Paolo Creminelli, ICTP (Trieste)

Positivity Constraints on Lorentz-breaking EFTs

with O. Janssen and L. Senatore 2207.14224 (JHEP) + also with M. Delladio, A. Longo 2312.08441 + work in progress also with B. Salehian

+

Genova, 17.1.24

Positivity: LI case

Coefficients of EFT operators must satisfy inequalities (if there is a "standard" UV completion)

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi 06

$$\begin{aligned} \text{For example:} \quad \mathcal{L} &= -\frac{1}{2}(\partial \pi)^2 + \frac{c}{\Lambda^4}(\partial \pi)^4 \qquad c \geq 0 \\ \mathcal{A}(s) &\equiv \mathcal{M}(s, t \to 0) \qquad \mathcal{A}(s) = c\frac{s^2}{\Lambda^4} + \dots \\ \text{Crossing:} \quad \mathcal{A}(s) &= \mathcal{A}^*(-s^*) \\ & \oint \frac{ds}{2\pi i}\frac{\mathcal{A}(s)}{s^3} = \frac{c}{\Lambda^4} \\ & \frac{c}{\Lambda^4} = \frac{2}{\pi}\int ds\frac{s\sigma(s)}{s^3} \geq 0 \\ \text{Froissart bound:} \quad |\mathcal{A}(s)| < s\log^2 s \end{aligned}$$

1

Origin of analyticity

Consequence of microcausality: commutators vanish outside lightcone

See e.g. Itzykson Zuber's book

LSZ:
$$S_{fi} = -\int d^4x \, d^4y \, e^{i(q_2 \cdot y - q_1 \cdot x)} (\Box_y + m_a^2) (\Box_x + m_a^2) \langle p_2 | T \varphi^{\dagger}(y) \varphi(x) | p_1 \rangle$$

Up to disconnected pieces: $T\varphi^{\dagger}(y)\varphi(x) \rightarrow \theta(y^0 - x^0)[\varphi^{\dagger}(y), \varphi(x)]$

$$S_{fi} = (2\pi)^4 \delta^4 (p_2 + q_2 - p_1 - q_1) i \mathscr{F}$$

$$\mathscr{F} = i \int d^4 z \; e^{iq \cdot z} \langle p_2 | \, \theta(z^0) \left[j^\dagger \left(\frac{z}{2} \right), j \left(-\frac{z}{2} \right) \right] | p_1 \rangle \qquad (\Box + m_a^2) \varphi(x) = j(x)$$

$$q = \frac{1}{2} (q_1 + q_2)$$

Commutator vanishes outside FLC $\rightarrow \mathcal{T}(q^{\mu})$ analytic for Im q^{μ} in FLC

Similar bounds for non-LI theories?

Motivation: in many interesting situations Lorentz is spontaneously broken

I. Cosmology. In particular Inflation and Dark Energy/Modifications of Gravity

We are particularly interested in "peculiar" theories (Galileon, Ghost Condensate...): are they consistent?

2. Condensed Matter. Can we deduce general inequalities for a system?

3. QFT at finite T or finite \boldsymbol{Q}

In general the theory is <u>defined</u> with non-linearly realised Lorentz

Cannot be "extrapolated" from a LI invariant theory: think about a fluid

In a LI theory this is well-defined at arbitrary high energy (calculable in EFT only at low energy)

If LI is broken, π is not a good asymptotic state at high energy: scatter phonons at 10 TeV?

What is the object whose analyticity we want to study? What is the analogue of the Froissart bound? S - Matrix

with Delladio, Janssen, Longo, Senatore 23 Also Hui, Kourkoulou, Nicolis, Podo, Zhou 23

|v|

0.5

What if the low energy states do exist at high energy?

