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Introduction to fractons

Introduction to fractons

What is a fracton?

It is an excitation characterised by restricted mobility

Discovered/devised on the lattice [Chamon '05, Haah '11]

Fracton models exhibit exotic properties:
o Subsystem or multipole symmetries
o Vacuum degeneracy sensitive to the lattice size

o IR/UV mixing challenging renormalisation group paradigm

Interesting from different points of view: hydrodynamics, quantum
information, pure QFT (See [Pretko, Chen, You '20, Nandkishore, Hermele '19,
Grosvenor, Hoyos, Pefia-Benitez, Surowka '22] for some reviews)

Alessio Caddeo Fracton gravity from spacetime dipole symmetry

1/24



Introduction to fractons

Model with subsystem symmetry

Let us consider the non-relativistic model [Seiberg, Shao '20]
1 1
L= 2(0:0)* — 5 (9x0y0)*
2 2
Subsystem symmetry
o(t,x,y) = o(t,x,y) + fi(x) + f(y)
with arbitrary functions f; and f: infinite vacuum degeneration!
Dispersion relation exhibiting IR/UV mixing:
w? = pip;
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Introduction to fractons

Models with dipole symmetry

Fractons may appear in theories with dipole symmetry [Pretko 17, Seiberg "20]

A charged particle propagates by changing its dipole moment:

dipole symmetry — charged particles are immobile!

Monopole and dipole charges:

Q= /ddlxp Q' :/ddlxxip

Conservation law

dep+ 0;0;,7 =0

Monopole-Dipole-Momentum Algebra (MDMA!) [Gromov 18, Pefia-Benitez '21]
ilPi, @1 =6;Q Heisenberg algebra
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Introduction to fractons

Models with dipole symmetry

Pretko devised a way to construct dipole-conserving Lagrangians.

Given a charged scalar field ¢ — e’ @(X)d  covariant derivative

Dy(®, ) = $3;0;® — 9;09;0 Dy — efo) (D,-,- - a,-aja(x))
Model with dipole symmetry (non-Gaussian!)
1 _
£ = S10:02 = My |0y — xg| Dy(®, @)[2 [A3¢2D,-,-(d>, o) + h.c}

Low-energy dispersion relation
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Introduction to fractons

Models with dipole symmetry

0S = / (p Ora(x) — Jijaiaja(x)) — O+ a,-a,-J"f =0
We can gauge the symmetry by introducing A; and Aj;
At = At + 0ra(x) Ajj = Ajj + 0;0j0(x)
The spatial gauge field is a symmetric rank-two tensor!
Gauge theory with A, Aj; dual to elasticity theory [Pretko, Radzihovsky 18]

Issues with coupling to curved geometry [Slagle, Prem, Pretko '18, Jain, Jensen '21, Bidussi,
Hartong, Have, Musaeus, Prohazka '21]

5A,'j = V,-Vja 5 [V,‘, VJ'] 75 0

Are we able to write fracton theory with ordinary gauge fields?
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Fracton theories with ordinary gauge fields

Gauging the MDMA algebra

We can construct fracton theories with ordinary gauge fields by realising
the MDMA algebra in an internal space [Pefia-Benitez '21, AC, Hoyos, Musso '22]

i[Pa, Qf] = 550 a, b spatial internal indices
We introduce ordinary connection (one-form in spacetime)
Ay = ePa+a,Qo + buaQf

Gauge transformation fixed by algebra

Jei = 9,87
5au = 8ﬂ)‘0 + eZ)\la - b,uaga
5b,ua = 8;1/\1 a
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Fracton theories with ordinary gauge fields

Gauging the MDMA algebra

We take a,, and b, as dynamical fields, whereas ¢, is background

e, =0y, identification of spaces

Coupling to currents
Ly =—a,J" — by,J"

Ward identities given by the algebra

9" =0 9, = J' 52

It is possible to choose improvement terms such that J¥? = Jlial = 0:

OpJt + 0,007 = dipole conservation law
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Fracton theories with ordinary gauge fields

MDMA, Heisenberg, Crystals, Factons, Breaking Bad

We previously applied the MDMA algebra approach in two contexts:

Fracton /elasticity duality [AC, Hoyos, Musso '22]:
o recovered fracton/elasticity duality

o description of incommensurate materials (quasi-crystals and moiré lattices)
o mobility restriction of elasticity defects from MDMA gauge invariance

Breaking of dipole symmetry in 141 dimensions [Afxonidis, AC, Hoyos, Musso '23]:

o model with classical potential yielding linear dispersion for dipole symmetry
Nambu-Goldstone bosons

o model with dipole symmetry breaking and charge symmetry preservation at
one-loop

o avoidance of Hohenberg-Coleman-Mermin-Wagner theorem
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Spin-two field from covariant fracton theory
Motivations for fracton gravity
A symmetric rank-two tensor emerges naturally in fracton gauge theories
Relation between dipole conservation and Mach principle [Pretko '17]
In ordinary gravity, the spin-two field coupling is universal:
Leouping = —hu T 8, TH =0
Fracton conservation law is less constraining:
0,0, J" =0 Non-universal couplings?
Our approach is easily generalised to higher multipoles:

higher-spin theories from a fresher perspective?
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Spin-two field from covariant fracton theory

Covariant MDMA algebra

We generalise the MDMA algebra approach considering an internal space
with the number of dimensions as that of spacetime

i[Pa, QB = 08Q A, B internal indices
We introduce an ordinary connection (one-form in spacetime)
‘AN = eﬁ\PA + ap,QO + bMAQ:/[4

Gauge transformation fixed by the algebra

seft = 9,"
(58“ = (9#)\0 + e;‘)\lA — buAfA
Sbua = M4
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Spin-two field from covariant fracton theory
Covariant MDMA algebra

Two invariant curvatures (two-forms in spacetime)
TMAV = ueuA - aueuA Huva = 0ubya — Oy bua
and a covariant one (here f,, = 9,a, — d,a,)
Buv = buae, — byae — fu 8By =~ T4+ Hup a€”
We take a, and b, 4 dynamical and elf‘ background chosen as
eNA = 5/‘ breaking to diagonal Lorentz

We allow for explicit breaking of internal translations. Other invariant

1
r,ul/)\ =2 |:6(;L BZ/)/\ - 5 (HAuAeuA + H)\uAep,A):|

All the invariants can be written in terms of b,, — 0,a,.
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Spin-two field from covariant fracton theory

Quadratic action

From now on: d +1 = 4. Most general action with at most two
derivatives of b,

a1 Q2 Qa3 le}
L = _TH;W)\HMV)\ - TB,U,VBMV - Trw/}\ruy}\ - T“FM‘MF”M

- % HUAFNAV + bHVJ'uV + aMJN

From the algebra
duJt =0 oM =Jv — 0,0, 0" =0

Also the coupling with currents depends on b, — d,,a,. Redefinition

1
3 (Buw =+ o)

where h,,, is a symmetric field transforming as

by, = dua, +

0hu = 0,0, 0 longitudinal “linearised diffeom.”
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Spin-two field from covariant fracton theory

Quadratic action

Choosing the parameters

2 8
a1 = =28 a3 = 5(43'1 - &) ag = —4g1 a5 = 38
h,, and By, decouple, Lg2 is the action of a two-form and
Ly = (gl - gZ)h,uuG'uV + nguH“

is the fracton gravity action studied also in [Blasi, Maggiore '22, Bertolini, Blasi,
Damonte, Maggiore '23]

HY = 8,h" — 9h
GH = PR — 91 h— (OMHY + OV HP) + i Oy HY
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Spin-two field from covariant fracton theory

Solution for the symmetric field

Let's look at the massless degrees of freedom.
We decouple the two-form. Equations of motion for h,,

1
2(g1 — &) G* — g (9" HY + OV H* — 20" 9,H) + 5J(W) -0

Mode content:

helicity A ‘ EZ\V ‘ pure gauge
20 ege,‘j 81 =82
0

&2 — 2(281 + &2)ikuay) | 82 =0, &2 = —2&

Same spectrum when h,,,, and B, are coupled.
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Spin-two field from covariant fracton theory

Gauge fixing and propagator for h,,

To find the propagator of h,,, we need to gauge-fix.

