
2 . (6.4)

25

1-loop correction

�(t, ~x) = µt+ ⇡(t, ~x)
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Constraints from Current

Focus on 3d:

the specific CFT at hand are encoded in the coefficients of the operators of the EFT: our
positivity constraints will thus carve out a region of possible CFT data.

Besides its intrinsic interest, this EFT is the perfect example to apply our methods to.
The UV CFT, which is a crucial step for our argument, is here broken only by µ, which is
also responsible for the breaking of the Lorentz symmetry. In some sense this is the minimal
setup where our arguments can be tested and applied. Notice that the EFT only makes sense
as Lorentz-breaking: the cut-off of the theory is µ, the only scale in the problem, and it goes
to zero as one tries to switch off the Lorentz-breaking.

Although our arguments are general we are going from now on to work in d = 3. One
reason is that most of the CFT literature concentrates on this example, since d = 3 CFT’s are
the key objects to study second-order phase transitions. Another reason is that in d = 3 we
are able to constrain the NLO operators of the theory, while in d = 4 the contour at infinity
would not converge and one would have to go to higher order.

3.1 hJJi calculation

The EFT Lagrangian for ⇡ coupled to Aµ in d = 3 reads, to NLO in derivatives (see [29] and
Appendix A),

L =
c1

6
|r�|

3
� 2c2

(@|r�|)2

|r�|
+ c3

 
2
(rµ

�@µ|r�|)2

|r�|3
+ @µ

✓
r

µ
�r

⌫
�

|r�|2

◆
@⌫ |r�|

!

�
b

4

Fµ⌫F
µ⌫

|r�|
+

d

2

F
µ
iF

⌫i

|r�|3
rµ�r⌫� , (33)

where � is expressed in terms of ⇡ as in (32) and

rµ� ⌘ @µ�� Aµ , (34)
|v| ⌘

p
�vµv

µ . (35)

The leading order term, the one proportional to c1, makes sense only when � is expanded
around the time-dependent background of Eq. (32): the EFT cutoff is set by the only scale
in the problem, µ, so the EFT loses sense if one tries to extrapolate to the Lorentz-invariant
vacuum µ = 0. Around the background (32), ⇡ has a speed of propagation c

2
s = 1/2, fixed by

the conformal symmetry (it would be c
2
s = 1/3 in d = 4).

Notice the gauge symmetry ⇡(x) ! ⇡(x) + ⇤(x), Aµ(x) ! Aµ(x) + @µ⇤(x) since � only
appears in the combination (34), and also the two quadratic kinetic terms for Aµ which are
compatible with the spontaneous breaking of Lorentz invariance. We argued in §2 that these
terms produce contact terms in the two-point function of Jµ that one may not neglect since
they will be generated when integrating out the heavy fields. As such they appear with the
unknown coefficients b and d in the EFT.13 These operators were not discussed in the CFT

13If we were to make Aµ dynamical these operators would encode the modification of the “photon” propa-
gator inside the material, inducing in particular a modification of the speed of light.
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Can we get constraints on c1,2,3, b and d using <Jµ Jn> ?

Let us now proceed to calculate the current-current correlator. The retarded Green’s
function is written as the difference of the T-ordered and the unordered correlator in Eq. (15).
Let us start with the T-ordered piece, whose functional representation is the first line of
Eq. (24). This piece, as discussed in §2, will not only contain the T-ordered correlator of the
Noether currents, but also contact terms, which are crucial in order to match with the UV
calculation. These contact terms are given in Eq. (24) when one takes the derivatives to act
twice on the Lagrangian:

1

Z

ˆ
D� e

i
´
R3 d3x L

⇣
�0,A

(0)
µ

⌘ �
2
L

⇣
�0, A

(0)
µ

⌘

�A
(0)
µ (x)�A(0)

⌫ (x)

������
A

(0)
µ =0

. (42)

(When the functional derivatives act on two different L’s, one gets the correlation functions
of the Noether currents.) Equation (42), at tree level, simply takes the terms in the ac-
tion Eq. (36) which are quadratic in A

µ and contributes to G
µ⌫
R contact terms in real space

(derivatives of the delta function), i.e. polynomials in ! and k in Fourier space. Now let’s
consider the unordered correlator, the second line of Eq. (24). We discussed above that this
does not contribute to contact terms. In general, this is a quite complicated object: since
it is not T-ordered, one should develop the proper Feynman rules. However, in this paper
we will stick to tree-level two-point function calculations in the EFT and one expects the
unordered term to combine with T-ordered correlator of currents to give the retarded Green’s
function of currents, see Eq. (15). Indeed one can see that the unordered term just changes
the prescription of the ! < 0 poles to make them retarded. Eq. (16) shows that the unordered
correlator at a given ! and k just receives contribution from states of the theory with same
! and k: at tree level, this implies that its Fourier transform is localized on the poles of the
propagator. Indeed the sum over n in Eq. (16) is actually an integral over the one-particle
states dk̃/(2⇡)d�1

· 1/(2!(k0)): this integral eats the spatial delta function and gives

i h0|J⌫(�!,�k)Jµ(!,k)|0i = i(2⇡)
1

2!(k)
�(! + !(k)) h0|J⌫(0)|!(k),ki h!(k),k|Jµ(0)|0i ,

(43)
where !(k) is the dispersion relation of the Goldstone (including the corrections due to higher-
dimension operators). Notice that this contribution is only for ! < 0: one can check that this
term changes the prescription of the poles, exactly in the same way it does for the standard
relativistic propagator of a massive scalar field.

The structure of hJµ(�k)J⌫(k)i is severely constrained by current conservation,

kµhJ
µ(�k)J⌫(k)i = 0 . (44)

This equality is exact, without contact terms on the RHS, given our definition of the correlator:
we show this precisely in Appendix B. In the absence of Lorentz invariance one has two possible
tensor structures that guarantee conservation,

ihJ
µ(�k)J⌫(k)i = A

�
k
µ
k
⌫
� ⌘

µ⌫
k
2
�
+ B

�
k
i
k
j
� �

ijk2
�
, (45)
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Most general using conservation: 
where A and B are general functions of ! and |k|.

In our EFT, calculating the Noether current correlator14 and adding the contact terms
one gets

A = �
µc1

2
�
!2 � c2sk

2
� +

c2

µ

�
!
2
� k2

�
k2

�
!2 � c2sk

2
�2 �

c3

µ

!
2k2

�
!2 � c2sk

2
�2 +

b

µ
+

d

µ
, (46)

B =
µc1

4
�
!2 � c2sk

2
� +

c2

µ

�
!
2
� k2

�2
�
!2 � c2sk

2
�2 �

c3

µ

!
2(!2

� k2)
�
!2 � c2sk

2
�2 �

d

µ
. (47)

The prescription for the poles is retarded for !
Im

> 0 and advanced for !
Im

< 0.

3.2 Positivity bounds from hJJi

To derive positivity bounds on c2, c3, b and d we follow the general logic outlined in §2 (see
also Appendix C). For the time being, we focus on the tree-level approximation in the EFT
and we will discuss loops in §3.6. Consider the function

f̃(!) = G̃
µ⌫(k)Vµ(k)V⌫(k)

���
k=(!,k0+!⇠)

, (48)

where
G̃

µ⌫(k) = ihJ
µ(�k)J⌫(k)i . (49)

Its EFT low-energy approximation is given by Eqns. (45), (46) and (47). The vector V (k =

(!,k0 + !⇠)) ⌘ V (!) has components which are arbitrary polynomials in !. Initially we set
k0 = 0, but turning on this parameter does not produce any new bounds as we illustrate
explicitly at the end of this section. At each ! we may expand V (!) as a sum of three
terms, one parallel to k and two others orthogonal to it, with arbitrary coefficients as long
as the result is a polynomial in !. When k0 = 0 these basis vectors are !-independent when
normalized:

K̂ =
(1, ⇠)p
1� ⇠2

, (50)

Ê =
(⇠, ⇠̂)p
1� ⇠2

, (51)

F̂ = (0, f̂) , (52)

where hats denote unit vectors, so ⇠̂·⇠̂ = 1 = f̂ ·f̂ , ⇠̂·f̂ = 0. Also K̂ ·K̂ = �1, Ê ·Ê = 1 = F̂ ·F̂

and K̂ · Ê = K̂ · F̂ = Ê · F̂ = 0. So we write

V (!) = ↵(!)K̂ + �(!)Ê + �(!)F̂ , (53)
14Notice that the constant term in J0

N drops out from the Green’s function, since it involves a commutator.
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Current analyticity 
integrations in the complex plane), a natural choice are the retarded and advanced Green’s
functions:

G
µ⌫
R (x� y) = i✓(x0

� y
0) h0|[Jµ(x), J⌫(y)]|0i , (4)

G
µ⌫
A (x� y) = �i✓(y0 � x

0) h0|[Jµ(x), J⌫(y)]|0i .

