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Motivation

» SCATTERING AMPLITUDES for precision physics  
60 orders of magnitudes in Energy scales:  
from quarks and gluons to black-hole binary systems

» one tool: Feynman diagrams  
crucial for Elementary Particles  
and Gravitational Waves Phenomenology:  
form hard scattering cross-sections to astrophysical coalescing systems

» Interdisciplinary competences required

» Impact  
Physics and Mathematics, but also Biology, 
Chemistry, Statistics and Economy

www.nature.com/scientificreports/

2SCIENTIFIC REPORTS |         (2018) 8:17537 �ȁ����ǣͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶͷ;Ǧ͹ͻͻͻͽǦ͹

analysis is not restricted to biomolecules, and can be applied to interactions within any polymer-like system of 
chains. Nonetheless, when discussing specific applications, we focus on biomolecules, which provide a huge set of 
examples and for which our methods can be particularly useful.


���������������������
Before introducing the genus trace, we recall what the genus is and how it can be used in the analysis of biopol-
ymers. Note that the genus of RNA structures was considered before, e.g. in1–8, or for proteins in9. However in 
those works the genus was computed only for the entire chain length, and taking into account only canonical 
Watson-Crick base pairs in the RNA case. Here we show that much more detailed information is revealed once 
genus is computed for various types of bonds in a given structure, e.g. also for non-canonical base pairs, including 
those involved in helix backbone packing interactions in RNA. Moreover, the genus trace that we introduce in 
what follows captures much more information than solely the genus of the whole chain.

What is genus and how to compute it? Consider a polymer-like chain consisting of a number of resi-
dues, with bonds connecting various pairs of these residues, as in the example in Fig. 1(a). The structure of such a 
chain can be presented in the form of a chord diagram. A chord diagram consists of b horizontal intervals (called 
backbones) that represent one or more polymer-like chains, and n arcs (chords) representing bonds, which con-
nect pairs of residues, and are drawn as half-circles in the upper-half plane. In this work we consider configura-
tions with only one backbone, =b 1. A chord diagram corresponding to the structure in Fig. 1(a) is shown in 
Fig. 1(b). Such diagrams are commonly used to present the structure of RNA chains3,4. A stack of parallel chords 
contributes in the same way as a single chord to the genus, so each set of parallel chords can be replaced by one 
chord, as in Fig. 1(c). Furthermore, to compute the genus it is of advantage to replace all backbones and chords by 
ribbons of finite width, also as in Fig. 1(c). In this way we obtain a two-dimensional surface with r boundaries, 
which – after shrinking a backbone to a small circle – can be drawn in a smooth way on an auxiliary surface of 
genus g (i.e. having g “holes”), as in Fig. 1(d). The genus of a chord diagram is defined as the genus of this auxiliary 
surface. This genus can be determined from the Euler formula

− = − − .b n g r2 2 (1)

For example, in Fig. 1(c) there is =b 1 backbone, =n 2 chords, and =r 1 boundary (drawn in red). Therefore 
it follows from the Euler formula that the genus =g 1, so that the auxiliary surface is a torus, see Fig. 1(d).

Note that if no chords intersect in a given chord diagram then =g 0; in this case the chord diagram is called 
planar. In particular, a large complicated RNA with a secondary structure having all nested basepairs has genus 

=g 0, so it is quite simple from the point of view of this paper. Furthermore, for a fixed number of chords and 
backbones the genus cannot exceed some maximal value. We also recall that chord diagrams are used by mathe-
maticians to characterize moduli spaces of Riemann surfaces, while physicists reinterpret them as a particular 
class of Feynman diagrams arising in certain quantum field theories or matrix models4,7. Certain properties of 
chord diagrams have been also discussed in10.

