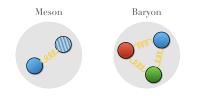
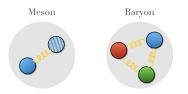
Spoke 2 Annual Meeting

CINECA, 19 - 12 - 2023

Simulating lattice QCD at high temperatures: High Performance Computing for theoretical particle physics


Pietro Rescigno

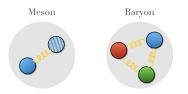
Università degli studi di Milano - Bicocca INFN sezione di Milano - Bicocca



Ph. D. project ICSC - CN_00000013 - CUP:H43C22000520001

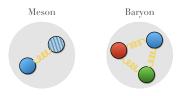
 Quantum ChromoDynamics (QCD) is the fundamental theory of the strong nuclear interaction. It explains how quarks and gluons interact to form particles like the proton (baryons) and pion (mesons)

- Quantum ChromoDynamics (QCD) is the fundamental theory of the strong nuclear interaction. It explains how quarks and gluons interact to form particles like the proton (baryons) and pion (mesons)
- QCD displays asymptotic freedom: quarks and gluons interact strongly at low energies, and are free only at asymptotically high energies.



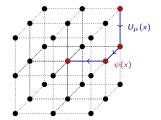
David J. Gross, H. David Politzer and Frank Wilczek

- Quantum ChromoDynamics (QCD) is the fundamental theory of the strong nuclear interaction. It explains how quarks and gluons interact to form particles like the proton (baryons) and pion (mesons)
- QCD displays asymptotic freedom: quarks and gluons interact strongly at low energies, and are free only at asymptotically high energies.
- Perturbative expansions may show slow convergence or be ill defined



David J. Gross, H. David Politzer and Frank Wilczek

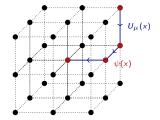
- Quantum ChromoDynamics (QCD) is the fundamental theory of the strong nuclear interaction. It explains how quarks and gluons interact to form particles like the proton (baryons) and pion (mesons)
- QCD displays asymptotic freedom: quarks and gluons interact strongly at low energies, and are free only at asymptotically high energies.
- Perturbative expansions may show slow convergence or be ill defined
- Need for non-perturbative, model independent approach to study the properties of QCD



David J. Gross, H. David Politzer and Frank Wilczek

Lattice Field Theory

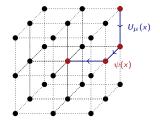
"I saw from this that to understand quantum field theories, I would have to understand quantum field theories on a lattice" - from K. G. Wilson's Nobel Lecture, 1982



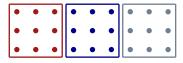
• Space-time is **discretized** on a 4-dimensional lattice $L_0 \times L^3$

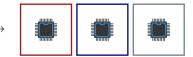
Lattice Field Theory

"I saw from this that to understand quantum field theories, I would have to understand quantum field theories on a lattice" - from K. G. Wilson's Nobel Lecture, 1982



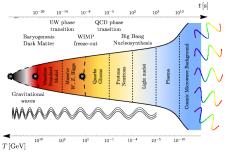
- Space-time is **discretized** on a 4-dimensional lattice $L_0 \times L^3$
- By construction amenable to numerical simulation via Monte Carlo integration: $\mathcal{O}(10^{10})$ variables


Lattice Field Theory



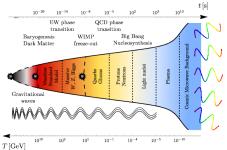
"I saw from this that to understand quantum field theories, I would have to understand quantum field theories on a lattice" - from K. G. Wilson's Nobel Lecture, 1982

- Space-time is **discretized** on a 4-dimensional lattice $L_0 \times L^3$
- By construction amenable to numerical simulation via Monte Carlo integration: $\mathcal{O}(10^{10})$ variables
- Subdivisions of the lattice are mapped to different processors and treated in parallel: HPC and efficient algorithms are essential!



QCD at high temperature

The properties of QCD in the **high temperature** regime play a crucial role in many fascinating topics:


- Heavy Ion Collision experiments
- Neutron Star structure (Equation of State)
- Early Universe Dynamics

QCD at high temperature

The properties of QCD in the **high temperature** regime play a crucial role in many fascinating topics:

- Heavy Ion Collision experiments
- Neutron Star structure (Equation of State)
- Early Universe Dynamics

Perturbation theory is severely limited at high temperatures [Linde 1980]

Lattice studies mostly limited to $T \lesssim 1$ GeV: how to accomodate both an hadronic scale and the temperature on the same lattice?