Analyticity. Let us study the analytic properties of the retarded and advanced Green’s
functions. We define the Fourier transforms of the Green’s functions as

G̃
µ⌫
R,A(!,p) =

ˆ
Rd

dd
x e

�ip·x
G

µ⌫
R,A(x) . (5)

Our metric convention is {�,+, . . . ,+}. We have G
µ⌫
R (x) = 0 for x

0
< 0, because of the

✓-function, and for x
2
> 0, since quantum fields commute at spacelike separation. So we

may restrict the region of integration in (5) to the forward light cone (FLC): x
0
> 0, x2

< 0.
In the following, we will be considering complex values of the four-momentum p. Assuming
polynomial boundedness of real-space correlation functions [22], the integral (5) converges for
Re(�ip ·x) < 0 or pIm

·x < 0 as |x| ! 1 in the FLC. This requires pIm
2 FLC: for pIm

2 FLC,
G̃

µ⌫
R (!,p) is analytic. Analogously, G̃µ⌫

A (!,p) is analytic for p
Im in the backward light cone.

We will explore these regions of analyticity in terms of the single complex variable !, setting

p = k0 + !⇠ , (6)

where k0, ⇠ 2 Rd�1 are constants, with |⇠| ⌘ ⇠ < 1, with !
Im

> 0 for G̃R and !
Im

< 0 for
G̃A.5 We will assume that both functions G̃

µ⌫
R,A(!) may be defined on the real line ! 2 R by

taking the appropriate limits !
Im

! 0±.
Now for each k0, ⇠, we define the following function on the whole complex !-plane:

G̃
µ⌫(!) =

8
<

:
G̃

µ⌫
R (!,p) if !Im

� 0 ,

G̃
µ⌫
A (!,p) if !Im

< 0 ,
(7)

with p(!) as in (6). We can show that G̃
µ⌫(!) is analytic on C \ {(�1,�m) [ (m,1)},

with m a positive mass. In fact, consider an ! 2 R (or better, the limit ! ± i", " ! 0).
5The choice in Eq. (6) is actually the most general. The three complex functions p(!) must be entire, oth-

erwise we would introduce additional singularities not present in the function G̃µ⌫ . Moreover these functions
must be polynomially bounded: if this were not the case, plugging these functions in the CFT result, Eq. (3),
one would have a growth greater than any polynomial in some direction. This must be avoided since, as in
the S-matrix case, we will need to neglect a contour at infinity after dividing the function by some power of !.
An entire, polynomially bounded function is a polynomial, so the three functions p(!) must be polynomials.
Consider now for each function the largest monomial in the polynomial, which dominates at large |!|: an!n.
Since pIm must be timelike, one needs |Im an!n

| < |Im !| for any complex ! with large enough modulus.
This is possible only for n  1; pi(!) = a0 + a1! for each i 2 {0, 1, 2}. That a0 2 R and a1 2 R follows
from the timelike constraint in the limit !Im

! 0 with !Re
6= 0, and with that |a1| < 1 follows from the same

constraint. So the most general choice is Eq. (6).
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Inserting the unit operator 1 =
P

n |Pni hPn|, with the sum running over all the eigenstates
of the translations P̂ (6), we find

lim
"!0

⇣
G̃

µ⌫(! + i")� G̃
µ⌫(! � i")

⌘
= i

ˆ
Rd

dd
x e

�ip·x
h0|[Jµ(x), J⌫(0)]|0i (8)

= i

ˆ
Rd

dd
x e

�ip·x
h0|Jµ(x)

 
X

n

|Pni hPn|

!
J
⌫(0)|0i � (µ $ ⌫, x $ 0)

= i

ˆ
Rd

dd
x e

�ip·x
h0|e�iP̂ ·x

J
µ(0)eiP̂ ·x

 
X

n

|Pni hPn|

!
J
⌫(0)|0i � (µ $ ⌫, x $ 0)

= i(2⇡)d
X

n

�
�
(d)(p� Pn) h0|J

µ(0)|Pni hPn|J
⌫(0)|0i � �

(d)(p+ Pn) h0|J
⌫(0)|Pni hPn|J

µ(0)|0i
 
.

Now for simplicity we shall assume there is a mass gap, so P
0
n > m > 0 (we will relax this

assumption momentarily). Since p
0 = !, if |!| < m the arguments of the delta functions

never vanish and G̃
µ⌫ is continuous as we cross the imaginary axis here. For ! > m, only the

first term contributes, while for ! < �m only the second term contributes. We conclude that
the function G̃

µ⌫(!) is analytic on the doubly-cut plane C \ {(�1,�m) [ (m,1)}.7

Positivity of cut contributions. We will use a contour argument similar to the Lorentz-
invariant case, see Fig. 1. We therefore need to understand if the contribution from the
discontinuity across the cut has a definite sign.

Integrating G̃
µ⌫ around the (m,1) cut in the clockwise direction (i.e. integrating (8) from

m to +1), with some arbitrary powers of ! inserted in the integration measure, we get a
contribution only from the �

(d)(p � Pn) terms. It will be useful to contract G̃
µ⌫ with two

copies of a constant real vector Vµ.8 We obtain

1

(2⇡)d

ˆ

(m,1) cut

d!

!`
G̃

µ⌫(!)VµV⌫ = i

ˆ 1

m

d!

!`

X

n

�
(d)(p� Pn) |hPn|J

µ(0)Vµ|0i|
2
, (9)

where we have used that the Vµ are real and the J
µ are Hermitian.9 This is of the form

6Here and in the following we are using the unbroken low-energy spacetime translations, in general a linear
combination of the original translations and some internal generator. For the U(1) case we are going to discuss
in this paper, the current Jµ commutes with the internal generator.

7This can be shown using Morera’s theorem.
8More generally one can take the V µ as polynomials in !, in which case one should contract with

Vµ(!)V⌫(!⇤)⇤. One needs V µ(!) entire so as not to change the analytic properties of G̃µ⌫ and polynomially
bounded in order to be able to neglect the contribution from infinity: again, a polynomially bounded entire
function is a polynomial. Since we obtain no new bounds in this paper by considering non-constant or complex
polarization vectors, we restrict ourselves to constants V µ

2 R here. In §3.2 non-constant polynomials with
real coefficients are briefly considered, and in Appendix C the more general case is treated.

9Obviously we are assuming that the theory is unitary: when discussing Euclidean theories, we are assuming
reflection positivity, see for instance [23].
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Figure 3: The constraints (58) (the blue region is allowed). There are also the constraints d � 0

and b+ d � 0. c1 > 0 is required to have a healthy kinetic term for fluctuations.

where c̃2,3 ⌘ c2,3/(b + d), while for c̃2 � �3/4 the boundary curve is the horizontal line
c̃3 = 1/4.

In terms of CFT applications, the coefficient c2 is the most interesting, since it controls
the NLO correction to the dimension of the lowest operator of charge Q in the limit of large
charge (see e.g. [26]). The bounds above, unfortunately, do not say something useful on this
coefficient alone.

k0 6= 0. Let us now explore what happens if one takes k = k0 + !⇠ with k0 6= 0 an
!-independent vector, as in Eq. (48).

We consider polarization vectors of the form V = ↵K + �E + �F with

K = k = (!,k) , (60)
E = (k2

,!k) , (61)
F = (0,�!k2,!k1) , (62)

where k = (k1, k2). In this way, K · E = K · F = E · F = 0. These vectors are linearly
independent (except for the the particular values ! = ±|k|).