$$\mathcal{L} = \partial \Phi^{\dagger} \cdot \partial \Phi + m^2 \Phi^{\dagger} \Phi - \lambda (\Phi^{\dagger} \Phi)^2 \qquad \Phi = \frac{\rho}{\sqrt{2}} e^{i\theta/v} \qquad \theta = \mu^2 t/2 + \pi$$

$$\rho = v + h$$

$$\mathcal{L} = \frac{1}{2} (\partial h)^2 + \frac{1}{2} (\partial \pi)^2 + \frac{1}{2v^2} \left(\mu^2 \dot{\pi} + (\partial \pi)^2 \right) (h^2 + 2vh) - \frac{\lambda}{4} (h^2 + 2vh)^2$$
Integrating out h one gets low energy EFT for Goldstone π

$$\frac{1}{2} \left(\tilde{\pi}_{-k} \quad \tilde{h}_{-k} \right) \left(\begin{array}{c} k^2 & i\mu^2 \omega/v \\ -i\mu^2 \omega/v & k^2 - M^2 \end{array} \right) \left(\begin{array}{c} \tilde{\pi}_k \\ \tilde{h}_k \end{array} \right) \overset{0.3}{\overset{0.3}{\overset{0.4}{\overset{0$$

$$E_{\pm}(\mathbf{k})^{2} \equiv \mathbf{k}^{2} + \frac{1}{2} \left(M^{2} + \frac{\mu^{4}}{v^{2}} \right) \pm \sqrt{\frac{\mu^{4}}{v^{2}} \mathbf{k}^{2} + \frac{1}{4} \left(M^{2} + \frac{\mu^{4}}{v^{2}} \right)^{2}}$$

LSZ reduction

$$\phi^{a}(t,\boldsymbol{x}) \equiv \sum_{l=\pm} \int \frac{\mathrm{d}^{3}\boldsymbol{k}}{(2\pi)^{3} 2E_{l}(\boldsymbol{k})} \left(Z_{l}^{a}(\boldsymbol{k})a_{l}(\boldsymbol{k})e^{-i(E_{l}(\boldsymbol{k})t-\boldsymbol{k}\cdot\boldsymbol{x})} + \mathrm{h.c.} \right) , \ a \in \{\pi,h\}$$

Imposing EOM and CCR one gets e.g. Z_{-}^{2}

$$\pi_{-}^{\pi}(\mathbf{k}) = \sqrt{\frac{M^2 + \mathbf{k}^2 - E_{-}(\mathbf{k})^2}{E_{+}(\mathbf{k})^2 - E_{-}(\mathbf{k})^2}}$$

LSZ formula, using polology

$$\begin{split} \prod_{i}^{n} \int \mathrm{d}^{4} y_{i} \, e^{i p_{i} \cdot y_{i}} \prod_{j}^{m} \int \mathrm{d}^{4} x_{j} \, e^{-i k_{j} \cdot x_{j}} \langle 0 | T(\pi(y_{1}) \dots \pi(y_{n}) \pi(x_{1}) \dots \pi(x_{m})) | 0 \rangle \sim \\ \prod_{i}^{n} \frac{i Z_{-}^{\pi}(\boldsymbol{p}_{i})}{p_{i}^{0\,2} - E_{-}^{2}(\boldsymbol{p}_{i}) + i\varepsilon} \prod_{j}^{m} \frac{i \bar{Z}_{-}^{\pi}(\boldsymbol{k}_{j})}{k_{j}^{0\,2} - E_{-}^{2}(\boldsymbol{k}_{j}) + i\varepsilon} \langle \boldsymbol{p}_{1} \dots \boldsymbol{p}_{n} | S | \boldsymbol{k}_{1} \dots \boldsymbol{k}_{m} \rangle \\ Z_{+}^{h}(\boldsymbol{k}) \equiv \langle \Omega | h(0) | \boldsymbol{k}, \pm \rangle \end{split}$$

(Another procedure is to write creation/annihilation operators in terms of fields: different LSZ expression, but same conclusions)

Lack of analyticity

The usual arguments of S-matrix analyticity breaks down

$$S = -\int d^4x d^4y \, e^{i(q_2 \cdot y - q_1 \cdot x)} \frac{-\partial_{y^0}^2 - E_-^2(-i\partial_{y_i})}{Z_-^{\pi}(-i\partial_{y_i})} \frac{-\partial_{x^0}^2 - E_-^2(-i\partial_{x_i})}{\bar{Z}_-^{\pi}(-i\partial_{x_i})} \langle \boldsymbol{p}_2 | T(\pi(y)\pi(x)) | \boldsymbol{p}_1 \rangle$$

