
Declarative paradigms for
analysis description and

implementation

Alberto Annovi, Tommaso Boccali,

Paolo Mastrandrea, Andrea Rizzi

ICSC Spoke2 Annual meeting
 CINECA - 20/12/2023
https://agenda.infn.it/event/38374/

https://agenda.infn.it/event/38374/

Declarative paradigm for analysis description & implementation

● So far mainly imperative paradigms have been used

for analysis description and implementation

○ More straightforward application for “simple” tasks

and linear/serial tools

● What has changed in the last decade?

○ HW: parallelism/multithreading

○ SW: more expressive programming languages

(Python, C++ 17/20/23)

○ Tasks: increased complexity, increased data size

(analyses, combinations)

2

(from Wikipedia)

● Benefits of a (more) declarative paradigm:

○ Deeper decoupling between algorithm and implementation

■ Faster analysis development

■ Wider portability of an analysis (different datasets/experiments)

■ Stronger preservation of the results

○ Better scaling of development and preservation for

increasing complexity of the algorithms and size of the data

○ Better support for automatic (technical) optimisation

○ Simpler parallelization of the tasks

○ More flexibility: e.g. different backend processors

https://en.wikipedia.org/wiki/Comparison_of_programming_paradigms

Activity and plans

● The development of analysis frameworks based on (more) declarative paradigms is growing

momentum in the last years across the whole HEP community (e.g. Analysis Description Languages for the LHC)

● Activity in ICSC-S2-WP2 - use case “Quasi interactive analysis of big data with high throughput” (more

info in the talk by F. Gravili e T. Diotalevi)

○ Person power: 1+ from INFN-Pisa - new energies/ideas/feedbacks are always welcome

● Plan:

○ Build on modern and recent developments: NAIL (Natural Analysis Implementation Language - more details in backup)

■ Developed in the CMS collaboration, main developer Andrea Rizzi

■ Based on CMS’ nanoAOD (columnar) data format, written in Python, heavy lift in C++ (RDataFrame)

○ Extend the data-format interface

■ Development, integration and validation (e.g. ATLAS’ PHYSLITE)

○ Extend the framework to a full analysis chain

○ Test and optimisation phases will benefit from cutting-edge HW resources and community feedback

3

https://indico.cern.ch/event/769263/
https://agenda.infn.it/event/38374/contributions/215721/

Data-format interface

● In principle 3 data-formats are in the game:

a. data-format used inside NAIL for variables manipulation

b. data-format used in the description of the algorithm by the user

c. data-format used in the ntuple to be processed

● In the first (“CMS-localized”) implementation a = b = c

● c is experiment dependent: a translation is needed a ↔ c

● Strategy:

○ Translation via a Python tool integrated in NAIL

○ Encode all the data-format specific information (and configurations needed) in a dictionary (JSON file)

● Status:

○ Demonstrator integration ongoing

○ Next step - extension to a simple columnar format (e.g. ATLAS’ open data)

4

Extension to full analysis chain

● Application of (more) declarative paradigms to the full analysis chain:
○ Sample preparation

○ Event Loop (NAIL)

○ Snapshot/data reduction

○ Combination / comparison of distributions

○ Statistical analysis / Extraction of results

○ Selective / incremental execution

● Risks assessment:
○ “It’s just another framework” : Too specific / not general enough

○ “It would be great if it worked” : Too general / not customizable enough

● Status: development of a base structure, check for completeness

● Plan for demonstrator:
○ Single task prototype (e.g. Event Loop)

○ Incremental extension to other tasks

5Example: (over-) simplified energy calibration scheme

Summary

● The application of (more) declarative paradigms in analysis description and implementation

○ Can boost analysis’ speed (development and execution), preservation and portability

○ Is growing interest through the whole HEP community

● Plan:

○ Build on modern and recent developments (e.g. CMS’ NAIL with nanoAOD data-format)

○ Extend the data-format interface to

■ Development, integration and validation (e.g. ATLAS’ PHYSLITE)

○ Extend the framework to a full analysis chain

○ Test and optimisation phases will benefit from cutting-edge HW resources and community feedback

● Activity in ICSC-S2-WP2 - use case “Quasi interactive analysis of big data with high throughput”

○ Person power: 1+ from INFN-Pisa - new energies/ideas/feedbacks are always welcome

6

Backup

NAIL (Natural Analysis Implementation Language)

● “NAIL is an analysis language that should allow to define in an abstract way a data analysis of a typical HEP

experiment such as CMS or ATLAS. NAIL assumes an input data model for the event to process (...) and allow to

specify the event by event processing actions in a declarative form. Analysis variations for optimizations and

systematics do not need to be explicitly coded but are automatically derived from the event processing

computational graph. Currently ROOT's RDataFrame is used as backend for a concrete implementation of the

event processing as it allows parallelization and lazy evaluation.” (from the README file of the NAIL package)

● Developed in the CMS collaboration, main developer Andrea Rizzi

● Based on CMS’ nanoAOD (columnar) data format, written in Python, heavy lift in C++ (RDataFrame)

8

https://github.com/arizzi/nail

AoS vs SoA

● From Wikipedia : “In computing, an array of structures (AoS), structure of arrays (SoA) … are

contrasting ways to arrange a sequence of records in memory, with regard to interleaving, and are of

interest in SIMD and SIMT programming.”

 AoS SoA

● CMS: SoA (e.g. nanoAOD)

● ATLAS: AoS interface with SoA memory storage (e.g. xAOD, PHYSLITE)

9

Where the increased speed comes from?

● RVec

○ “A "std::vector"-like collection of values implementing handy operation to analyse them.”

○ Documentation

○ Optimised for speed

○ Its storage is contiguous in memory

○ Automatic internal loop

10

https://root.cern/doc/master/classROOT_1_1VecOps_1_1RVec.html

Where the increased speed comes from?

● RDataFrame

○ “ROOT's RDataFrame offers a modern, high-level interface for analysis of data stored in TTree , CSV and
other data formats, in C++ or Python.

In addition, multi-threading and other low-level optimisations allow users to exploit all the resources
available on their machines completely transparently.”

○ Documentation

○ Optimised for speed

○ Lazy evaluation and automatic internal loop

11

https://root.cern/doc/master/classROOT_1_1RDataFrame.html