A short calculation yields

f̃(!) = A(!2
� k2)k2

�
(!2

� k2)�2 + !
2
�
2
�
� Bk4

!
2
�
2
. (63)

Now we divide by !
3
⇥ !

4 and integrate along a circle centered at the origin. As opposed to
the case k0 = 0, (63) contains two new poles, apart from the old one at ! = 0, which are
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where ↵, �, � are arbitrary polynomials of !. This expansion is useful because it is immediate
from (45) that ↵(!) will not appear in the sum (48). This property of the expansion persists
when k0 6= 0.

An essential step in the positivity logic is that we must be able to neglect the contribution
from complex infinity to the contour integral. The full function f̃(!) = G̃

µ⌫(!)Vµ(!)V⌫(!)

behaves as ! ⇥ !
2N as |!| ! 1 (from the CFT result (3)), where N is the highest degree

among �(!) and �(!). To neglect the arc at infinity, we must divide by at least ` = 3 + 2N

powers of !. Near ! = 0, however, hJJi behaves schematically as µ + !
2
/µ + !

4
/µ

3 + · · · .
Since in (45) we have only computed hJJi to order !2, we must take N = 0 to pick out those
terms.

So in our case ↵, �, � in (53) are just numbers, and a straightforward calculation yields
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. (54)

We now follow the contour argument of §2 and consider a contour around the origin (see
Fig. 1) ‰

d!
f̃(!)

!3
= i⇡f̃

00(0) . (55)

This contour can be deformed to the integral around the cut and the circle at infinity. The
circle at infinity is negligible as one can see using the CFT result Eq. (3) in d = 3. The
integral around the cut is i⇥ (positive) as shown in §2. So

f̃
00(0) � 0 . (56)

This reads
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✓
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� 0 (57)

for all choices ⇠ 2 [0, 1) and �, �. These bounds may be reformulated as follows: first, letting
⇠ ! 1 with � 6= 0 we obtain d � 0 , while letting ⇠ ! 0 we get b+ d � 0 . Putting the terms
proportional to �

2 on the RHS of the inequality, we observe that the most stringent bound is
obtained at � = 0 (because the RHS is negative, and zero when � = 0). For � = 0 we have

c2

b+ d
(1� ⇠

2)�
c3

b+ d
� �

(1� ⇠
2
/2)2

⇠2
. (58)

Again these constraints hold for all ⇠ 2 [0, 1), and they are plotted in Fig. 3. For c̃2 

�3/4, c̃3  1/4 the boundary curve is given by

c̃3 = c̃2 � 1 +
p
1� 4c̃2 , (59)
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for any x and Vµ (b, g)

3.5 Summary of bounds

In summary, the bounds we have been able to obtain on the NLO and NNLO coefficients of
the EFT of conformal superfluids are

c1 � 0 (for healthy fluctuations), (81)
c2

b+ d
(1� ⇠

2)�
c3

b+ d
� �

(1� ⇠
2
/2)2

⇠2
, (82)

d � 0 , (83)
b+ d � 0 , (84)

4c4 + 2c5 + c6 � 4(c2 + c3)
2
/c1 , (85)

c5 � 0 , (86)
c6 � 0 . (87)

The constraints in (82) hold for all ⇠ 2 [0, 1) and are plotted in Fig. 3. The action of this
EFT for the Goldstone boson ⇡ corresponding to the spontaneous breaking of Lorentz boosts
is given by Eq. (65) where ĝµ⌫ = gµ⌫ |g

↵�
@↵�@��| and � = µt + ⇡, the first three terms of

which we have written out explicitly in Eq. (33).

3.6 Loop corrections?

Our calculations so far have been at tree level in the EFT, but there are no obstacles to
including loops in our formalism. In general, loops, in the absence of a mass gap, will open
a cut in the !-plane all along the real axis. As discussed above, the contours of Fig. 2
are applicable in this case. In the EFT one can calculate the integral over the two small
semicircles: the radius of these semicircles does not need to be infinitesimal, it is enough that
it is small enough for the EFT calculation to be reliable. In general, the result will depend
on the radius and this dependence reproduces the scale dependence induced by loops. The
contributions of these arcs are related via Cauchy’s theorem to the remaining integrals along
the real axis, which are constrained to be positive. The general picture is quite similar to
what happens in the Lorentz-invariant case, see [2].

It turns out, however, that for the particular example we are studying loops are actually
absent, so that the bounds derived above are sharp and not approximate. To understand
why, let us rewrite schematically the action for ⇡ in canonical normalization, including the

26

Unable to constrain the sign of c2

(most relevant for CFT use)

Nothing more from k0

and



Same for <TµnTab>

Given the behavior at infinity I have to divide by w5: NNLO

were studied above. The last two terms can be disposed of, using the contracted Bianchi
identity: rµ(Rµ

⌫ �
1
2Rgµ⌫) = 0. For instance, integrating by parts,

R̂
0µ
r̂µr̂

0
r̂

0
� ⇠ �r̂µR̂

0µ
r̂

0
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0
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2
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0
R̂r̂

0
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0
� ⇠ �

1

2
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0
r̂

0
r̂

0
� , (121)

so that the fourth operator becomes proportional to the second. The same holds for the
third one, which gives rise to a term that contains 2̂�. (Notice that in doing integration by
parts, sometimes the derivative acts on the “hidden” @̂� which is implicit when we have upper
index 0 in our notation. In this case, however, one generates terms of the schematic form
R̂r̂r̂�r̂r̂�, and these start cubic as we discussed.)

We now want to show that the object r̂
0
r̂

0
r̂

0
� is actually quadratic in perturbations

and this will imply that the the first two terms in Eq. (120) are cubic and we can also discard
them. Explicitly

r̂
0
r̂

0
r̂

0
� =

⇣
r̂

↵
r̂

�
r̂

�
�

⌘
@̂↵�@̂��@̂�� . (122)

If @̂�� were inside the r̂
↵
r̂

�, it would contract to give @̂
�
�@̂�� = 1, so that the whole term

would vanish. The difference between this and the expression (122) involves derivatives acting
on @̂��, but these extra terms are quadratic: we conclude that r̂

0
r̂

0
r̂

0
� is quadratic. In

conclusion we can dispose of all terms in Eq. (120).
Finally, we have to consider terms without any Ricci tensor. Since we are not interested in

terms which are cubic or higher, we only consider operators of the schematic form (r̂r̂r̂�)2

(the others can be brought to this form integrating by parts). The order of derivatives is
immaterial, since in commuting one would generate terms involving Ricci and these were
already considered. If two indices are contracted, one can always commute and integrate by
parts to generate a term that contains 2̂� and this can be set to zero by a field redefinition.
The other possibility is that none of the indices are contracted and they are all upper 0’s.
But we just proved r̂

0
r̂

0
r̂

0
� is quadratic, so also this possibility gives an operator that is

cubic or higher.
In conclusion, the only operators with four additional derivatives that start quadratic in

perturbations are

S
(3) =

ˆ
d3
x

p
�ĝ

⇣
c4R̂

2 + c5R̂µ⌫R̂
µ⌫ + c6R̂

0
µR̂

µ0
⌘
. (123)

B Conservation laws for J
µ and T

µ⌫

It is interesting to review if and how the conservation laws of currents are satisfied within
correlation functions. We shall focus on the retarded Green’s functions as defined through
the functional derivative of the path integral in Eq. (24). We will review that contact terms
and the fact that currents take a vev make the discussion quite subtle.

Let us start with the U(1) current and consider the following path integral:

K =

ˆ
D� e

i
´
ddx L(�,Aµ) . (124)
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3.5 Summary of bounds

In summary, the bounds we have been able to obtain on the NLO and NNLO coefficients of
the EFT of conformal superfluids are

c1 � 0 (for healthy fluctuations), (81)
c2
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b+ d � 0 , (84)

4c4 + 2c5 + c6 � 4(c2 + c3)
2
/c1 , (85)

c5 � 0 , (86)
c6 � 0 . (87)

The constraints in (82) hold for all ⇠ 2 [0, 1) and are plotted in Fig. 3. The action of this
EFT for the Goldstone boson ⇡ corresponding to the spontaneous breaking of Lorentz boosts
is given by Eq. (65) where ĝµ⌫ = gµ⌫ |g

↵�
@↵�@��| and � = µt + ⇡, the first three terms of

which we have written out explicitly in Eq. (33).