$$S = (2\pi)^4 \delta^{(4)} (p_2 + q_2 - p_1 - q_1) i\mathcal{T}$$

$$\mathcal{T} = i \int d^4 z \, e^{iqz} \frac{-\partial_{z^0/2}^2 - E_-^2(-i\partial_{z_i/2})}{Z_-^{\pi}(-i\partial_{z_i/2})} \frac{-\partial_{z^0/2}^2 - E_-^2(-i\partial_{z_i/2})}{\bar{Z}_-^{\pi}(-i\partial_{z_i/2})} \langle \boldsymbol{p}_2 | \theta(z^0) [\pi(\frac{z}{2})\pi(-\frac{z}{2}))] | \boldsymbol{p}_1 \rangle$$
Vanishes outside FLC in z

 $\mathcal{T}(q^{\mu})~~\text{analytic for Im } \mathbf{q}^{\mu}\text{in FLC}$

Without Lorentz invariance Z(k) and E(k) introduce non-analyticities

Conserved currents

with Janssen, Senatore 22

UV: CFT

IR: 川

- I. Assume to flow to a CFT in UV (general?)
- 2. UV behaviour of $\langle J^{\mu}J^{\nu}\rangle$ and $\langle T^{\mu\nu}T^{\alpha\beta}\rangle$ are known:

$$\langle J^{\mu}(p)J^{\nu}(-p)\rangle = c_J \frac{p^2 g^{\mu\nu} - p^{\mu} p^{\nu}}{p^{4-d}}$$

- 3. At low energy EFT (is not conformal and) breaks LI spontaneously
- 4. Analyticity and unitarity of $\langle J^{\mu}J^{\nu}\rangle$ and $\langle T^{\mu\nu}T^{\alpha\beta}\rangle$ + UV limit above

 \rightarrow positivity properties in EFT

Superfluid

Superfluid:
$$\int d^4x \sqrt{-g} P(X) \qquad X \equiv -\partial_\mu \phi \partial^\mu \phi$$

Expanded as $\phi = c t + \pi(t,x)$ it describes a perfect fluid w/o vortices

$$T_{\mu\nu} = 2P'(X)\partial_{\mu}\phi\partial_{\nu}\phi + P(X)g_{\mu\nu} \quad \rho = 2P'X - P \quad p = P \quad u_{\mu} = \frac{\partial_{\mu}\phi}{\sqrt{-X}}$$

E.g. $P(X) = X^2$ gives w = 1/3: radiation fluid

Poincarè x U(I) \rightarrow Spacetime translations x Rotations (x Shift)

<u>Real</u> <u>superfluids</u>

Given approximate shift symmetry, good starting point for <u>inflation</u> and <u>dark energy</u> (K-inflation, K-essence)

Conformal superfluid

Superfluid:
$$\int d^4x \sqrt{-g} P(X) \qquad X \equiv -\partial_\mu \phi \partial^\mu \phi$$

Expanded as $\phi = c t + \pi(t,x)$ it describes a perfect fluid w/o vortices

 $T_{\mu\nu} = 2P'(X)\partial_{\mu}\phi\partial_{\nu}\phi + P(X)g_{\mu\nu} \quad \rho = 2P'X - P \quad p = P \quad u_{\mu} = \frac{\partial_{\mu}\phi}{\sqrt{-X}}$

E.g. $P(X) = X^2$ gives w = 1/3: radiation fluid

Poincarè x U(I) \rightarrow Spacetime translations x Rotations (x Shift)

Conformal superfluid: add non-linearly realised conformal symmetry

 $SO(d,2) \times U(I) \rightarrow$ Spacetime translations x Rotations (x Shift)

CFT at finite chemical potential μ . U(I) spontaneously broken. At E << μ system is described by an EFT

CFTs at large charge

Action by coset construction or by using the metric $\hat{g}_{\mu\nu} \equiv g_{\mu\nu}|g^{\alpha\beta}\partial_{\alpha}\chi\partial_{\beta}\chi|$

$$\chi(t,\vec{x}) = \mu t + \pi(t,\vec{x}) \qquad S^{(1)} = \frac{c_1}{6} \int d^3x \sqrt{-\hat{g}} = \frac{c_1}{6} \int d^3x \sqrt{-g} |\partial\chi|^3$$

