

Finanziato dall'Unione europea NextGenerationEU

Centro Nazionale di Bicerca i

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

Algorithm optimization to improve continuous gravitational-wave searches WP3 – Flagship Use Case 2.3.1

Lorenzo Pierini

Spoke 2 annual meeting, CINECA, 19/12/2023

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca

Introduction

About me:

Lorenzo Pierini

PhD in physics, defended in May 2023 INFN technologist 100% ICSC since May 2023

- About us: Virgo Rome group Topic: Continuous gravitational waves
- Perturbations of the space-time, predicted by General Relativity.
- Emitted by rotating, deformed neutron stars (and more exotic sources).
- Can be detected by Earth-based detectors: LIGO, Virgo, KAGRA.
- Not yet detected so far.

People involved:

- Pia Astone (PI) (INFN Roma)
- Lorenzo Pierini (INFN Roma)
- Marco Serra (INFN Roma)
- Stefano Dal Pra (INFN CNAF)
- Cristiano Palomba (INFN Roma)

How do we search those signals?

- Detector output: calibrated time series. Weak signals deeply embedded in noise.
- Data processed to obtain time-frequency maps.
- 3) The expected signal is nearly monochromatic, with a slow frequency variation (spin-down).
- To recover the signal parameters, we apply the Hough transform to the map. Most significant outliers identify a possible signal.
- 5) However, the observed signal is distorted by the Doppler effect due to the Earth motion! This distortion changes for any sky location.

The computational problem

- According to a discretized sky map, we correct the Doppler effect for ANY POINT in that map.
- Only the correction that matches the right position 2) of the source maximizes the detection statistics.
- 3) The number of sky patches is up to $10^{5}!$
- 4) To cover the full parameter space, we need $\sim 10^7$ core-hours for 1-year data for each detector (3-4)!

detection statistics

detection statistics

The computing bounds

- 1) An all-sky & all-frequencies search on 1-year data for 3 detectors requires $\sim 30 \cdot 10^6$ core hours. (A typical 10-14 HS06/core is considered)
- 2) Follow-up: the goal is to select up to 10^9 signal candidates from the Hough maps, to be further processed and verified.
- 3) The follow-up itself is a refined search based on the Hough transform: another computationally heavy step!
- 4) There is a tight schedule to publicly release the data too: long computing time limits the number of signal candidates that we are able to verify.
- 5) Optimizing the algorithm is crucial: shortening the computing time leaves room to analyze a higher number of candidates, thus increasing the overall search sensitivity.

The opportunity of ICSC

- > First part: code optimization.
 - The heavy part of the algorithm is the calculation of the Hough transform.
 - The Hough transform is implemented and optimized in a serial code that avoids parallelization.
 - The main goal is to implement different versions of the Hough transform that exploit parallel architectures, in particular GPU devices.
 - Then, to adapt the analysis code to fully run on GPUs and CPUs.
- Second part: extensive tests.
 - The large scale of ICSC is an exceptional opportunity to test the new algorithms: the amount of available resources matches the typical infrastructure needed to obtain results according to out tight time scales.
 - Extensive tests: perform long timescale analysis to test the stability of the code running on a high number of cores and for long jobs.
 - We hope that in future the ICSC resources will be available for next years research: gravitational wave searches are planned to go on with new detectors!

Technical details

^{19/12/2023}

19/12/2023

FH CPU implementation (single point)

$$f_0 = f - \dot{f}_0 (t - t_0)$$

- Loop over the whole spin-down grid
- For each s-d value f_0^* compute the frequency indexes in f_0 such that

$$f - \frac{\dot{f}_0^*}{f_0}(t - t_0) - \frac{\delta f_H}{2} < f_0 < f - \frac{\dot{f}_0^*}{f_0}(t - t_0) + \frac{\delta f_H}{2}$$

- Increase by 1 (or by the weight) the corresponding points in the Hough map
- A single (*t*, *f*) point corresponds to a uniformlyvalued stripe in the Hough map

Differential FH: Carl Sabottke idea to deal with over-resolution

In the loop, only the pixels on the lower bound of the stripe are increased by the weights.

$$f_0 = f - \dot{f}_0(t - t_0) - \frac{\delta f_{\rm H}}{2}$$

= half differential map

After the loop, the values at the lower bound are symmetrically subtracted at the upper bound.

= full differential map

Then, the map is integrated through cumulative sum from low to high frequencies.

- The whole stripe is valued with the weights.
 - = Hough map

FH CPU full implementation

• Loop over different times $\{t_i\}$.

For each time t_k select the vectors of all frequencies $\{f_k\}$ and the weights $\{w_k\}$.

- Loop over the whole spin-down grid.
 - For each s-d value $\dot{f_0}^*$ compute the frequency indexes of the lower bounds of the stripes in f_0 such that

$$\{f_0\} = \{f\} - \frac{\dot{f}_0^*}{f_0}(t_k - t_0) - \frac{\delta f_{\rm H}}{2}$$

- Increase by $\{w_k\}$ the corresponding points in the Hough map.
- After the loops completion: subtract symmetrically the values shifted by $\delta f_{\rm H}$ and then perform the cumulative sum.

requenc

 $(t_k, \{f\}, \{w\})$

"Standard" FH limitation

- The loop is done over different times $\{t_i\}$
- Each column (t_k, {f}, {w}) is transformed over the same hough map.
- Different columns are likely to write partially on the same memory locations.

The loop cannot be parallelized!

OR: it could be parallelized at a strong memory cost (each column writes on one hough map copy, then sum all together)

Finanziato dall'Unione europea NextGenerationEU

Loop inversion implementation

- Select a single s-d value ^f/₀ : it corresponds to a given slope in the peakmap.
- 2) Shift the peaks depending on their time value according to

 $\overrightarrow{f_0} = \overrightarrow{f} - \frac{\dot{f_0}}{f_0}(t - t_0) - \frac{\delta f_{\rm H}}{2}$

- 3) Compute the (weighted) histogram of the shifted peakmap.
- 4) Put the result in the Hough map at the $\frac{\dot{f}_0}{f_0}$ column.
- Repeat for all {^f₀} values of the Hough map (in parallel!)

Thank you for your attention!