3.6 Loop corrections?

Our calculations so far have been at tree level in the EFT, but there are no obstacles to
including loops in our formalism. In general, loops, in the absence of a mass gap, will open
a cut in the !-plane all along the real axis. As discussed above, the contours of Fig. 2
are applicable in this case. In the EFT one can calculate the integral over the two small
semicircles: the radius of these semicircles does not need to be infinitesimal, it is enough that
it is small enough for the EFT calculation to be reliable. In general, the result will depend
on the radius and this dependence reproduces the scale dependence induced by loops. The
contributions of these arcs are related via Cauchy’s theorem to the remaining integrals along
the real axis, which are constrained to be positive. The general picture is quite similar to
what happens in the Lorentz-invariant case, see [2].

It turns out, however, that for the particular example we are studying loops are actually
absent, so that the bounds derived above are sharp and not approximate. To understand
why, let us rewrite schematically the action for ⇡ in canonical normalization, including the
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Only operators that start quadratic in perturbations at NNLO (up to field redefiniton)
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Conformal at tree level. Integrate out r:

interaction terms,
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From this expression in canonical normalization, it is clear that one cannot get loop corrections
with same µ-dependence as the one induced by c2;3 and c4;5;6 (in particular this says these
coefficients do not run). Indeed, looking at the powers of µ, one sees it is impossible for the
interactions, both the ones coming from the c1 operator and the ones from the c2;3 terms,
to combine to give the quadratic terms proportional to c2;3/µ

2 and c4;5;6/µ
4. (Notice that

combining two ⇡̇
4 interactions one gets µ

�6 which corresponds to operators with two more
derivatives with respect to c4;5;6: at this order one starts having log-divergences.)

4 UV complete example: conformal scalar in d = 3

In this section we test our constraints (81)-(87) in a simple explicit UV complete example, a
conformal complex scalar in d = 3. The UV action is

LUV =
p
�g

✓
�|@�|

2
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6
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8
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◆
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8
R⇢

2

◆
, (89)

where � = ⇢ e
i✓ and � > 0 (a more general model is studied in Appendix E). This theory

is conformally invariant at tree level and it has been studied in detail in [30]. We will be
interested in a state with finite chemical potential, i.e. with ✓ = µt + ⇡(t,x) and work at
leading order in � so that the theory is conformal. To derive the EFT action at tree level we
integrate out the radial field ⇢ (we require � 6= 0 so that ⇢ has a finite mass). Its equation of
motion is

⇤⇢+ |@✓|
2
⇢� 3�⇢5 �

R

8
⇢ = 0 . (90)

In a derivative expansion we have the solution ⇢ = ⇢0 + ⇢1 + ⇢2 + · · · , where

⇢0 =
|@✓|

1/2

(3�)1/4
, ⇢1 =

⇤⇢0 �R⇢0/8

4|@✓|2
, (91)

where we treated R as a two-derivative term. To obtain the EFT action up to terms involving
two more ⇤’s than the leading term, we insert ⇢ into the action (it is not hard to see that ⇢2
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is not required for this). Some manipulations then yield
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From here we see

c1 =
4

p
3�

, c2 =
1

8
p
3�

, c4 =
1

256
p
3�

, c3 = c5 = c6 = b = d = 0 . (93)

It may be checked that all bounds (81)-(87) are satisfied by these choices of coefficients, in
particular all bounds are saturated except for (81) and (82).

Calculation of UV correlators. In the theory (89) we can calculate the correlators hJJi
and hTT i at tree level, verifying that they indeed reduce to the general EFT expressions (45)
and (67) when expanded to NLO and NNLO in !/µ respectively, for the choice of coeffi-
cients (93).

For hJJi we have the conserved current

Jµ = i (� @µ�
⇤
� �

⇤
@µ�) = 2⇢2@µ✓ (94)

associated to the U(1) symmetry � ! e
i↵
�. To calculate hJJi we couple � to an external

gauge field Aµ, replacing @µ ! rµ. This introduces extra terms JµAµ
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2
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2 in the action (89).
Then we set
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2
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where ⇢̂ = |@✓|
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µ/(3�)1/4, obtaining the canonically normalized quadratic
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In Fourier space this reads
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Now we have, to first order in the fields,

J
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2µ2

p
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�
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2⇢̂ (⇡̇ + 2µ �⇢) , (99)
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2⇢̂ @i⇡ . (100)
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One can do the ⇣ integral and for infinitesimal "’s with the hierarchy "Green � "KK one gets

1

(⇣+ � ⇣�)

⇡"Green

(! � ⇣+)2 + "2Green

⇠
1

(⇣+ � ⇣�)
⇡
2
�(! � ⇣+) . (161)

Plugging this back in Eq. (159) and considering the analogous ⇣� term one verifies the relation.

Equivalence of (149) to contour integral argument at tree level

The function f̃ in Eq. (134) is analytic for Im ! > 0, therefore it satisfies

f̃(!) =
1

i⇡
PV
ˆ
R

d⇣

⇣ � !
f̃(⇣) . (162)

For small |!|  R, we assume f̃(!) ⇡ f̃tree(!). In this regime we can take `� 1 derivatives of
both sides in (162) and evaluate the result at ! = 0. Notice that since f̃ is real on the real
axis at the regular points, the integral gives an imaginary contribution only at the poles of
the function f̃ and on the cut of f̃ . Assuming that ` is odd and equating the real parts, we
obtain23
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⌘
. (163)

This is the same as Eq. (144) in the tree-level approximation.

E UV theory with two scalars
In this appendix we consider instead of the single-field UV theory (89), the two-field theory
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(164)

where � = ⇢ e
i✓ is a complex scalar and ' is a real one. As (89) this theory is conformally

invariant at tree level for all �1,2 and �1,2. (It is necessary to have �1,2 � 0 for the potential
energy to be bounded below. There are further restrictions on �1,2,�1,2 to be able to integrate
out ⇢ and ' which will be discussed below.) The equations of motion for ⇢,' are
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5
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2
'
3
� �2⇢

4
'�

R

8
' = 0 . (166)

23Note that the integral in (162) could be divergent. We assume that formally taking enough derivatives
renders it convergent.
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More general:

Bounds are satisfied (of course!)
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where in the last equality we have assumed that the current is a local function of the fields

and N
µ⌫ characterize the dependence of the current on the electromagnetic fields.2 We provide

some examples for clarification. In scalar QED, the relevant part of the matter action is SM =R
�|Dµ |

2 with  a complex scalar field and Dµ = @µ � iaµ. Then we have J
µ = �i( †

D
µ
 �

 (Dµ
 )†) and N

µ⌫ = �2| |2⌘µ⌫ . For Fermions, SM =
R
i ̄ /D with  Dirac spinor. Then we

obtain J
µ =  ̄�

µ
 and N

µ⌫ = 0. As a result, for the computation of the e↵ective action, we

have

S[a+A, ] = S[a, ] + S� [A] +

Z
d4xJµ(a, )Aµ +

1

2

Z
d4xNµ⌫(a, )AµA⌫ + . . . . (2.11)

Since, S� [A] term only depends on the background field we factor it out in eq. (2.4) and write

the CTP e↵ective action as following

�[A1, A2] = S� [A1]� S� [A2] + �M [A1, A2] , (2.12)

in which the last term is the contribution of matter and is given by

e
i�M [A1,A2] =

Z CTP

⇢,1PI
Da1Da2D 1D 2 exp

✓
iS[a1, 1] + i

Z
J
µ
1 A1µ +

i

2

Z
N

µ⌫
1 A1µA1⌫ � i{1 ! 2}

◆
,

(2.13)

in which the index 1PI means that we only sum over 1PI diagrams. Since we are doing pertur-

bation in the background field we expand the exponent in eq. (2.13). The leading order term,

corresponding to A = 0, vanishes due to normalization of the e↵ective action. The linear term

would be

i

Z CTP

⇢,1PI
e
i(S1�S2)