Types of bonds and bifurcations. To determine the genus, for example using the formula (1), one simply 
considers all bonds in a given chain. However in various contexts, in particular for biomolecules, one can distin-
guish between various types of bonds. In this work we propose to consider such a distinction; as we will see, this 
provides some new information about those different types of bonds. For RNA, an important classification of base 
pairs have been introduced by Leontis and Westhof11,12. They noticed that RNA bases can be regarded as triangles 
with three different edges, referred to as: Hoogsteen edge (denoted HG or H), Watson-Crick edge (denoted WC 
or W), and Sugar or Shallow Groove edge (denoted S or SG), see Fig. 2(a). Base pairs are formed by any of these 

Figure 1. How to compute the genus. (a) A chain with several bonds (in blue and orange) connecting various 
pairs of residues (black dots). (b) Chord diagram representing the same structure. (c) Parallel chords replaced 
by a single chord, and then – together with the backbone – replaced by ribbons, whose single boundary is 
shown in red. (d) After shrinking the backbone to a small circle, the ribbon diagram can be smoothly drawn on 
a surface of a torus, whose genus is g = 1.
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Computation of the Loop Amplitude

Generation of Feynman Diagram

Spin sums, Dirac Algebra, Trace

Tensor Reduction

Integral-By-Parts Reduction

Mathematica Based Package LoopIn
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the whole computation. The interferences of one- and
two-loop bare amplitudes with the Born amplitude read

M
(n)
b =

1

4

X

spins

2Re(A(0)⇤
b A

(n)
b ) , for n = 1, 2 . (4)

Analytic Evaluation – The analytic evaluation of M(1)
b

and M
(2)
b is completely automated, within an in-house

software, which can be applied to generic one- and two-
loop amplitudes. The Mathematica package Fey-

nArts [63] is used to generate Feynman diagrams con-
tributing to the one- and two-loop corrections to the
scattering amplitudes as well as the counter-term dia-
grams required for the renormalization: 6 diagrams and
3 counter-term diagrams at one loop; 69 diagrams (12 of
which vanish because of Furry’s theorem) and 55 counter-
term diagrams at two loops. Representative one- and
two-loop diagrams are shown in the second and third
row of Fig. 1, respectively. The spin sums and the alge-
braic manipulation to simplify the Dirac-� algebra are
carried out by means of the FeynCalc [64–66] package.
Each n-loop graph G (interfered with the Born amplitude)
corresponds to an integrand written in terms of scalar
products between external, p⌫i , and internal, k⌫i , momenta.
Therefore, Eq.(4) can be generically written as,

M
(n)
b = (S✏)

n

Z nY

i=1

ddki
(2⇡)d

X

G

NGQ
�2G D�

, (5)

where: NG = NG(pi, ki) indicates the numerator, and
D� = D�(pi, ki,M) are the denominators corresponding
to the internal lines of G.

Integrands are simplified by employing the adaptive

integrand decomposition method, implemented in the Aida

framework [29]. The intermediate results emerging from
the integrand decomposition can be further simplified
by means of the IBP identities [32, 33]. Our software is
interfaced with the publicly available codes Reduze [67]
and Kira [68], and, for each diagram, it produces the files
for the automated generation of the IBP relations. After
the decomposition phase, the interference terms M

(n)
b

are written as linear combination of a set of independent
integrals, say I(n), called master integrals (MIs),

M
(n)
b = C(n)

· I(n) , (6)

where C(n) is a vector of coefficients, depending on ✏ and
the kinematic variables, s, t,M2. In particular, M(1)

b and
M

(2)
b are conveniently expressed, in terms of 12 and 264

MIs, respectively, analytically computed: two- and three-
point functions have been known since long [69–71], while
planar and non-planar four-point integrals were computed
in [72, 73], using the differential equation method via Mag-
nus exponential, and independently in [55, 56, 74]. The
analytic expressions of M

(n)
b can be written as a Lau-

rent series around d = 4 space-time dimensions (✏ = 0),

with coefficients that contain Generalized Polylogarithms
(GPLs) [75], defined as iterated integrals, through the
recursive formula

G(wn, . . . , w1; ⌧) ⌘

Z ⌧

0

dt

t� wn
G(wn�1, . . . , w1; t) , (7)

with G(w1; t) ⌘ log(1� t/w1). The arguments wi are
known as letters, and their number, corresponding to
the number of nested integrations, is called weight. The
two-loop interference term contains 4063 GPLs with up
to weight four, whose arguments are written in terms
of 18 letters, wi = wi(x, y, z), which depend on the
Mandelstam variables through the relations, �t/M2 = x ,
�s/M2 = (1 � y)2/y , �(u � M2)/(t � M2) = z2/y
(see [72, 73] for more details).