We use ordinary BRST formalism: ghost, anti-ghost and auxiliary fields
{c, ¢, b} for monopole and {CA, A, bA} for dipole

sa, = Ouc+ 5Z‘CA sba = 0duca
sc =0 sca = 0,
sc = b scA = pA
sb =0 sbr = 0

and add a BRST-exact term in the action

Eg.f. =—-sW
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Spin-two field from covariant fracton theory

Gauge fixing and propagator for h,,
The most convenient W is a scalar one

Ws = ¢ [9"0"(buadl — Opay) — gb] +c4 [auéﬁ — gnABbB
The Lagrangian after integration of auxiliary fields is
I 1 YIR~Y% 2 1 n
L' = L(by, —Jya,) — 2 [0#0" (byy — Opav)]” — Zaua + ghosts
The a,a" term imposes a,, = 0:

[E.O.M. for a,]" = 8, [E.O.M. for b, " — la“ =0
K

The ¢-dependent term kills pure-gauge mode k, k, except for k? = 0.
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Spin-two field from covariant fracton theory
Gauge fixing and propagator for h,,
Eq. of motion for hy,, in Fourier space:
pv,o3 1N;w pv,af 1 HSY M SV
AFP e g = EJ AP Gog gp = 1 (5U6p + 5/)5(,)

Calling
e oy wB | puBpva
K B _ = kMK vB 4 k”kﬁnm + k¥ k% nB 4 k"kﬁ po
KE"oP = kP — ke kP — kP kP

the h,, propagator reads

1 1 o —2g1 1 21 1
Gaporp = o hapop + BBl =Ky gy — ot~ Ky
oo 8(g1 — &) k? [QB’ P g KPP T g gy k2T 200r
+ i (1 g1+ & 2{) kakﬁkakp
k2 4(g1 — g2)(281 + &) K2 (k?)?
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Spin-two field from covariant fracton theory

Interactions

In ordinary gravity, the theory couples to T,,. Linearised gravity becomes
inconsistent, one is forced to add non-linear terms with Einstein gravity as
unique solution with two derivatives [Kraichnan '55, Gupta '52, Deser '70]

Fracton gravity is less constraining: h,,,, can couple to
I = ¢y (O*VY + OV VHF — 205, V7)

V¥ arbitrary vector with one derivative at most. However, the helicity-two
modes are not involved:
1 uv 1 . .
Ehw,J = —cyH, V¥ + total derivative

And with invariant curvatures? Asking for two derivatives, B,,, must enter:

There are no gauge-invariant self-coupling terms for h,,

Alessio Caddeo Fracton gravity from spacetime dipole symmetry 18/24
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Spin-two field from covariant fracton theory
Interactions

There could be cubic terms h,,, J* invariant up to total derivatives

I = (P, h,) Opd, " =0

There are no such terms!

For the future: one can generalise the h,, gauge transformation:

5hm/ = auéu + Xfaaah;w

Is there an all-order approach like in [Deser '70]?

May self-interactions terms be achieved through condensation of dipole-charged
fields of [Afxonidis, AC, Hoyos, Musso '23]7 If D'uqba = 8#(,1)3 - iprd;AQSa

rwjo‘r,uup Z Urts eg dac (i¢: pQSa - iDP¢:¢a) — 2d V2 rp,ugrlwpbap
a
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Spin-two field from covariant fracton theory

Map to linearized gravity solutions

Recalling the h,, equation of motion
1
2(g1 — g2) GM — go (OMHY + 0V HM — 21" 8, H?) + 5J(M”) =0

we can map solutions of linearised gravity G,,, = 0 to solutions of fracton
gravity through:

2
I = ey (VY + 9" VH — 209, V7) VH = Cg2 H*
v

We study solutions of linearised gravity that are solutions of full Einstein's
theory. Solutions in Kerr-Schild form g, = 7, + hyu:

huy = Vilul, 0,00 =0 H,HF = 9,H" =0
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Spin-two field from covariant fracton theory