Z
d4x (Jµ

1 A1µ � J
µ
2 A2µ) = i

Z
d4x hJµ(x)i1PI (A1µ �A2µ) , (2.14)

where we have suppressed the measure for the path integral and S1 = S[a1, 1] and similarly for

the backward fields. By translation invariance hJ
µ
i1PI / u

µ is independent of the coordinates

and can only be proportional to the u
µ which is the 4-velocity of the medium. However, the

contribution of this term must be canceled by the homogeneous background of ions with the

opposite charge density which we have not included in the path integral. Their e↵ect can be

considered by adding a similar term as in eq. (2.14) to the action, like a counter term, which

cancels the linear term. However, eventually we need to add a term for the external current to

the e↵ective action Z
d4x (A1µ �A2µ)J

µ
ext (2.15)

to model the external probe to the system, i.e. charges on a capacitor in the lab. Therefore, it

remains only the quadratic terms which can be written as following

�M [A1, A2] =
1

2

Z
d4x d4y

h
A1µ(x) A2µ(x)

i
S
µ⌫(x, y)

"
A1⌫(y)

A2⌫(y)

#
+ . . . (2.16)

2By Lorentz covariance it must be of the form N
µ⌫ = ⌘

µ⌫
N + a

µ
a
⌫
Ñ if there are no other vector fields in the

system.
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in which

S
µ⌫(x, y) = i

"
hTJ

µ(x)J⌫(y)i � hJ
⌫(y)Jµ(x)i

� hJ
µ(x)J⌫(y)i

D
T̃ J

µ(x)J⌫(y)
E
#

1PI

+ hN
µ⌫
i1PI �(x� y)

"
1 0

0 �1

#
. (2.17)

The e↵ective Maxwell equation would be the variation of �[A1, A2] with respect to A1 (or

equivalently A2) and then setting A1 = A2 = A (see also eq. (A.17)) which will be the value of

the average field. Therefore, we obtain

1

g2
@⌫F

⌫µ +

Z
d4y⇧µ⌫(x, y)A⌫(y) = �J

µ
ext(x) , (2.18)

where we have also added the external current as explained in eq. (2.15). There is in principle

a noise term which captures fluctuations... The influence of matter is captured by the second

term

⇧µ⌫(x, y) = i✓(x0 � y
0) h[Jµ(x), J⌫(y)]i1PI + hN

µ⌫
i1PI �(x� y) . (2.19)

Eq. 2.18 is the Maxwell equation in matter and the solution gives average fields. It can be

easily seen that ⇧ is the self-energy for the retarded Green function of photon. In more details,

we have

(G�1
� )µ⌫ =

1

g2
(��1)µ⌫ �⇧µ⌫

, (2.20)

in which G
µ⌫
� ⌘ i✓(x0 � y

0) h[aµ(x), a⌫(y)]i is the complete photon retarded propagator while

�µ⌫ is the free retarded photon propagator.

Self-energy tensor A more compact notation for the self-energy is the second variation of

the matter e↵ective action

⇧µ⌫(x, y) =
�
2�M [Ar, Aa]

�Aa,µ(x)�Ar,⌫(y)

�����
Aa=0,Ar=0

, (2.21)

where we have used the r/a representation discussed around eq. (A.24), i.e. Ar ⌘ (A1 +A2)/2

and Aa ⌘ A1 � A2. Reality condition of the e↵ective action, �M [Ar, Aa]⇤ = ��M [Ar,�Aa],

implies that the self-energy is real, i.e. ⇧µ⌫⇤ = ⇧µ⌫ . It ensures that the solutions of the e↵ective

Maxwell equation eq. (2.18) with real sources and boundary conditions is real. Gauge invariance

of the e↵ective action simply implies that self-energy is transverse

@xµ⇧µ⌫(x, y) = @y⌫⇧
µ⌫(x, y) = 0 . (2.22)

This ensures that if Aµ is a solution of eq. (2.18) then Aµ+@µ⇤ is also a solution. Moreover, by

translation symmetry self-energy is only a function of the distance, i.e. ⇧µ⌫(x, y) = ⇧µ⌫(x� y).

In Fourier space

⇧µ⌫(p) =

Z
d4x e�ip.x⇧µ⌫(x) , (2.23)

for pµ the four momentum vector. In the presence of a medium, Lorentz boost is broken so ⇧µ⌫

can be a function of Lorentz invariant combinations made out of pµ and the four velocity u
µ of
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in which

S
µ⌫(x, y) = i

"
hTJ

µ(x)J⌫(y)i � hJ
⌫(y)Jµ(x)i

� hJ
µ(x)J⌫(y)i

D
T̃ J

µ(x)J⌫(y)
E
#

1PI

+ hN
µ⌫
i1PI �(x� y)

"
1 0

0 �1

#
. (2.17)

The e↵ective Maxwell equation would be the variation of �[A1, A2] with respect to A1 (or

equivalently A2) and then setting A1 = A2 = A (see also eq. (A.17)) which will be the value of

the average field. Therefore, we obtain
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µ
ext(x) , (2.18)

where we have also added the external current as explained in eq. (2.15). There is in principle

a noise term which captures fluctuations... The influence of matter is captured by the second

term
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Eq. 2.18 is the Maxwell equation in matter and the solution gives average fields. It can be
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�µ⌫ is the free retarded photon propagator.

Self-energy tensor A more compact notation for the self-energy is the second variation of
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�����
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, (2.21)

where we have used the r/a representation discussed around eq. (A.24), i.e. Ar ⌘ (A1 +A2)/2

and Aa ⌘ A1 � A2. Reality condition of the e↵ective action, �M [Ar, Aa]⇤ = ��M [Ar,�Aa],

implies that the self-energy is real, i.e. ⇧µ⌫⇤ = ⇧µ⌫ . It ensures that the solutions of the e↵ective

Maxwell equation eq. (2.18) with real sources and boundary conditions is real. Gauge invariance

of the e↵ective action simply implies that self-energy is transverse

@xµ⇧µ⌫(x, y) = @y⌫⇧
µ⌫(x, y) = 0 . (2.22)

This ensures that if Aµ is a solution of eq. (2.18) then Aµ+@µ⇤ is also a solution. Moreover, by

translation symmetry self-energy is only a function of the distance, i.e. ⇧µ⌫(x, y) = ⇧µ⌫(x� y).

In Fourier space

⇧µ⌫(p) =

Z
d4x e�ip.x⇧µ⌫(x) , (2.23)

for pµ the four momentum vector. In the presence of a medium, Lorentz boost is broken so ⇧µ⌫

can be a function of Lorentz invariant combinations made out of pµ and the four velocity u
µ of
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in which
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"
hTJ

µ(x)J⌫(y)i � hJ
⌫(y)Jµ(x)i

� hJ
µ(x)J⌫(y)i

D
T̃ J

µ(x)J⌫(y)
E
#

1PI

+ hN
µ⌫
i1PI �(x� y)

"
1 0

0 �1

#
. (2.17)

The e↵ective Maxwell equation would be the variation of �[A1, A2] with respect to A1 (or

equivalently A2) and then setting A1 = A2 = A (see also eq. (A.17)) which will be the value of

the average field. Therefore, we obtain

1

g2
@⌫F

⌫µ +

Z
d4y⇧µ⌫(x, y)A⌫(y) = �J

µ
ext(x) , (2.18)

where we have also added the external current as explained in eq. (2.15). There is in principle

a noise term which captures fluctuations... The influence of matter is captured by the second

term

⇧µ⌫(x, y) = i✓(x0 � y
0) h[Jµ(x), J⌫(y)]i1PI + hN

µ⌫
i1PI �(x� y) . (2.19)

Eq. 2.18 is the Maxwell equation in matter and the solution gives average fields. It can be

easily seen that ⇧ is the self-energy for the retarded Green function of photon. In more details,

we have

(G�1
� )µ⌫ =

1

g2
(��1)µ⌫ �⇧µ⌫

, (2.20)

in which G
µ⌫
� ⌘ i✓(x0 � y

0) h[aµ(x), a⌫(y)]i is the complete photon retarded propagator while

�µ⌫ is the free retarded photon propagator.