Renormalization – The one- and two-loop diagrams con-
tributing to M

(1)
b and M

(2)
b contain infrared (IR) and

ultraviolet (UV) divergences. To remove the UV diver-
gences, the bare lepton fields ( `, with ` = f, F , for
massless and massive leptons, respectively) and photon
field (Aµ), as well as the bare mass of the massive lepton
are renormalized as follows,

 b =
p

Z2  , Aµ
b =

p
Z3 A

µ, Mb = ZMM , (8)

where, to simplify the notation, the label ` in the lepton
fields is understood and restored when required. The
renormalization of the QED interaction vertex,

Lint = eb  ̄b /Ab  b = eZ1  ̄ /A , (9)

can then be entirely fixed using the QED Ward identity,
that implies Z1 = Z2. In particular, this leads to a
simple relation between the renormalized charge and the
bare charge (obtained by applying Eq. (8) to the bare
interaction term and comparing the two renormalized
expressions) eZ1 = eb Z2

p
Z3, therefore, one has e =

eb
p
Z3. The lepton wave functions and the mass of the

massive lepton are renormalized in the on-shell scheme,
namely, Z2,f = ZOS

2,f , Z2,F = ZOS

2,F , ZM = ZOS

M . The
coupling constant is renormalized in the MS scheme at
the scale µ2,

↵b S✏ = ↵(µ2)µ2✏ ZMS
↵ , (10)

with ZMS
↵ = 1/ZMS

3 . The renormalized amplitude is ob-
tained by multiplying the bare amplitude with a factorp
Z2,` for any external lepton `, hence,

A = Z2,f Z2,F Âb , (11)

where Âb = Ab (↵b = ↵b(↵),Mb = Mb(M)), namely
expressing the bare coupling and mass in terms of
their renormalized counterparts. Let us observe that
A depends on four renormalization constants, namely
ZMS
↵ , ZOS

2,f , Z
OS

2,F , Z
OS

M . To simplify the notation in the

Master IntegralsEvaluation of Master Integrals
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Generation of Integrands

Figure 1: Tree-level Feynman diagrams for the process qq̄ ! QQ̄. Thin lines indicate a
light quark (q), whilst tick ones indicate a heavy quark (Q); curly lines correspond to gluons.

reaction are s = (p1 + p2)2, t = (p1 � p3)2, and u = (p2 � p3)2, satisfying the condition
s+ t+ u = 2M2. In the physical region, the range of Mandelstam variables reads,

s � 4M2 & �

✓p
s�

p
s� 4M2

2

◆2

 t  �

✓p
s+

p
s� 4M2

2

◆2

. (2.2)

The dependence of the scattering amplitude on the kinematic variables can be conveniently
parametrised in terms of the dimensionless variables, ⌘ and �, defined as,

⌘ =
s

4M2
� 1 , � =

M
2
� t

s
, (2.3)

which, in the physical region satisfy the conditions,

⌘ > 0 &
1

2

✓
1�

r
⌘

1 + ⌘

◆
 � 

1

2

✓
1 +

r
⌘

1 + ⌘

◆
. (2.4)

The scattering amplitude A of the process can be evaluated in perturbative QCD, and
expressed as a power series in the strong coupling ↵s, as,

A (↵s) = 4⇡↵s


A

(0) +
⇣
↵s

⇡

⌘
A

(1) +
⇣
↵s

⇡

⌘2
A

(2) +O
�
↵
3
s

� �
. (2.5)

The LO term A
(0), referred to as Born term, receives contribution from a single tree-level

Feynman diagram, see Fig. 1. The colour-summed, un-polarised squared amplitude at LO
(summed over the number of colours, summed over the final spins, and averaged over the
initial states) has a rather simple expression,

M
(0) =

1

4

X

colours
spins

|A
(0)

|
2 =

�
N

2
c � 1

�
A

(0)
, (2.6)

with,

A
(0) =

2(1� ✏)s2 + 4
�
t�M

2
�2

+ 4st

s2
, (2.7)

where Nc is the number of colours, and ✏ = (4�d)/2, with d being the number of (continuous)
space-time dimensions. The higher order contributions A(n), with n = 1, 2, get contributions

– 4 –

1 2 3 4 5

6 7 8 9 10

Figure 2: One-loop Feynman diagrams for the process qq̄ ! QQ̄. Thin lines indicate a light
quark (q), whilst tick ones indicate a heavy quark (Q); curly and dashed lines correspond to
gluons and ghosts, respectively.

