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Introduction to fractons

Introduction to fractons

What is a fracton?
It is an excitation characterised by restricted mobility

Discovered/devised on the lattice [Chamon ’05, Haah ’11]

Fracton models exhibit exotic properties:
Subsystem or multipole symmetries
Vacuum degeneracy sensitive to the lattice size
IR/UV mixing challenging renormalisation group paradigm

Interesting from different points of view: hydrodynamics, quantum
information, pure QFT (See [Pretko, Chen, You ’20, Nandkishore, Hermele ’19,
Grosvenor, Hoyos, Peña-Benitez, Surowka ’22] for some reviews)
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Introduction to fractons

Model with subsystem symmetry

Let us consider the non-relativistic model [Seiberg, Shao ’20]

L =
1
2(∂tφ)

2 − 1
2(∂x∂yφ)

2

Subsystem symmetry

φ(t, x , y) → φ(t, x , y) + f1(x) + f2(y)

with arbitrary functions f1 and f2: infinite vacuum degeneration!

Dispersion relation exhibiting IR/UV mixing:

ω2 = p2
x p2

y
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Introduction to fractons

Models with dipole symmetry

Fractons may appear in theories with dipole symmetry [Pretko ’17, Seiberg ’20]

A charged particle propagates by changing its dipole moment:

dipole symmetry → charged particles are immobile!

Monopole and dipole charges:

Q =

∫
dd−1x ρ Qi =

∫
dd−1x x iρ

Conservation law
∂tρ+ ∂i∂jJ ij = 0

Monopole-Dipole-Momentum Algebra (MDMA!) [Gromov ’18, Peña-Benitez ’21]

i [Pi ,Qj ] = δi
j Q Heisenberg algebra
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Introduction to fractons

Models with dipole symmetry
Pretko devised a way to construct dipole-conserving Lagrangians.

Given a charged scalar field Φ → eiα(x)Φ, covariant derivative

Dij(Φ,Φ) = Φ∂j∂jΦ− ∂iΦ∂jΦ Dij → eiα(x)
(

Dij − ∂i∂jα(x)
)

Model with dipole symmetry (non-Gaussian!)

L =
1
2 |∂tΦ|2 − λ1∂i |Φ|2∂i |Φ|2 − λ2|Dij(Φ,Φ)|2 −

[
λ3Φ

2Dii(Φ,Φ) + h.c
]

Low-energy dispersion relation
ω = 0
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Introduction to fractons

Models with dipole symmetry

δS =

∫ (
ρ ∂tα(x)− J ij∂i∂jα(x)

)
→ ∂tρ+ ∂i∂jJ ij = 0

We can gauge the symmetry by introducing At and Aij

At → At + ∂tα(x) Aij → Aij + ∂i∂jα(x)

The spatial gauge field is a symmetric rank-two tensor!

Gauge theory with At ,Aij dual to elasticity theory [Pretko, Radzihovsky ’18]

Issues with coupling to curved geometry [Slagle, Prem, Pretko ’18, Jain, Jensen ’21, Bidussi,
Hartong, Have, Musaeus, Prohazka ’21]

δAij = ∇i∇jα , [∇i ,∇j ] 6= 0

Are we able to write fracton theory with ordinary gauge fields?
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Fracton theories with ordinary gauge fields

Gauging the MDMA algebra

We can construct fracton theories with ordinary gauge fields by realising
the MDMA algebra in an internal space [Peña-Benitez ’21, AC, Hoyos, Musso ’22]

i [Pa,Qb
1 ] = δb

a Q a, b spatial internal indices

We introduce ordinary connection (one-form in spacetime)

Aµ = ea
µPa + aµQ0 + bµaQa

1

Gauge transformation fixed by algebra

δea
µ = ∂µξ

a

δaµ = ∂µλ0 + ea
µλ1 a − bµaξ

a

δbµa = ∂µλ1 a
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Fracton theories with ordinary gauge fields

Gauging the MDMA algebra

We take aµ and bµa as dynamical fields, whereas e a
µ is background

ea
µ = δa

µ identification of spaces

Coupling to currents
LJ = −aµJµ − bµaJµa

Ward identities given by the algebra

∂µJµ = 0 ∂µJµa = Jνδa
ν

It is possible to choose improvement terms such that J ta = J [ia] = 0:

∂tJ t + ∂i∂jJ ij = 0 dipole conservation law
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Fracton theories with ordinary gauge fields

MDMA, Heisenberg, Crystals, Factons, Breaking Bad
We previously applied the MDMA algebra approach in two contexts:

Fracton/elasticity duality [AC, Hoyos, Musso ’22]:
recovered fracton/elasticity duality
description of incommensurate materials (quasi-crystals and moiré lattices)
mobility restriction of elasticity defects from MDMA gauge invariance

Breaking of dipole symmetry in 1+1 dimensions [Afxonidis, AC, Hoyos, Musso ’23]:
model with classical potential yielding linear dispersion for dipole symmetry
Nambu-Goldstone bosons
model with dipole symmetry breaking and charge symmetry preservation at
one-loop
avoidance of Hohenberg-Coleman-Mermin-Wagner theorem
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Spin-two field from covariant fracton theory

Motivations for fracton gravity
A symmetric rank-two tensor emerges naturally in fracton gauge theories

Relation between dipole conservation and Mach principle [Pretko ’17]

In ordinary gravity, the spin-two field coupling is universal:

Lcoupling = −hµνTµν ∂µTµν = 0

Fracton conservation law is less constraining:

∂µ∂νJµν = 0 Non-universal couplings?

Our approach is easily generalised to higher multipoles:

higher-spin theories from a fresher perspective?
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Spin-two field from covariant fracton theory

Covariant MDMA algebra

We generalise the MDMA algebra approach considering an internal space
with the number of dimensions as that of spacetime

i [PA,QB
1 ] = δB

AQ A,B internal indices

We introduce an ordinary connection (one-form in spacetime)

Aµ = eA
µPA + aµQ0 + bµAQA

1

Gauge transformation fixed by the algebra

δeA
µ = ∂µξ

A

δaµ = ∂µλ0 + eA
µλ1 A − bµAξ

A

δbµA = ∂µλ1 A
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Spin-two field from covariant fracton theory

Covariant MDMA algebra
Two invariant curvatures (two-forms in spacetime)

T A
µν = ∂µe A

ν − ∂νe A
µ HµνA = ∂µbνA − ∂νbµA

and a covariant one (here fµν = ∂µaν − ∂νaµ)

Bµν = bµAe A
ν − bνAe A

µ − fµν δBµν = −T A
µνλ1 A + Hµν Aξ

A

We take aµ and bµA dynamical and eA
µ background chosen as

e A
µ = δ A

µ breaking to diagonal Lorentz

We allow for explicit breaking of internal translations. Other invariant

Γµνλ = 2
[
∂(µBν)λ − 1

2

(
HλµAe A

ν + HλνAe A
µ

)]
All the invariants can be written in terms of bµν − ∂µaν .
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Spin-two field from covariant fracton theory

Quadratic action
From now on: d + 1 = 4. Most general action with at most two
derivatives of bµν

L = −α1
4 HµνλHµνλ − α2

4 BµνBµν − α3
4 ΓµνλΓ

µνλ − α4
4 Γ µλ

µ Γννλ

− α5
4 HµνλΓ

µλν + bµνJµν + aµJµ

From the algebra

∂µJµ = 0 ∂µJµν = Jν → ∂µ∂νJµν = 0

Also the coupling with currents depends on bµν − ∂µaν . Redefinition

bµν = ∂µaν +
1
2 (Bµν + hµν)

where hµν is a symmetric field transforming as

δhµν = ∂µ∂νλ0 longitudinal “linearised diffeom.”
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Spin-two field from covariant fracton theory

Quadratic action

Choosing the parameters

α1 = −2g2 α3 =
2
3(4g1 − g2) α4 = −4g1 α5 = −8

3g2

hµν and Bµν decouple, LB2 is the action of a two-form and

Lh2 = (g1 − g2)hµνGµν + g2HµHµ

is the fracton gravity action studied also in [Blasi, Maggiore ’22, Bertolini, Blasi,
Damonte, Maggiore ’23]

Hµ = ∂σhσµ − ∂µh
Gµν = ∂2hµν − ∂µ∂νh − (∂µHν + ∂νHµ) + ηµν∂σHσ
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Spin-two field from covariant fracton theory

Solution for the symmetric field

Let’s look at the massless degrees of freedom.

We decouple the two-form. Equations of motion for hµν

2(g1 − g2)Gµν − g2 (∂
µHν + ∂νHµ − 2ηµν∂σHσ) +

1
2J (µν) = 0

Mode content:

helicity A εA
µν pure gauge

2σ eσµeσν g1 = g2
σ ik(µeσν) g2 = 0
0 g2ηµν − 2(2g1 + g2)ik(µqν) g2 = 0, g2 = −2g1

Same spectrum when hµν and Bµν are coupled.
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Spin-two field from covariant fracton theory

Gauge fixing and propagator for hµν

To find the propagator of hµν we need to gauge-fix.