Self-energy tensor A more compact notation for the self-energy is the second variation of

the matter e↵ective action

⇧µ⌫(x, y) =
�
2�M [Ar, Aa]

�Aa,µ(x)�Ar,⌫(y)

�����
Aa=0,Ar=0

, (2.21)

where we have used the r/a representation discussed around eq. (A.24), i.e. Ar ⌘ (A1 +A2)/2

and Aa ⌘ A1 � A2. Reality condition of the e↵ective action, �M [Ar, Aa]⇤ = ��M [Ar,�Aa],

implies that the self-energy is real, i.e. ⇧µ⌫⇤ = ⇧µ⌫ . It ensures that the solutions of the e↵ective

Maxwell equation eq. (2.18) with real sources and boundary conditions is real. Gauge invariance

of the e↵ective action simply implies that self-energy is transverse

@xµ⇧µ⌫(x, y) = @y⌫⇧
µ⌫(x, y) = 0 . (2.22)

This ensures that if Aµ is a solution of eq. (2.18) then Aµ+@µ⇤ is also a solution. Moreover, by

translation symmetry self-energy is only a function of the distance, i.e. ⇧µ⌫(x, y) = ⇧µ⌫(x� y).

In Fourier space

⇧µ⌫(p) =

Z
d4x e�ip.x⇧µ⌫(x) , (2.23)

for pµ the four momentum vector. In the presence of a medium, Lorentz boost is broken so ⇧µ⌫

can be a function of Lorentz invariant combinations made out of pµ and the four velocity u
µ of
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Susceptibilities

the medium with normalization u
µ
uµ = �1. Useful combinations are

! ⌘ �p
µ
uµ , k

2
⌘ p

µ
pµ + (pµuµ)

2
. (2.24)

In the rest frame of the medium u
µ = (1,~0) and then ! = p

0 is the enrgy and k
2 = ~p

2 is the

magnitude of spatial momentum squared. For this reason, most often we will simply write the

four momentum as pµ = (!,~k) and we write ⇧µ⌫(!, k).

The condition eq. (2.22) in Fourier space implies that pµ⇧µ⌫ = 0. In the Lorentz invariant

case this reduces the tensor to a function, i.e. the vacuum polarization. In presence of a medium

we will generically have two functions as given below. We follow [3, 4] to construct a generic

form. The projection matrix to the subspace transverse to p
µ is defined as

P
µ⌫ = ⌘

µ⌫
�

p
µ
p
⌫

p2
. (2.25)

The projection of the medium four velocity into this subspace will be ū
µ
⌘ P

µ⌫
u⌫ = u

µ+ !
p2 p

µ.

We further define longitudinal and transverse projection matrices inside this subspace as

P
µ⌫
L ⌘

ū
µ
ū
⌫

ū2
, P

µ⌫
T ⌘ P

µ⌫
� P

µ⌫
L , (2.26)

which decomposes the subspace further into the longitudinal and transverse subspaces with re-

spect to ū
µ. In the rest frame of the medium projection matrices have the following components

P
00
L = �

k
2

p2
, P

0i
L = �

!k
i

p2
, P

ij
L = �

!
2

p2

k
i
k
j

k2
, (2.27)

P
00
T = P

0i
T = 0 , P

ij
T = �

ij
�

k
i
k
j

k2
. (2.28)

The generic form of the self-energy tensor would be as following

⇧µ⌫ = ⇡L(!, k)p
2
P

µ⌫
L + ⇡T (!, k)k

2
P

µ⌫
T . (2.29)

where we have explicitly taken out the factors k2 and p
2 for later convenience. The two functions

⇡L(!, k) and ⇡T (!, k) model the response of the medium to an external electromagnetic field

at frequency ! and momentum k.

Discuss in a footnote the case without parity.

Photon propagator We can write an expression for the photon retarded propagator in the

medium. The free photon propagator in the R⇠ gauge is given by

�µ⌫ =
1

p2

✓
P

µ⌫ +
1

↵

p
µ
p
⌫

p2

◆
, (2.30)

where ↵ depends on the gauge choice (we have used the notation of [2]) and we must use the

correct i✏ prescription for the retarded Green’s function, i.e. p
2 = �(! + i✏)2 + k

2. From

eq. (2.20), we need the inverse propagator and it is easily calculated as

(��1)µ⌫ = p
2

✓
P

µ⌫ + ↵
p
µ
p
⌫

p2

◆
. (2.31)
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Photon propagator We can write an expression for the photon retarded propagator in the

medium. The free photon propagator in the R⇠ gauge is given by

�µ⌫ =
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µ⌫ +
1
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µ
p
⌫

p2

◆
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where ↵ depends on the gauge choice (we have used the notation of [2]) and we must use the

correct i✏ prescription for the retarded Green’s function, i.e. p
2 = �(! + i✏)2 + k

2. From

eq. (2.20), we need the inverse propagator and it is easily calculated as
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µ
p
⌫
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◆
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the J
µ
in to the electric and magnetic fields, written in covariant form, as following

g
2
uµJ

µ
in,L ⌘ ("� 1)@µE

µ
, (2.38)

g
2
J
µ
in,T ⌘ ("̃� 1)u↵@↵E

µ
T +

✓
1�

1

µ̃

◆
✏
µ↵��

@↵B�u� . (2.39)

Here is a couple of points about the above definitions. First of all, ", "̃ and µ̃ must be considered

as (non-local) operators acting on the right hand side which in Fourier space will be functions of

! and k. Maxwell equations do not have components along p
µ and therefore can be decomposed

into longitudinal and transverse parts only. The longitudinal part, using the definition eq. (2.38),

gives

�"@µE
µ = g

2
u↵J

↵
ext , (2.40)

which is the covariant form of the divergence equation in matter "~r. ~E = g
2
⇢ext in the rest

frame. It is customary to define an electric displacement vector D
µ. The longitudinal part

of the electric displacement vector is related to the electric field as D
µ
L = "E

µ
L. Similarly, by

looking at the transverse part of the Maxwell equation, using eq. (2.39), we get

�"̃u
↵
@↵E

µ
T +

1

µ̃
✏
µ↵��

@↵B�u� = g
2
J
µ
ext,T , (2.41)

which is the covariant version of the curl equation 1
µ̃
~r ⇥ ~B � "̃@t

~E = ~Jext in the rest frame.

Then It is conventional to define the transverse part of the electric displacement as Dµ
T = "̃E

µ
T

and also define magnetic intensity H
µ = 1

µ̃B
µ.3 However, notice that these definitions are

ambiguous since eq. (2.39) does not fix the value of the coe�cients completely. In fact, one can

transform the fields as ~D ! ~D + ~r ⇥ ~N and ~H ! ~H + @t
~N without changing the equations.

Therefore, one has to pick some convention here. There are two mostly used conventions:

• To set µ̃ = 1 and only keep "̃ which in this context is usually called "T . In this case, all

the induced current is assumed to come from the electric field. The two quantities " and

"T are sometimes packed into a tensor called dielectric tensor. Here there is no need to

define H
µ and D

µ is related to E
µ through the dielectric tensor.

• To set "̃ = " which means that Dµ = "E
µ. In this context we simply write µ̃ as µ.

Notice that the two conventions are completely equivalent. In the following we mainly work

with the second one. By using the definition in eq. (2.37), after a bit of algebra, one can relate

the above quantities to ⇡L and ⇡T as following

"� 1 = �g
2
⇡L , 1�

1

µ
= g

2

✓
⇡T +

!
2

k2
⇡L

◆
. (2.42)

By using the above relations we can re-write the photon dispersion relations as "!2
� k

2
/µ = 0

and "(!2
� k

2) = 0.

Linear response It is useful to discuss a related but slightly di↵erent situation. Let’s assume

that we put the system in some given external electromagnetic field. This in principle induce

3Sometimes the quantity H is called, rather confusingly, the magnetic field while B is called magnetic induc-
tion. We avoid such terminology here.
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!! Cheating Warning !!

Usual electric and magnetic susceptibility, now function of w, k

Analyticity of P gives analyticity of pL and pT

log
�
p
2
�
and is in general complex (in contrast to eq. (5.1) which is real). Therefore, we are forced

to close the contour at moderately high energies in which the description of a non-relativistic

plasma is a good approximation and avoid extremely high energies in which relativistic ef-

fects become important. Notice that the ratio !
2
p/m

2 is of order 10�11 for typical materials.