Expansion in $\frac{\partial}{\mu}$
$$S^{(2)} = \int d^3x \sqrt{-\hat{g}} \left(-c_2 \hat{R} + c_3 \hat{R}^{\mu\nu} \hat{\partial}_{\mu} \chi \hat{\partial}_{\nu} \chi\right)$$

Large Q limit of: $\langle \mathcal{O}_{-\vec{Q},a}(x_{out})\mathcal{O}_m(x_m)\dots\mathcal{O}_1(x_1)\mathcal{O}_{\vec{Q},a}(x_{in})\rangle$

Hellerman, Orlando, Reffert, Watanabe 15; Monin, Pirtskhalava, Rattazzi, Seibold 16

By operator-state correspondence, one is in a state at large Q on S^{d-1}x R

For large Q, one has an EFT with a single Goldstone and CFT results can be obtained as an expansion in I/Q: $I/\mu R \sim I/Q^{1/2}$

$$\Delta_Q = \frac{2}{3} \frac{Q^{3/2}}{\sqrt{2\pi c_1}} + 8\pi c_2 \sqrt{\frac{Q}{2\pi c_1}} - \underbrace{0.0937256}_{\text{I-loop correction}} + \mathcal{O}\left(Q^{-1/2}\right)$$

Constraints from Current

Focus on 3d:
$$\mathcal{L} = \frac{c_1}{6} |\nabla \chi|^3 - 2c_2 \frac{(\partial |\nabla \chi|)^2}{|\nabla \chi|} + c_3 \left(2 \frac{(\nabla^{\mu} \chi \partial_{\mu} |\nabla \chi|)^2}{|\nabla \chi|^3} + \partial_{\mu} \left(\frac{\nabla^{\mu} \chi \nabla^{\nu} \chi}{|\nabla \chi|^2} \right) \partial_{\nu} |\nabla \chi| \right)$$
$$- \frac{b}{4} \frac{F_{\mu\nu} F^{\mu\nu}}{|\nabla \chi|} + \frac{d}{2} \frac{F_{\mu}^{\mu} F^{\nu i}}{|\nabla \chi|^3} \nabla_{\mu} \chi \nabla_{\nu} \chi , \quad \leftarrow \text{Contact terms for } \mathbf{A}_{\mu}$$

Can we get constraints on $c_{1,2,3}$, b and d using $\langle J^{\mu} J^{\nu} \rangle$?

Most general using conservation: $i\langle J^{\mu}(-k)J^{\nu}(k)\rangle = \mathsf{A}\left(k^{\mu}k^{\nu} - \eta^{\mu\nu}k^{2}\right) + \mathsf{B}\left(k^{i}k^{j} - \delta^{ij}k^{2}\right)$

$$\begin{split} \mathsf{A} &= -\frac{\mu c_1}{2\left(\omega^2 - c_s^2 \mathbf{k}^2\right)} + \frac{c_2}{\mu} \frac{\left(\omega^2 - \mathbf{k}^2\right) \mathbf{k}^2}{\left(\omega^2 - c_s^2 \mathbf{k}^2\right)^2} - \frac{c_3}{\mu} \frac{\omega^2 \mathbf{k}^2}{\left(\omega^2 - c_s^2 \mathbf{k}^2\right)^2} + \frac{b}{\mu} + \frac{d}{\mu},\\ \mathsf{B} &= \frac{\mu c_1}{4\left(\omega^2 - c_s^2 \mathbf{k}^2\right)} + \frac{c_2}{\mu} \frac{\left(\omega^2 - \mathbf{k}^2\right)^2}{\left(\omega^2 - c_s^2 \mathbf{k}^2\right)^2} - \frac{c_3}{\mu} \frac{\omega^2 \left(\omega^2 - \mathbf{k}^2\right)}{\left(\omega^2 - c_s^2 \mathbf{k}^2\right)^2} - \frac{d}{\mu}. \end{split}$$