We use ordinary BRST formalism: ghost, anti-ghost and auxiliary fields
{c, c̄, b} for monopole and

{
cA, c̄A, bA} for dipole

s aµ = ∂µc + δA
µ cA s bµA = ∂µcA

s c = 0 s cA = 0,
s c̄ = b s c̄A = bA

s b = 0 s bA = 0

and add a BRST-exact term in the action

Lg.f. = −sW
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Spin-two field from covariant fracton theory

Gauge fixing and propagator for hµν

The most convenient W is a scalar one

Ws = c̄
[
∂µ∂ν(bµAδ

A
ν − ∂µaν)−

ξ

2b
]
+ c̄A

[
aµδµA − κ

2ηABbB
]

The Lagrangian after integration of auxiliary fields is

L′ = L(bµν − ∂µaν)−
1
2ξ [∂µ∂ν(bµν − ∂µaν)]2 −

1
2κaµaµ + ghosts

The aµaµ term imposes aµ = 0:

[E.O.M. for aµ]µ = ∂ν [E.O.M. for bµν ]µν −
1
κ

aµ = 0

The ξ-dependent term kills pure-gauge mode kµkν except for k2 = 0.
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Spin-two field from covariant fracton theory

Gauge fixing and propagator for hµν
Eq. of motion for hµν in Fourier space:

∆µν,αβεαβ =
1
2 J̃µν ∆µν,αβGαβ,σρ =

1
4
(
δµσδ

ν
ρ + δµρ δ

ν
σ

)
Calling

Iµν,αβ = ηµαηνβ + ηµβηνα ,

Kµν,αβ
1 = kµkαηνβ + kµkβηνα + kνkαηµβ + kνkβηµα

Kµν,αβ
2 = k2ηµνηαβ − kαkβηµν − kµkνηαβ .

the hµν propagator reads

Gαβ,σρ =
1

8(g1 − g2)

1
k2

[
Iαβ,σρ +

g2 − 2g1
g2

1
k2 K1αβ,σρ −

2g1
2g1 + g2

1
k2 K2αβ,σρ

]
+

1
k2

(
1
g2

+
g1 + g2

4(g1 − g2)(2g1 + g2)
+

2ξ
k2

)
kαkβkσkρ
(k2)2
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Spin-two field from covariant fracton theory

Interactions
In ordinary gravity, the theory couples to Tµν . Linearised gravity becomes
inconsistent, one is forced to add non-linear terms with Einstein gravity as
unique solution with two derivatives [Kraichnan ’55, Gupta ’52, Deser ’70]

Fracton gravity is less constraining: hµν can couple to

Jµν = cV (∂µV ν + ∂νV µ − 2ηµν∂σV σ)

V µ arbitrary vector with one derivative at most. However, the helicity-two
modes are not involved:

1
2hµνJµν = −cV HµV µ + total derivative

And with invariant curvatures? Asking for two derivatives, Bµν must enter:

There are no gauge-invariant self-coupling terms for hµν
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Spin-two field from covariant fracton theory

Interactions
There could be cubic terms hµνJµν invariant up to total derivatives

Jµν = Jµν(∂2, h2
µν) ∂µ∂νJµν = 0

There are no such terms!

For the future: one can generalise the hµν gauge transformation:

δhµν = ∂µξν + χ ξα∂αhµν
Is there an all-order approach like in [Deser ’70]?

May self-interactions terms be achieved through condensation of dipole-charged
fields of [Afxonidis, AC, Hoyos, Musso ’23]? If Dµφa = ∂µφa − ibµAdA

a φa

Γ σ
µν Γµνρ

∑
a

ηBC eB
σdC

a (iφ∗
aDρφa − iDρφ

∗
aφa) → 2d v2 Γ σ

µν Γµνρbσρ
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Spin-two field from covariant fracton theory

Map to linearized gravity solutions

Recalling the hµν equation of motion

2(g1 − g2)Gµν − g2 (∂
µHν + ∂νHµ − 2ηµν∂σHσ) +

1
2J (µν) = 0

we can map solutions of linearised gravity Gµν = 0 to solutions of fracton
gravity through:

Jµν = cV (∂µV ν + ∂νV µ − 2ηµν∂σV σ) V µ =
2g2
cV

Hµ

We study solutions of linearised gravity that are solutions of full Einstein’s
theory. Solutions in Kerr-Schild form gµν = ηµν + hµν :

hµν = V `µ`ν `µ`
µ = 0 HµHµ = ∂µHµ = 0
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Spin-two field from covariant fracton theory

Map to linearized gravity solutions
Complex scalar φ and a gauge fields Aµ coupled to fracton gravity:

L = −1
4FµνFµν − Dµφ

∗Dµφ− λ

2 (|φ|
2 − v2)2 − cV HµJµ − cBF BµνFµν

If Bµν is a massive two-form (H = dB), the e.o.m. are

g1 − 2g2
3 ∂σHσµν − α2

2 Bµν − cBF Fµν = 0

∂σFσµ + 2cBF ∂σBσµ − 2qJµ − qcV |φ|2Hµ = 0

DµDµφ− icV HµDµφ− i
2cV ∂µHµφ− λ(|φ|2 − v2)φ = 0

Imposing α2 = 4c2
BF , we find solution

φ = v , Aµ = −cV
2q Hµ , Bµν = − 1

2cBF
Fµν
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Spin-two field from covariant fracton theory

Coupling to curved background

Issues with usual formulation of fracton theories in curved background
[Slagle, Prem, Pretko ’18, Jain, Jensen ’21, Bidussi, Hartong, Have, Musaeus, Prohazka ’21]

With ordinary gauge fields, coupling to γµν is straightforward.

Under background diffeo δγµν = ∇µζν +∇νζµ and aµ, bµA and e A
µ

transform as their Lie derivative.

The two-forms Bµν and HµνA don’t depend on the metric, whereas Γµνρ
need to be covariantised as

Γµνλ = 2
[
∇(µBν)λ − 1

2

(
HλµAe A

ν + HλνAe A
µ

)]
All the curvatures are gauge invariant also in curved geometry.
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Conclusions

Conclusions

Fracton theories with ordinary gauge fields
Covariant extension of fracton gauge theories
Degrees of freedom, gauge fixing and propagator
Chart of the allowed cubic interactions
Map between solutions of linearised gravity and fracton gravity
Consistent coupling to curved background
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Outlook

Outlook

To address stability of fracton gravity
Canonical quantisation, unitarity, Lorentz invariance
To include higher multipoles: new interactions for spin-two field?
To include higher multipoles: higher-spin?
All-order approach to field-dependent gauge transformations of hµν
To study fracton models in curved backgrounds
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Spacetime dipole symmetry

For spacetime dipole symmetry, the dipole is not conserved

∂tQi ≡ ∂t

∫
d3x x iJ t = ∂t

∫
d3x J ti

However, if J ti is thought as intrinsic dipole moment

Qi
tot =

∫
d3x

(
x iJ t − J ti) ∂tQi

tot = 0

Covariant version. Hypersurface Σ with normal and tangent vectors nµ, εa
µ,

Qa
Σ =

∫
Σ

d3x ea
µn̂ν (xµJν − Jνµ) n̂µ∂µQa

Σ = 0



Spacetime dipole symmetry

What configuration is sourced by a fracton?

J t = q δ(3)(x) J ti = J it = − q
4π∂

i 1
r =

q
4π

x i

r3

Then, a configuration sourced by a fracton (in the absence of other matter
fields) is

hit =
q

16πg2
∂i r =

q
16πg2

xi
r

The fracton carries spacetime dipole charge. Take the hyperplane Σi
located at x i = x i

0 6= 0 for a fixed value of i . Then,

Qt
Σi =

∫
dt

∫
‖

d2x
(
tJ i − J it) = −q

2 sign(x i
0)

∫
dt

A “true” fracton should be an instanton!



Schwarzschild solution
The Schwarzschild solution in Kerr-Schild form is

Φ =
2m
r `µdxµ = −dt − x idx i

r r2 =
3∑

i=1
(x i)2

When V µ = Jµ, the current of a complex scalar fields φ, there is a
solution which is an spherical wave of a massless field

φ(x) = Ae∓iω(t+r)

r ∂2φ = 0 E = ω|A|2 = ±4mg2
cV

If we add to the action of a massless scalar the coupling −hµνJµν/2, the
conserved U(1) current would be given by

Jµ
tot = Jµ +

cV
2 Hµφ

∗φ

Similarly, the equations of motion will be modified

∂2φ− icV Hµ∂µφ− i
2cV ∂µHµφ = 0



Schwarzschild solution

The spherical wave is not a solution to the modified equations,

One could use a perturbative expansion in cV to systematically find
corrections.

Alternatively, one could add a term to the scalar action

∆L =
c2

V
4g2

JµJµ → LH2 = g2

(
Hµ − cV

2g2
Jµ
)2

This cancels the contributions proportional to Hµ in the equations of
motion of the scalar field and in Jµ

tot.

The scalar spherical wave and Schwarzschild metric are exact solutions of
the coupled scalar field and spacetime dipole theory.
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