Therefore, there is a huge hierarchy between the two scales.

6 Bounding low energy behavior

Classify possible low energy behaviors. At least provide some examples. I guess separate

the discussion of longitudinal and transverse. Remove the discussion about epsilon(0,k) and

mu(0,k)? provide physical examples rather than mathematical examples of the boundaries.

In this section we bound the low energy limit of " and µ using Leontovich relation eq. (3.6)

and positivity conditions on the imaginary parts eq. (4.9) and eq. (4.10). Note that, as discussed

below ??, these functions are allowed to be singular in the limit ! ! 0 without violating any

general principle. In fact this behavior is seen in conductors for which Im " ⇠ 1/!. However, in

this section we restrict ourselves in cases in which there is no singularity at ! = 0, i.e. insulators.

Is this technically true? or this term is only used for electric phenomena.

By using Leontovich relation to ⇡L we obtain

⇡L(!,~k + !~⇠) =
1

i⇡
PV

Z +1

�1

dz

z � !
⇡L(z,~k + z~⇠) , (6.1)

which is well defined because of the high energy limit given in eq. (5.1). By using eq. (2.42)

this can be rewritten as

Re "(!,~k + !~⇠)� 1 =
�g

2

⇡
PV

Z +1

�1

dz

z � !
Im⇡L(z,~k + z~⇠) . (6.2)

By eq. (4.10) the RHS is manifestly positive for ! = 0 and therefore we obtain

"(0,~k)� 1 =
�g

2

⇡
PV

Z +1

�1

dz

z
Im⇡L(z,~k + z~⇠) > 0 . (6.3)

In the last step we have used the fact that by reality and rotation symmetry Im "(0,~k) = 0.

This result seems to be inconsistent with fig. 5 page page 63 of [5]. We should check this! Next

we apply Leontovich relation to k
2
⇡T as following

(~k + !~⇠)2⇡T (!,~k + !~⇠) =
1

i⇡
PV

Z +1

�1

dz

z � !
(~k + z~⇠)2⇡T (z,~k + z~⇠) . (6.4)

Notice that we do not work with ⇡T (!, k) since it is singular at k = 0 and therefore we have

take into account the residue of the singularity. Combination of eq. (2.42) gives that g2k2⇡T =

17

The sign of the imaginary part is fixed by imposing material can only absorb light
(laser is an exception for example)

Leontovich 61Generalisation of Kramers-Kronig relation
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⇠2Im ⇡T (z, z~⇠) > 0
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see also Dolgov, Kirzhnits, Losyakov 82

• Not only bounds but given positive RHS

• If the medium is “slow”: stronger bounds

• Bounds on derivatives?
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Figure 3: The allowed region for " and µ only from positivity and analyticity. The horizontal
line is from positivity of Im⇡L while the vertical line is from the positivity of Im⇡T .

By positivity condition on the imaginary part of ⇡T the right hand side must be positive. Notice
that obviously the value of the right hand side depends on ⇠. Therefore we obtain

"(0, 0) �
⇠
2

µ(0, 0)
+ (1� ⇠

2) , (6.6)

which sending ⇠ ! 1 means that "(0, 0) � 1/µ(0, 0). Another possibility would be "(0, 0) <

⇠
2
µ(0, 0) but this cannot happen as we will argue in section 7. By considering a new function

�
0
⌘

k
2

p2 � g2k2⇡T
�

k
2

p2 + !2
p
=

1
1
µ �

!2

k2 "
�

k
2

p2 + !2
p
, (6.7)

it is possible to another low energy limit. Once again the function is analytic and the second
term has been chosen such that the high energy limit vanishes. We set ~k = ~q + !~⇠ and use
Leontovich relation eq. (4.6) in the limit of ! ! 0 but keeping ~q nonzero

µ(0, ~q)�
q
2

q2 + !2
p
=

g
2

⇡
PV

Z +1

�1

dz

z

(~q + z~⇠)4 Im⇡T (z, ~q + z~⇠)

|� z2 + (~q + z~⇠)2 � g2(~q + z~⇠)2⇡T (z, ~q + z~⇠)|2
. (6.8)

Since the right hand side is positive, in the limit q ! 0, we conclude that µ(0, 0) > 0. No-
tice that this gives a lower bound on magnetic permeability in the static limit (! = 0) and
finite momentum in terms of the plasma frequency. Finally, notice that the right hand side is
independent of ⇠ and we can set it to zero for simplicity.

The bounds on "(0, 0) and µ(0, 0) are summarized in fig. 3 in which the shaded region is
allowed. The horizontal and vertical boundaries in fig. 3 correspond to the analyticity and
positivity of the longitudinal and the transverse part of the Green function. Notice that the
inequality "(0, 0)µ(0, 0) � 1 is nothing but the condition of subluminal speed of propagation
of photons inside the medium since the transverse photon propagator at low energies can be
written as 1/(�"(0, 0)!2 + k

2
/µ(0, 0)). The fact that one can recover bounds from sublumi-

nality condition has been observed in the Lorentz invariant context as well [19]. However, we
emphasize that here we obtain dispersion relations which in principle could be estimated or
measured and thereby the bounds get stronger. We will see an example below. Moreover, it

16



Conclusions and Future

• Robust constraints on non-LI EFTs are possible but:

a. No constraint for 1-derivative per field ~ P(X). Only more 
irrelevant than CFT

b. Only operators that start quadratic (but for any background)

• General bounds on “CM” systems deriving from and
Superconductivity, fluids, fluctuations...

• We do not know anything without Lorentz. 
Khallen-Lehman representation? Not every spectral density is ok

• Back to S-matrix ? 
Weakly gauge U(1) and look at p A --> p A
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Loops?

Loops open a cut all along the real axis. 
Can be treated using a countour in upper half plane

!

"

Figure 2: Different contours that give the same result as in Fig. 1. This choice is suitable
when a cut is running all along the real axis.

state. Generically this charge induces the spontaneous breaking of the U(1) symmetry (for
simplicity we focus on a U(1)). We are therefore lead to study CFT’s at finite chemical
potential µ: one can think about this as a state that evolves in time around the U(1). Lorentz
invariance is thus spontaneously broken and this connects to the topic of the present paper.
The breaking of the symmetry leads to a Goldstone boson: this is the only degree of freedom
at energies much smaller than µ. As we will discuss below the action for this Goldstone is
very constrained by the symmetry breaking pattern. The original symmetry, SO(d, 2)⇥U(1),
is broken to rotations and spacetime translations, with the time translation being a diagonal
combination of the original time translation and a U(1) rotation. One can think about this
symmetry-breaking pattern considering a charged scalar � evolving linearly in time

�(x) = µt+ ⇡(x) , (32)

where ⇡ is the Goldstone boson. The most general action can be obtained through a coset
construction [26] or, maybe more simply, using an effective metric as we discuss in detail in
Appendix A.

This EFT contains all the information about the large Q sector of the theory, and the
derivative expansion can be identified with the large charge expansion. The simplest object
one can calculate is the energy of the system as a function of Q, which gives the lowest scaling
dimension of operators of charge Q. In general CFT correlation functions involving at least
two operators with large charge can be calculated using the EFT.12 All the details about

12If one is interested in operators which are not close to the bottom of the spectrum, one has to consider a
very excited quasi-thermal state of the superfluid: in this case dissipative hydrodynamics is a better description
[28].
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In the particular case of 3d conformal superfluidinteraction terms,
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From this expression in canonical normalization, it is clear that one cannot get loop corrections
with same µ-dependence as the one induced by c2;3 and c4;5;6 (in particular this says these
coefficients do not run). Indeed, looking at the powers of µ, one sees it is impossible for the
interactions, both the ones coming from the c1 operator and the ones from the c2;3 terms,
to combine to give the quadratic terms proportional to c2;3/µ

2 and c4;5;6/µ
4. (Notice that

combining two ⇡̇
4 interactions one gets µ

�6 which corresponds to operators with two more
derivatives with respect to c4;5;6: at this order one starts having log-divergences.)