Current analyticity

Retarded Green function: $G_{R}^{\mu\nu}(x-y) = i\theta(x^{0}-y^{0})\langle 0|[J^{\mu}(x), J^{\nu}(y)]|0\rangle$ $\tilde{G}_{R}^{\mu\nu}(\omega, \boldsymbol{p})$ analytic for $\mathbf{p}_{\mathsf{Im}}{}^{\mu}$ in FLC $\boldsymbol{p} = \boldsymbol{k}_{0} + \omega \boldsymbol{\xi}$ $|\boldsymbol{\xi}| \equiv \xi < 1$ $\tilde{G}^{\mu\nu}(\omega) = \begin{cases} \tilde{G}^{\mu\nu}_{R}(\omega, \boldsymbol{p}) & \text{if } \omega^{\mathsf{Im}} \ge 0\\ \tilde{G}^{\mu\nu}_{A}(\omega, \boldsymbol{p}) & \text{if } \omega^{\mathsf{Im}} < 0 \end{cases}$ $\lim_{\varepsilon \to 0} \left(\tilde{G}^{\mu\nu}(\omega + i\varepsilon) - \tilde{G}^{\mu\nu}(\omega - i\varepsilon) \right) = i \int_{\mathbb{T}^d} \mathrm{d}^d x \, e^{-ip \cdot x} \left\langle 0 | [J^{\mu}(x), J^{\nu}(0)] | 0 \right\rangle$ $= i(2\pi)^{d} \sum \left\{ \delta^{(d)}(p - P_{n}) \left\langle 0 | J^{\mu}(0) | P_{n} \right\rangle \left\langle P_{n} | J^{\nu}(0) | 0 \right\rangle - \delta^{(d)}(p + P_{n}) \left\langle 0 | J^{\nu}(0) | P_{n} \right\rangle \left\langle P_{n} | J^{\mu}(0) | 0 \right\rangle \right\}$ (fixed E and K.) **Positive!** Gr(w) Assuming mass gap, or working at tree level $\widetilde{G}_{A}(\omega)$ GNp at large [p] as in CFT

Current analyticity 2

Same for $< T^{\mu\nu} T^{\alpha\beta} >$

Given the behavior at infinity I have to divide by ω^5 : NNLO

$$S^{(3)} = \int \mathrm{d}^3x \sqrt{-\hat{g}} \left(c_4 \hat{R}^2 + c_5 \hat{R}_{\mu\nu} \hat{R}^{\mu\nu} + c_6 \hat{R}^0_{\mu} \hat{R}^{\mu 0} \right)$$

Only operators that start quadratic in perturbations at NNLO (up to field redefiniton)

$$\frac{1}{2\pi i} \oint \frac{\langle T^{\mu\nu} T^{\alpha\beta} \rangle(\omega; \vec{p} = \vec{\xi}\omega) A_{\mu\nu} A_{\alpha\beta}}{\omega^5} \ge 0$$

$$4c_4 + 2c_5 + c_6 \ge 4(c_2 + c_3)^2 / c_1,$$

$$c_5 \ge 0,$$

$$c_6 \ge 0.$$

UV checks

$$\mathcal{L}_{\text{UV}} = \sqrt{-g} \left(-|\partial\phi|^2 - \lambda|\phi|^6 - \frac{1}{8}R|\phi|^2 \right)$$
$$= \sqrt{-g} \left(-(\partial\rho)^2 + \rho^2|\partial\theta|^2 - \lambda\rho^6 - \frac{1}{8}R\rho^2 \right)$$

Conformal at tree level. Integrate out ρ :

.

$$\begin{aligned} \frac{\mathcal{L}_{\mathsf{EFT}}}{\sqrt{-g}} &= \frac{2}{3\sqrt{3\lambda}} |\partial\theta|^3 - \frac{1}{8\sqrt{3\lambda}} \left(|\partial\theta|R + 2\frac{(\partial|\partial\theta|)^2}{|\partial\theta|} \right) + \frac{1}{4|\partial\theta|^2} \left(\Box\rho_0 - \frac{R}{8}\rho_0 \right)^2 \\ c_1 &= \frac{4}{\sqrt{3\lambda}} \,, \quad c_2 &= \frac{1}{8\sqrt{3\lambda}} \,, \quad c_4 &= \frac{1}{256\sqrt{3\lambda}} \,, \quad c_3 = c_5 = c_6 = b = d = 0 \end{aligned}$$

More general:

$$\mathcal{L}_{\mathsf{UV}} = \sqrt{-g} \left(-|\partial\phi|^2 - (\partial\varphi)^2 - \lambda_1 |\phi|^6 - \lambda_2 \varphi^6 - \beta_1 |\phi|^2 \varphi^4 - \beta_2 |\phi|^4 \varphi^2 - \frac{R}{8} \left(|\phi|^2 + \varphi^2 \right) \right)$$

Bounds are satisfied (of course!)