from one- and two-loop diagrams, respectively, shown in Figs. 2 and 3, 4. The interferences
of one- and two-loop amplitudes with the Born term are defined as,

M
(n) =

1

4

X

colours
spins

2Re(A(0)⇤
A

(n)) , for n = 1, 2 , (2.8)

and can be organised as combinations of gauge invariant factors, according to the dependence
on the number of colours (Nc) and on the flavour structure (i.e., the number of light- and
heavy-fermion closed loops, respectively, nl and nh). In particular, the contributions at one-
and two-loop admit the following decomposition [36, 37, 48],

M
(1) = 2

�
N

2
c � 1

�
 
A

(1)
Nc +

B
(1)

Nc
+ C

(1)
l nl + C

(1)
h nh

!
, (2.9)

M
(2) = 2

�
N

2
c � 1

�
 
A

(2)
N

2
c +B

(2) +
C

(2)

N2
c

+D
(2)
l Nc nl +D

(2)
h Nc nh

+ E
(2)
l

nl

Nc
+ E

(2)
h

nh

Nc
+ F

(2)
l n

2
l + F

(2)
lh nl nh + F

(2)
h n

2
h

!
. (2.10)

The analytic expressions of the one-loop form factors have been known since long
time [1–5, 82–84].

Regarding the two-loop form factors in the colour decomposition (2.10), contributions
from the leading colour (A(2)), one closed fermionic loop (D(2)

l , D(2)
h , E(2)

l , E(2)
h ), and two

closed fermionic loops (F (2)
l , F

(2)
lh , F

(2)
h ) are known both numerically as well as analytically [36,

39, 40]; B(2) and C
(2), instead, are known only numerically [36]. Their analytic evaluation

requires the evaluation of non-planar diagrams (that give no contribution to the leading
colour term), and they are presented for the first time in this work.

The evaluation of the previously known colour factors, together with the novel calculation
of B(2) and C

(2), allows us to obtain, for the first time, the complete analytic expression
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Figure 3: Two-loop Feynman diagrams for the process qq̄ ! QQ̄ (set 1 of 2).
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Figure 4: Two-loop Feynman diagrams for the process qq̄ ! QQ̄ (set 2 of 2).

and by renormalising the bare coupling constant ↵
b
s at the scale µ in the MS scheme,

↵
b
s S✏ = ↵s(µ

2)µ2✏
Z

MS
↵s

. (3.5)

– 8 –
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Integration-By-Parts Identity
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Gives relations between different scalar integrals with different exponents

Solve the system symbolically : Recursion relations
Solve for specific integer value of the exponents : Laporta Algorithm
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Integrand Reduction

KIRA + FIREfly LiteRed + FiniteFlow
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Evaluation of Integrals
Numerical Evaluation of the Master Integrals

Numerical Solution [MKM, Zhao] 

FeynTrop [Borinsky, Munch, Tellander] 

AMFlow [Liu, Ma] 

SeaSyde [Armadillo, Bonciani, Devoto, Rana, Vicini] 

DiffExp [Hidding] 

PySecDec [Borowka, Heinrich, Jahn, Jones, Kerner, Schlenk, Zirke] 

2

where D is the spacetime dimension, D↵ ⌘ q2↵ �m2
↵ are

usual Feynman propagators, and q↵ are linear combina-
tions of loop momenta `i and external momenta pi. The
actual integral that we want to get is

I(D; {⌫↵}; 0) ⌘ lim
⌘!0+

I(D; {⌫↵}; ⌘), (2)

with 0+ defining the causality of Feynman amplitudes.
In the following, we will suppress the dependence on D
and {⌫↵} whenever it does not introduce any confusion.

We set up ODEs by di↵erentiating MIs with respect
to ⌘ and then re-expressing them in terms of MIs, which
results in

@

@⌘
~I(⌘) = A(⌘)~I(⌘) , (3)

where ~I(⌘) is the vector of a complete set of m MIs and
A(⌘) is the m ⇥m coe�cient matrix. To obtain MIs at
⌘ = 0+, we solve the ODEs with BCs chosen at ⌘ =
1. As we will show, BCs are simply vacuum integrals
with equal masses, which can be computed rather easily.
Considering also that numerically solving these ODEs is
well-studied mathematical problem, our method provide
a systematic and e�cient way to compute multi-loop MIs
to high precision.