Map to linearized gravity solutions
Complex scalar ¢ and a gauge fields A, coupled to fracton gravity:
1 * >\ v
L= = FuF" — Dug" D" — §(|¢|2 —v?)? — cyH,J" — B, F*

If B, is a massive two-form (# = dB), the e.o.m. are

81 — 2g2 9. HoH — %BHV _ CBFF“V = 0
3 7 2
05 F7F + 2cgF ,B°" — 2qJ* — qey|6]*H* = 0

D, D" ¢ — icy H" D, — écvauH“qb ~“MloP—v¥)p = 0
Imposing ap = 4cl23,_-, we find solution

Cy 1
YR B;w:

——F
2cgr
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Spin-two field from covariant fracton theory

Coupling to curved background

Issues with usual formulation of fracton theories in curved background
[Slagle, Prem, Pretko '18, Jain, Jensen '21, Bidussi, Hartong, Have, Musaeus, Prohazka '21]

With ordinary gauge fields, coupling to v, is straightforward.

Under background diffeo 67, = V,(, + V(. and a,, bya and e#A
transform as their Lie derivative.

The two-forms B,,, and H,, 4 don't depend on the metric, whereas I',,,,,
need to be covariantised as

1
F,M =2 |:V(LLBV)>\ - 5 (HAMAGVA + H)\,/AGMA):|
All the curvatures are gauge invariant also in curved geometry.
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Conclusions

Conclusions

Fracton theories with ordinary gauge fields

©

Covariant extension of fracton gauge theories

©

Degrees of freedom, gauge fixing and propagator
Chart of the allowed cubic interactions

Map between solutions of linearised gravity and fracton gravity

© © o o

Consistent coupling to curved background
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Outlook

Outlook

©

To address stability of fracton gravity

©

Canonical quantisation, unitarity, Lorentz invariance

To include higher multipoles: new interactions for spin-two field?
To include higher multipoles: higher-spin?

All-order approach to field-dependent gauge transformations of h,,

© © o o

To study fracton models in curved backgrounds
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Spacetime dipole symmetry

For spacetime dipole symmetry, the dipole is not conserved
9:Q" = 0, / d*xx'Jt = 0, / d*x St
However, if J¥ is thought as intrinsic dipole moment
Q. = / d>x (x'Jt — J1) 0:Ql., =0
Covariant version. Hypersurface X with normal and tangent vectors ny, €;,,

QL = /z d>x el (xHJ" — JH) 9,Q2 =0



Spacetime dipole symmetry

What configuration is sourced by a fracton?
. . .1 q Xi
Jt: 6(3) JtI:JIt:_ializii
q97(x) 4t~ r 4w r3

Then, a configuration sourced by a fracton (in the absence of other matter
fields) is

q q X
hi — oir = ol
= Torg T 16mgs

The fracton carries spacetime dipole charge. Take the hyperplane ¥;
located at x' = xé = 0 for a fixed value of i. Then,

Qs —/dt/d2 (tJ —J") = 5|gn( )/dt

A “true” fracton should be an instanton!



Schwarzschild solution

The Schwarzschild solution in Kerr-Schild form is

2m x'dx’ :

d)zi gdxl":_dt_ r2: X12
T : > )
When V# = J#, the current of a complex scalar fields ¢, there is a
solution which is an spherical wave of a massless field

Fiw(t+r) 4
Mﬂ:Ai—T—— 826 =0 E:wmﬁzi{§3
v

If we add to the action of a massless scalar the coupling —h,,,, J* /2, the
conserved U(1) current would be given by

Similarly, the equations of motion will be modified

ywdww@@—éwmwwzo



Schwarzschild solution

The spherical wave is not a solution to the modified equations,

One could use a perturbative expansion in ¢y to systematically find
corrections.

Alternatively, one could add a term to the scalar action

C2 Cy 2
AL=-"YJ,JF = Lip= <H - )
1g,7! He = 82\ T T gy

This cancels the contributions proportional to H* in the equations of

motion of the scalar field and in J{¢,.

The scalar spherical wave and Schwarzschild metric are exact solutions of
the coupled scalar field and spacetime dipole theory.
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