Positivity bounds for EM response of media

Re-explore the old problem of light in a material

in progress with Janssen, Salehian, Senatore

Fields are small (compared with the atomic ones) \rightarrow linear optic

We want EOM for <E> and after you integrate out the medium IN-IN Effective action

$$\int d^4x \ J^{\mu}(\psi) A_{\mu} \qquad \qquad \mu \checkmark 1 \text{PI} \checkmark \nu$$

$$\Gamma_{M}[A_{1}, A_{2}] = \frac{1}{2} \int d^{4}x \, d^{4}y \left[A_{1\mu}(x) \ A_{2\mu}(x) \right] S^{\mu\nu}(x, y) \begin{bmatrix} A_{1\nu}(y) \\ A_{2\nu}(y) \end{bmatrix}$$
$$S^{\mu\nu}(x, y) = i \begin{bmatrix} \langle TJ^{\mu}(x)J^{\nu}(y) \rangle & -\langle J^{\nu}(y)J^{\mu}(x) \rangle \\ -\langle J^{\mu}(x)J^{\nu}(y) \rangle & \left\langle \tilde{T}J^{\mu}(x)J^{\nu}(y) \right\rangle \end{bmatrix}_{1\text{PI}}$$

Macroscopic Maxwell equations

$$\frac{1}{g^2}\partial_{\nu}F^{\nu\mu} + \int \mathrm{d}^4y \,\Pi^{\mu\nu}(x,y)A_{\nu}(y) = -J^{\mu}_{\mathrm{ext}}(x)$$

$$\Pi^{\mu\nu}(x,y) = i\theta(x^0 - y^0) \left\langle [J^{\mu}(x), J^{\nu}(y)] \right\rangle_{1\text{PI}}$$

Susceptibilities

$$p_{\mu}\Pi^{\mu\nu} = 0 \qquad \Pi^{\mu\nu} = \pi_L(\omega,k)p^2 \mathcal{P}_L^{\mu\nu} + \pi_T(\omega,k)k^2 \mathcal{P}_T^{\mu\nu}$$

$$\varepsilon - 1 = -g^2 \pi_L$$
, $1 - \frac{1}{\mu} = g^2 \left(\pi_T + \frac{\omega^2}{k^2} \pi_L \right)$

Usual electric and magnetic susceptibility, now function of ω , k

Analyticity of Π gives analyticity of $\pi_{L} \, \text{and} \, \pi_{T}$

!! Cheating Warning !!

$$\pi_L(\omega, \vec{k} + \omega\vec{\xi}) = \frac{1}{i\pi} \operatorname{PV} \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{z - \omega} \ \pi_L(z, \vec{k} + z\vec{\xi})$$

Generalisation of Kramers-Kronig relation

Leontovich 61

The sign of the imaginary part is fixed by imposing material can only absorb light (laser is an exception for example)

Positivity bounds for EM response of media

$$\varepsilon(0,0) - 1 = \frac{g^2}{\pi} \int_{-\infty}^{+\infty} \frac{dz}{z} \operatorname{Im} \pi_L(z, z\vec{\xi}) > 0$$
($\varepsilon(0,0) - 1$) + $\xi^2 \left(1 - \frac{1}{\mu(0,0)}\right) = \frac{g^2}{\pi} \int_{-\infty}^{+\infty} \frac{dz}{z} \xi^2 \operatorname{Im} \pi_T(z, z\vec{\xi}) > 0$
• Not only bounds but given positive RHS
• If the medium is "slow": stronger bounds
• Bounds on derivatives?
$$\varepsilon(0,0) = \frac{\varepsilon(0,0)}{2} + \frac{\varepsilon(0,0)}{2$$