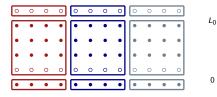
 Formally, finite temperature is obtained with a compact Euclidean time direction ⇒ Periodic Boundary conditons : φ(x₀ + L₀, x) = φ(x₀, x)

- Formally, finite temperature is obtained with a compact Euclidean time direction ⇒ Periodic Boundary conditons : φ(x₀ + L₀, x) = φ(x₀, x)
- Shifted Boundary Conditions [Giusti and Meyer, 2011 2013] :

$$\phi(\mathbf{x}_0 + \mathbf{L}_0, \mathbf{x}) = \phi(\mathbf{x}_0, \mathbf{x} - \boldsymbol{\xi} \mathbf{L}_0)$$

Proved crucial for a precise determination of SU(3) E.O.S. [Giusti and Pepe 2017], and enter a recently proposed strategy that allowed to explore unprecedented temperatures up to $\gtrsim 100~GeV$ in QCD [Giusti, Pepe et al. 2021]

• Description of the thermal theory from a moving frame


- · Formally, finite temperature is obtained with a compact Euclidean time direction \Rightarrow Periodic Boundary conditons : $\phi(x_0 + L_0, \mathbf{x}) = \phi(x_0, \mathbf{x})$
- Shifted Boundary Conditions [Giusti and Meyer, 2011 2013] :

$$\phi(\mathbf{x}_0 + \mathbf{L}_0, \mathbf{x}) = \phi(\mathbf{x}_0, \mathbf{x} - \boldsymbol{\xi} \mathbf{L}_0)$$

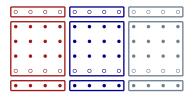
Proved crucial for a precise determination of SU(3) E.O.S. [Giusti and Pepe 2017], and enter a recently proposed strategy that allowed to explore unprecedented temperatures up to $\gtrsim 100$ GeV in QCD [Giusti, Pepe et al. 2021]

• Description of the thermal theory from a moving frame

Periodic Boundary Conditions

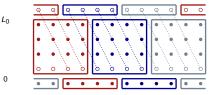
BC relate sites assigned to the same processor

0

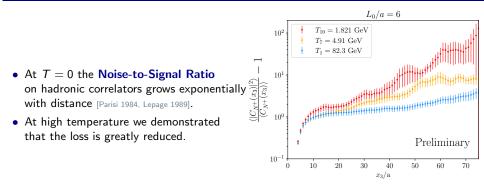

- Formally, finite temperature is obtained with a compact Euclidean time direction ⇒ Periodic Boundary conditons : φ(x₀ + L₀, x) = φ(x₀, x)
- Shifted Boundary Conditions [Giusti and Meyer, 2011 2013] :

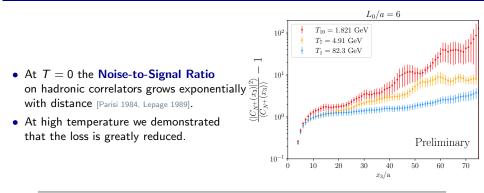
$$\phi(\mathbf{x}_0 + \mathbf{L}_0, \mathbf{x}) = \phi(\mathbf{x}_0, \mathbf{x} - \boldsymbol{\xi} \mathbf{L}_0)$$

Proved crucial for a precise determination of SU(3) E.O.S. [Giusti and Pepe 2017], and enter a recently proposed strategy that allowed to explore unprecedented temperatures up to $\gtrsim 100~GeV$ in QCD [Giusti, Pepe et al. 2021]


• Description of the thermal theory from a moving frame

Periodic Boundary Conditions




BC relate sites assigned to the same processor

Shifted Boundary Conditions

BC may relate sites assigned to different processors!

Goals and outlook

- Study the properties of **baryons** and **mesons** in the high temperature regime from first principles
- Lattice sizes of the order $10 \times (288)^3$
- Run highly parallelized simulations on $\sim 5000-10000$ cores

Thank you for your attention!