Boundary conditions — Before studying BCs rigor-
ously, let us explain the idea of choosing BCs at ⌘ = 1.
With a su�ciently large imaginary part in all denomi-
nators, we expect all kinematic variables to be negligible
because they are finite. Thus we should be able to set
both internal massesm↵ and external momenta pi to zero
at the boundary, which results in simple vacuum integrals
with equal masses. The only loophole in this argument
is that, as loop momenta `i can be arbitrarily large, it is
not obvious that `i · pj are negligible comparing with ⌘
even if ⌘ ! 1. The loophole can be fixed by studying its
Feynman parametric representation, and then our näıve
expectation holds in general.

We assume ⌫↵ > 0 for all ↵ in Eq. (1) to simplify our
discussion, although our final conclusion is unchanged
even without this condition. Then the Feynman para-
metric representation of Eq. (1) is given by

I(⌘) = (�1)⌫
� (⌫ � LD/2)Q

i �(⌫i)

Z Y

↵

(x⌫↵�1
↵ dx↵)

⇥ �

✓
1�

X

j

xj

◆
U

�D/2

(F/U � i⌘)⌫�LD/2
, (4)

where U and F are so-called graph polynomials that can
be related to the spanning 1-tree and 2-tree of the orig-
inal Feynman diagram, respectively (see e.g. Ref. [45]),
and ⌫ is short for

P
↵ ⌫↵. All kinematic variables are in-

corporated in F , leaving U depending only on Feynman
parameters.

An important observation is that |F/U| is bounded in
the open interval of Feynman parameter space. To show

this, we express F =
P

i Fi and U =
P

i Ui, where Fi and
Ui are monomials in Feynman parameters. By definition,
a 2-tree can be generated by a 1-tree, i.e. there exists a
pair of indexes j and k so that Fi = tiUjxk, where ti is
the kinematic part of Fi. We then have |Fi| < |ti||Ui| <
|ti||U| and |F| <

P
i |ti||U|, where we have used the fact

that Ui are positive definite in the open interval. AsP
i |ti| is finite, we conclude that |F/U| is bounded.
Because |F/U| is bounded, F/U in the denominator of

Eq. (4) can be neglected as ⌘ ! 1. This e↵ectively sets
all kinematic variables to zero in the original integral,
because F includes all kinematic variables. The result is
a fully massive vacuum integral Ibub(⌘) which shares the
same internal topology as the original integral. Because
this is a single scale integral, the ⌘ dependence can be
factorized out, which results in a relation

I(⌘) = ⌘LD/2�⌫
h
Ibub(1) +O(⌘�1)

i
, (5)

where Ibub(1) can be interpreted as a vacuum integral
with equal internal squared masses m2 = �i. It is worth
mentioning that the object J(⌘) ⌘ ⌘⌫�LD/2I(⌘) is ana-
lytic near ⌘ = 1 based on the above discussion.

To compute Ibub(1), we again reduce it to linear combi-
nation of corresponding vacuum MIs, diagrams of which
up to 3 loops are shown in Fig. 1. Computation of these
vacuum MIs is well studied, with analytical results avail-
able up to 3 loops [46–48] (see [49] and references therein
for some pioneering works) and numerical results avail-
able up to 5 loops [44, 50, 51]. We therefore conclude
that the computation of BCs in our method is a solved
problem.

FIG. 1. Diagrams of nonfactorizable vacuum master inte-
grals up to 3 loops.

Solving ODEs numerically — Knowing BCs, solv-
ing the ODEs numerically to obtain MIs at ⌘ = 0+ is a
well-studied mathematical problem. The solution can be
obtained e�ciently to high precision.
Singularities, which restrict the convergence domain of

Taylor expansion or asymptotic expansion, play essential
roles in the process of solving ODEs. For cases with only
real kinematic variables, most singularities of our ODEs
are located on the imaginary axis of the ⌘ complex plane.
These singularities are usually branch points of some MIs.