Conclusions and Future

- Robust constraints on non-LI EFTs are possible but:
 - a. No constraint for 1-derivative per field ~ P(X). Only more irrelevant than CFT
 - b. Only operators that start quadratic (but for any background)
- General bounds on "CM" systems deriving from $\langle J^{\mu}J^{\nu}\rangle$ and $\langle T^{\mu\nu}T^{\alpha\beta}\rangle$ Superconductivity, fluids, fluctuations...
- We do not know anything without Lorentz. Khallen-Lehman representation? Not every spectral density is ok
- Back to S-matrix ? Weakly gauge U(I) and look at $\pi A \longrightarrow \pi A$

Backup slides

Loops do not generate μ^{-2} or μ^{-4} (they start at μ^{-6})

Positivity bounds for EM response of media

$$\boldsymbol{P}(t) = \int_{-\infty}^{+\infty} dt' \, \chi_e(t-t') \boldsymbol{E}(t') \qquad \boldsymbol{P}(\omega) = \tilde{\chi}_e(\omega) \boldsymbol{E}(\omega) \qquad \text{Electric susceptibility}$$
(Linear response in general)

 $\chi_{e}(t)$ is retarded $\longrightarrow \tilde{\chi}_{e}(\omega)$ is analytic in upper half plane

$$\longrightarrow$$
 Kramers-Kronig: $\tilde{\chi}_e(\omega) = \frac{1}{i\pi} \operatorname{PV} \int_{\mathbb{R}} \frac{\mathrm{d}\zeta}{\zeta - \omega} \, \tilde{\chi}_e(\zeta)$

In general the response of the medium is k-dependent: $ilde{\chi}_e(\omega,{f k})$

Impose response vanishes outside the lightcone (and convergence at infinity):

$$\tilde{\chi}_e(\omega, \mathbf{k}) = \frac{1}{i\pi} \text{PV} \int \frac{\mathrm{d}\zeta}{\zeta - \omega} \tilde{\chi}_e(\zeta, \mathbf{k} + (\zeta - \omega)\boldsymbol{\xi})$$
 Leontovich 61

Two responses: longitudinal and transverse

Re
$$\tilde{\chi}_e^{L;T}(\omega, \mathbf{k}) = \frac{1}{\pi} \text{PV} \int \frac{\mathrm{d}\zeta}{\zeta - \omega} \operatorname{Im} \tilde{\chi}_e^{L;T}(\zeta, \mathbf{k} + (\zeta - \omega)\boldsymbol{\xi})$$

Positive (medium in thermodynamic eq. can only absorb)

Positivity in a medium

$$\begin{split} & \underset{\text{susceptibility}}{\text{Magnetic}} \quad 1 - \tilde{\mu}(\omega, \mathbf{k})^{-1} = \frac{\omega^2}{k^2} \left[\tilde{\chi}_e^T(\omega, \mathbf{k}) - \tilde{\chi}_e^L(\omega, \mathbf{k}) \right] & \stackrel{<}{>} 0 \text{ diamagnetic} \\ > 0 \text{ paramagnetic} \\ & \underset{\text{Re}[\tilde{\chi}_e^L + \xi^2(1 - \tilde{\mu}^{-1})](\omega, \xi \omega) = \frac{1}{\pi} \text{PV} \int \frac{\mathrm{d}\zeta}{\zeta - \omega} \text{Im} \left[\tilde{\chi}_e^L + \xi^2(1 - \tilde{\mu}^{-1}) \right](\zeta, \xi \zeta) \\ & \text{Non-trivial constraints, not fully explored} \\ & (\text{but see Dolgov, Kirzhnits, Losyakov 82)} \\ & \omega \rightarrow 0 \qquad \xi \rightarrow 1 \\ & \text{Re}[\tilde{\chi}_e^L + (1 - \tilde{\mu}^{-1})](0, 0) = \\ & \frac{1}{\pi} \int \frac{\mathrm{d}\zeta}{\zeta} \text{Im} \left[\tilde{\chi}_e^L + (1 - \tilde{\mu}^{-1}) \right](\zeta, \zeta) > 0 \\ & \text{Usually cone is much narrower than c: } \xi \rightarrow c/v \\ & \text{E.g. Lieb-Robinson velocity} \\ \end{split}$$