4 UV complete example: conformal scalar in d = 3

In this section we test our constraints (81)-(87) in a simple explicit UV complete example, a
conformal complex scalar in d = 3. The UV action is

LUV =
p
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, (89)

where � = ⇢ e
i✓ and � > 0 (a more general model is studied in Appendix E). This theory

is conformally invariant at tree level and it has been studied in detail in [30]. We will be
interested in a state with finite chemical potential, i.e. with ✓ = µt + ⇡(t,x) and work at
leading order in � so that the theory is conformal. To derive the EFT action at tree level we
integrate out the radial field ⇢ (we require � 6= 0 so that ⇢ has a finite mass). Its equation of
motion is

⇤⇢+ |@✓|
2
⇢� 3�⇢5 �

R

8
⇢ = 0 . (90)

In a derivative expansion we have the solution ⇢ = ⇢0 + ⇢1 + ⇢2 + · · · , where

⇢0 =
|@✓|

1/2

(3�)1/4
, ⇢1 =

⇤⇢0 �R⇢0/8

4|@✓|2
, (91)

where we treated R as a two-derivative term. To obtain the EFT action up to terms involving
two more ⇤’s than the leading term, we insert ⇢ into the action (it is not hard to see that ⇢2

27

Loops do not generate µ-2 or µ-4 (they start at µ-6)
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D Generalized Kramers-Kronig relation
As a classic example, consider the time-dependent electric susceptibility of a material �e; it
describes the (linear) relation between the electric field and the dielectric polarization density:

P (t) =

ˆ +1

�1
dt0 �e(t� t

0)E(t0) (145)

or in Fourier space
P (!) = �̃e(!)E(!) . (146)

Since the response of the material can only happen after the electric field is turned on, �e(t�t
0)

vanishes for t < t
0; it is retarded. This implies that �̃e(!) is analytic for ! in the upper half

complex plane. This property implies the classic Kramers-Kronig relation:

�̃e(!) =
1

i⇡
PV
ˆ
R

d⇣

⇣ � !
�̃e(⇣) . (147)

Taking the real or imaginary parts of this relation, one can view the Kramers-Kronig relation
as giving the real part of �̃e(!) in terms of its imaginary part and vice versa (see for instance
[36]).

In the derivation above one assumed that the response of the material is non-local in time
but local in space22, which is a good approximation for a non-relativistic medium. In general
the response depends on space and time: in this case one can generalize the Kramers-Kronig
relation for functions that are not only retarded but also vanish outside the forward light cone
[33],

f̃(!,k) =
1

i⇡
PV
ˆ
R

d⇣

⇣ � !
f̃ (⇣,k + (⇣ � !)⇠) . (148)

(The “ordinary” Kramers-Kronig relation is the one with ⇠ = 0.) Here f̃(k) is the Fourier
transform of a response function f(x) which vanishes outside the forward lightcone in d

dimensions, and ⇠ is any real (d � 1)-vector with ⇠2 < 1. Setting k = k0 + !⇠ for some
k0 2 Rd�1 we obtain a more symmetric-looking relation

f̃(!,k0 + !⇠) =
1

i⇡
PV
ˆ
R

d⇣

⇣ � !
f̃ (⇣,k0 + ⇣⇠) . (149)

In this appendix we will show that the relation (149) has, at tree level, the same positivity
implication as the contour integral argument we presented in Appendix C. So we will assume
here that at low energies |!|  R, f̃(!) is well-approximated by f̃tree(!) (cf. (137) and the
assumptions below that equation), and correspondingly the term involving Aloop(R) in (144)
will be absent in this section.

22The same behaviour occurs in the EFT of large scale structures, see for instance [37].
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is analytic in upper half plane
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Kramers-Kronig:

In general the response of the medium is k-dependent: �̃e(!,k)
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Impose response vanishes outside the lightcone (and convergence at infinity):

�̃e(!,k) =
1

i⇡
PV

Z
d⇣

⇣ � !
�̃e(⇣,k+ (⇣ � !)⇠)
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Two responses: longitudinal and transverse

Re �̃L;T
e (!,k) =

1

⇡
PV

Z
d⇣

⇣ � !
Im �̃L;T

e (⇣,k+ (⇣ � !)⇠)
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Positive 
(medium in thermodynamic eq. can only absorb)

ce(t) is retarded

Electric susceptibility
(Linear response in general)



Positivity in a medium

Non-trivial constraints, not fully explored

1� µ̃(!,k)�1 =
!2

k2
⇥
�̃T
e (!,k)� �̃L

e (!,k)
⇤

<latexit sha1_base64="8WiuNyfx1aPwJK5S9jLEG643bnI=">AAACbnicbVFNaxsxFNRumiZ10tZJoYeaEBFTcKE2uyYhuQRCe+mhBxfiJGCtjVZ+awtLu4v0NmCWPeYP9pbf0Et/QuWPQuP0gcQw8+ZJGsW5khaD4NHzt15sv9zZfVXb23/95m394PDGZoUR0BeZysxdzC0omUIfJSq4yw1wHSu4jWdfF/rtPRgrs/Qa5zlEmk9SmUjB0VGj+kPYpgylGgPTRYtlGib8c8nihM6qT8OyHVb0krLEcFGuxGG3Kmduo0xBgoO/ZjGVIxheb05oP5G/b8qUGTmZYjSqN4NOsCz6HIRr0CTr6o3qP9k4E4WGFIXi1g7CIMeo5AalUFDVWGEh52LGJzBwMOUabFQu46roR8eMaZIZt1KkS/ZfR8m1tXMdu07NcWo3tQX5P21QYHIRlTLNC4RUrA5KCkUxo4vs6VgaEKjmDnBhpLsrFVPuskX3QzUXQrj55OfgptsJTztnP06bV1/WceySBjkhLRKSc3JFvpEe6RNBfnkH3gev4f323/tH/vGq1ffWnnfkSfmtPyc6umA=</latexit>

Re[�̃L
e + ⇠2(1� µ̃�1)](!, ⇠!) =

1

⇡
PV

Z
d⇣

⇣ � !
Im [�̃L

e + ⇠2(1� µ̃�1)](⇣, ⇠⇣)

<latexit sha1_base64="KdDzlUqCpgH213lcHvKdFOyrYoI="></latexit>

Re[�̃L
e + (1� µ̃�1)](0, 0) =

1

⇡

Z
d⇣

⇣
Im [�̃L

e + (1� µ̃�1)](⇣, ⇠⇣) > 0

<latexit sha1_base64="JMG8amrK81ECn201xBYECYfgses="></latexit>

< 0 diamagnetic
> 0 paramagnetic

Magnetic
susceptibility

in progress with Janssen, Salehian, Senatore

(but see Dolgov, Kirzhnits, Losyakov 82)

<latexit sha1_base64="xMfELCWmI9EKkg3OQK2KW1JKsi0=">AAACBnicbVDLSgMxFM3UV62vUZciBIvgqsyIqMuiG5cV7AM6Q8lkMm1oMpkmGbEMXbnxV9y4UMSt3+DOvzGdzkJbDwQO59zLzTlBwqjSjvNtlZaWV1bXyuuVjc2t7R17d6+lRCoxaWLBhOwESBFGY9LUVDPSSSRBPGCkHQyvp377nkhFRXynxwnxOerHNKIYaSP17ENPcNJH0NMCOtAbjVIUQu+B5oLbs6tOzckBF4lbkCoo0OjZX14ocMpJrDFDSnVdJ9F+hqSmmJFJxUsVSRAeoj7pGhojTpSf5TEm8NgoIYyENC/WMFd/b2SIKzXmgZnkSA/UvDcV//O6qY4u/YzGSapJjGeHopRBE3HaCQypJFizsSEIS2r+CvEASYS1aa5iSnDnIy+S1mnNPa+5t2fV+lVRRxkcgCNwAlxwAergBjRAE2DwCJ7BK3iznqwX6936mI2WrGJnH/yB9fkDAk6XjA==</latexit>

! ! 0 ⇠ ! 1

<latexit sha1_base64="l2DJYyxV24twsOQSwFSW1b8UUow="></latexit>

1

⇡

Z
d⇣

⇣
Im

⇥
�̃L
e + (1� µ̃�1)

⇤
(⇣, ⇣) > 0

Usually cone is much narrower than c: xà c/v
E.g. Lieb-Robinson velocity
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Paramagnetism