A Systematic and E�cient Method to Compute Multi-loop Master Integrals
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We propose a novel method to compute multi-loop master integrals by constructing and numer-
ically solving a system of ordinary di↵erential equations, with almost trivial boundary conditions.
Thus it can be systematically applied to problems with arbitrary kinematic configurations. Numer-
ical tests show that our method can not only achieve results with high precision, but also be much
faster than the only existing systematic method sector decomposition. As a by product, we find a
new strategy to compute scalar one-loop integrals without reducing them to master integrals.

Introduction — With the continuous improvement
of statistics and experimental systematics at the Large
Hadron Collider, the aim of testing the particle physics
Standard Model and discovering new physics strongly
demands theoretical predictions to also improve uncer-
tainty to the same level. For many important processes,
high order perturbative calculations are needed to this
end. At the one-loop order, thanks to the improvement
of traditional tensor reduction [1] and the development
of unitarity-based reduction [2–4], one can e�ciently ex-
press scattering amplitudes in terms of linear combina-
tions of master integrals (MIs). As the computation of
one-loop MIs is a solved problem [5–7], one-loop calcula-
tions can now be done automatically. Expressing multi-
loop scattering amplitudes in terms of MIs is also possi-
ble using such as the integration-by-parts (IBP) reduc-
tion [8–13] or the unitarity-based multi-loop reduction
[14–26]. Then, one of the main obstacles for multi-loop
calculation is the computation of multi-loop MIs.

We take two recent studies in literature as examples
to demonstrate how hard the multi-loop MIs computa-
tion is. One example is a two-loop calculation of pseu-
doscalar quarkonium inclusive decay [27], where the com-
putational expense of MIs is about O(105) CPU core-
hour. Another example is a calculation of four-loop non-
planar cusp anomalous dimension [28]. The reduction of
amplitudes to MIs in this problem has been done much
earlier in Ref. [29], yet the computation of these MIs is
very challenging. The final numerical result obtained in
Ref. [28] has uncertainty as large as 10% , which we be-
lieve is already the best precision that one can get with
a tolerable computational expense.

Currently, the only method that can systematically
compute any MI is the sector decomposition [30]. Un-
fortunately, this method is extremely time-consuming,
besides that it is hard to achieve high precision. Mellin-
Barnes representation [31] is another widely used
method, yet it has di�culty to deal with non-planar
diagrams, at least not in a systematic way (see Ref.
[32] and references therein for recent progress). The
di↵erential equation (DE) method [33–36] is a power-
ful tool to compute multi-loop MIs, which bases on the

fact that derivation of a MI with respect to its kine-
matic variables (including Mandelstam variables and in-
ternal masses) can be re-expressed as a linear combina-
tion of MIs using aforementioned reductions. For simple
problems, DE method can give analytical results thanks
to the introduction of canonical form [37–39]; while for
complicated problems, one can solve DEs numerically to
achieve results with high precision (see [40–43] and ref-
erences therein). However, it needs input of boundary
conditions (BCs) of MIs evaluated at another set of kine-
matic configurations. As there is no general rule to ob-
tain BCs for arbitrary problems at present, one needs to
find good BCs case by case, which makes it hard for DE
method to be systematical. In practice, sector decompo-
sition method is employed in Ref. [27], and both sector
decomposition method and Mellin-Barnes representation
method are employed in Ref. [28].
In this Letter, we develop a novel method to compute

multi-loop MIs by constructing and solving a system of
ordinary di↵erential equations (ODEs). Advantages of
our method are as follows: 1) Our BCs are fully mas-
sive vacuum integrals with a single mass scale, which are
much simpler to compute and have been well studied in
literature [44]. As a result, our method can be system-
atically applied to any complicated problem; 2) ODEs
can be numerically solved e�ciently to high precision, no
matter how many mass scales are involved in the prob-
lem; 3) Computing MIs with complex kinematic variables
is very easy in our method, while it could be hard for
other methods (note that introducing imaginary part to
kinematic variables is needed for many purposes, e.g., to
describe particle decay or to study the S-matrix theory).
Numerical tests show that our method can be much faster
than the only existing systematic method sector decom-
position. As a by product, we find a new strategy to
compute scalar one-loop integrals in arbitrary spacetime
dimensions without reducing them to MIs.
The method — Let us introduce a dimensionally reg-

ularized L-loop MI,

I(D; {⌫↵}; ⌘) ⌘

Z LY

i=1

dD`i
i⇡D/2

NY

↵=1

1

(D↵ + i⌘)⌫↵
, (1)
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the unphysical region, which is a fast and accurate procedure, and then use the di↵erential

equations to analytically continue the results into the desired physical region.

This work is organised as follows. In section 2 we describe the method in detail. In

section 3 we illustrate the reach of our method by computing several two loop examples

relevant for gg ! �� and qq̄ ! �� mediated by the top quark. We draw our conclusions

in section 4.

2 Method

We define a (scalar) Feynman integral In d = 4� 2✏ dimensions by

I =

✓
e
✏�E

i⇡
d
2

◆L Z LY

i=1

ddki
1

QN
j=1D

aj
j

, (2.1)

where L is the number of loops, ki is the loop momentum, N is the number of propagators

and Dj = q
2
j �m

2
j + i0+ is the denominator of the j-th propagator, where qj is the linear

combination of the loop momenta and the external momenta, and mj is the corresponding

mass. The aj denotes the respective power of the denominator.

The modern approach of multi-loop integrals consists in dividing the integrals into dif-

ferent topologies depending on their propagators. For each topology, a set of integration-by-

parts (IBP) identities [39], relating di↵erent integrals, is generated exploiting the Poincaré

invariance of the integrals. With such system of linear identities at hand, any integral with

the same topology can be written as a linear combination of a finite subset of integrals,

called the master integrals. Using the fact that derivatives of the master integrals with

respect to the external kinematic variables and internal masses yield a linear combination

of Feynman integrals in the same topologies, IBP relations can be used to reduce them

back to the linear combination of the master integrals, leading to a system of first order

partial di↵erential equations.

Let us consider a vector of M master integrals I = (I1, I2, · · · , IM )T, depending on

K independent kinematic variables x = (x1, x2, · · · , xK) and ✏, one can express the set of

equations as
@I(x; ✏)

@xi
= Ji(x; ✏)I(x; ✏), i = 1, · · · ,K , (2.2)

where Ji is an M ⇥M matrix, whose elements are rational functions of the kinematics x

and the dimension d. Each element of Ji contains singularities originating from both the

kinematics and the dimension d. The singularities from the kinematics are governed by

the Landau equations [40], while the poles on d must be rational numbers.

Although formally Eq. (2.2) is a set of partial di↵erential equations, only one ini-

tial condition is needed to fix the solution and as a result such system can be integrated

iteratively with respect to the kinematics, thereby making them similar to ordinary dif-

ferential equations. Therefore, the method for initial value problems [41] can be applied

straightforwardly to obtain the solution of the di↵erential equation of the integrals. The

main challenge is to obtain the suitable initial conditions and design subsequent integration

contours to fully fix the solution.

– 2 –
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pySecDec: a program for numerically evaluating dimensionally regulated parameter 
integrals on CPU or GPU (written in python, FORM, c++, CUDA)

New: Expansion by Regions & Amplitude Evaluation

pySecDec

Vermaseren 00; Kuipers, Ueda, Vermaseren 13; Ruijl, Ueda, Vermaseren 17

Publicly available (Github) 

Extensive tests (CI) and 
documentation

Heinrich, Jahn, SPJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21

Install with:  
python3 -m pip install --user --upgrade pySecDec
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Opportunities at ICSC

Leveraging the substantial resources provided by ICSC presents an opportunity to assess the new algorithms and the efficacy

The available resources align with the infrastructure required to produce results

Rigorous testing will be conducted to evaluate the stability of the code, performance across a high number of cores and for 
extended job durations.

Our overarching objective is to build the LoopIn code, which can be potentially used for application in collider physics, Gravitational 
waves and cosmology 

Interfaces between different public softwares and internal routines has been done to obtain the integrand in terms of Master Integrals

Interfaces are being built for the evaluation of Master Integrals

Submitted the computing resources request
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Integration-By-Parts Identity (Example)

Example of IBP Reduction :

I Example : One Loop Bubble

I(a1, a2) =

Z
ddk1

(k2
1)

a1(k1 + p)2)a2

I(a1, a2) =
a1 + a2 � d � 1

p2(a2 � 1)
I(a1, a2 � 1) +

1

p2
I(a1 � 1, a2)

17 / 47

One Loop Massless Bubble
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