

Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

HaMMon Project: HAzard Mapping and vulnerability MONitoring

Spoke 2 Annual meeting 19/12/2023

.....

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing

Centro Nazionale di Ricerca in HF Big Data and Quantum Computing

Perché HaMMon

- Dare un contributo operativo al sistema Paese per la caratterizzazione del rischio legato agli eventi naturali estremi
- Creare strumenti utilizzabili in diversi domini applicativi
- Favorire la collaborazione tra enti di ricerca e sistema industriale italiano

HaMMon

HAzard Mapping and vulnerability MONitoring

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing

HaMMon

1

Post-event analysis	WP2
Seasonal forecasts and weather generator	WP3
Building features extraction from images	WP4
Vulnerability curves for earthquake, landslides and flood perils	WP5
Technological infrastructure to run and deploy the applications	WP1



Management

Persone

Project coordinator (PI): Antonio Tirri – Leithà Industrial Co-PI: Antonio Ballarin - Sogei Research Co-PI: Fabio Vitello – INAF System Engineer (SE): Costantino Cafaro – Leithà

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing

WP 1: Enabling Infrastructure

Objective: Creation and configuration of a Kubernetes cluster and a set of services such as data archive, cloud storage, workflow management as well as test, dev and prod environments, with a high-performance approach.

Task:

- T1.1: Infrastructure for PoC (Leader: UniTo; Contributors: INAF, UnipolSai-Leithà)
- T1.2: Infrastructure for production-level operational Services (INFN; UnipoSai-Leithà, ENEA, UniTo)
- T1.3: Data Archive (UniTN; Unipolsai-Leithà, INFN)

- D1.1 PoC level infrastructure (M7 Nov23 UniTO)
- D1.2 Use case requirements gathering (M7 Feb24 INFN)
- D1.3 Implementation of the first PoC of the Cloud Platform (M8 Jun24 INFN)
- D1.4 Implementation of the first integrated version of the Cloud Platform (M9 Oct24 INFN)
- D1.5 Implementation of the fully featured high-available Cloud Platform (M10 Aug25 INFN)
- D1.6 HaMMon Data Archive design (M7 Feb24 UNITN)
- D1.7 Final operational setup of the HaMMon Data Archive (M10 Aug25 UNITN)

UnipolSai

WP 2: Post-event analysis

Objective:

• Improve damage assessment, claims processing and time needed for on-site inspections after a natural disaster

sogei

• Collecting requirements for the remote inspection of areas damaged by natural disasters

ENEL

• Development of algorithms to identify and classify objects and features within 3D models and 2D images.

Involved partners:

Description of work:

- T2.1: Workflow for data acquisition and creation of digital twin (Leader: INAF, Contributors: UnipolSai-Leithà, Sogei, ENEA)
- T2.2: Design of web application for remote inspection of areas damaged by natural disasters (**UnipolSai-Leithà**; INAF, Sogei)
- T2.3: Development of a web service to expose 3D models to third-party applications (UnipolSai-Leithà; INAF, Sogei)
- T2.4: Automatic (or semi-automatic) analysis (INAF; UnipolSai-Leithà, Sogei, UniSalento)

- D2.1 Produce an algorithm for UAV data acquisition and creation of digital twin (M7 Feb24 INAF).
- D2.2 Deliver the design of a web application suitable for remote inspection in the aftermath of extreme vents (M8 Jun24 Unipolsai).
- D2.3 Deliver the web service for claim adjusters (M9 Oct24 Unipolsai).
- D2.4 Produce an algorithm for automatic or semi-automatic information extraction from digital twin (M10 Aug25 INAF).

WP 3: Seasonal forecasts and weather generator

Objective:

- Developing a system for seasonal forecasting for the hazard assessment of extreme events
- Creation of a weather generator tool for the characterization of climate change risks.

Involved partners:

Description of work:

- T3.1 Impact insights from seasonal forecasts (Leader: CMCC; Contributors: FBK, UnipolSai-Leithà, ENEA, Sogei)
- T3.2 A weather generator for risk management (CMCC; FBK, UnipolSai)

- D3.1 Analysis of seasonal forecast products (M8 Jun24 CMCC)
- D3.2 Derivation of an operational workflow for predictions of extreme events based on seasonal forecasts (M9 Oct24 CMCC)
- D3.3 CMCC Prototype of a weather generator software for risk management applications (M10 Aug 25 CMCC)

WP 4: Building features

Objective:

- Mapping the main characteristics of the built environment in Italy
- Development of algorithms for the classification of the built environment using multiple data sources
- Development of vulnerability curves for a set of hazards by using abovementioned building features

Involved partners:

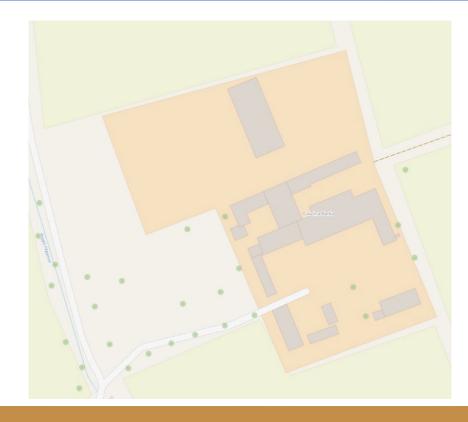
Description of work:

• T4.1 - Building Feature Extraction from aerial and satellite imagery (Leader: UnipolSai-Leithà; Contributors: INAF, UniBA)

ENEN

- T4.2 Building Feature Extraction from Street View Images (UnipolSai-Leithà; PoliBa, UniBa)
- T4.3 Development of specific vulnerability curves (CMCC, Contributors: PoliBa, ENEA, UnipolSai-Leithà, IREA)

- D4.1 Data provider shortlist and building features to monitor (M8 Jun24 UnipolSai)
- D4.2 Algorithm selection and dataset for ground truth (M9 Oct24 UnipolSai)
- D4.3 Vulnerability curves for seismic and flood risk (M10 Aug25 CMCC)
- D4.4 Classification models (M10 Aug25 UnipolSai)



Data provider

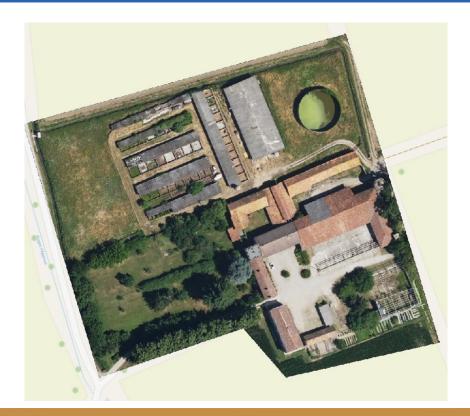
Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing


Data provider

Rilevazione 01-01-2014

Provider: Hexagon

Risoluzione: 30 cm



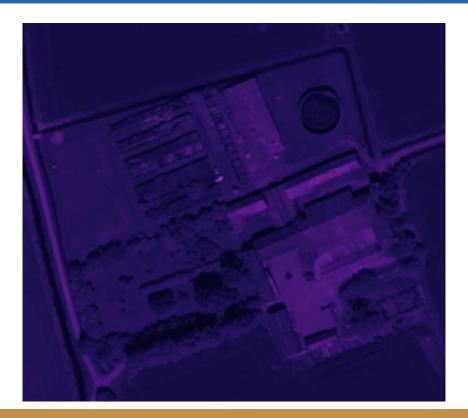
Data provider

Rilevazione 14-06-2021

Provider: Vexcel

Risoluzione: 8 cm

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing

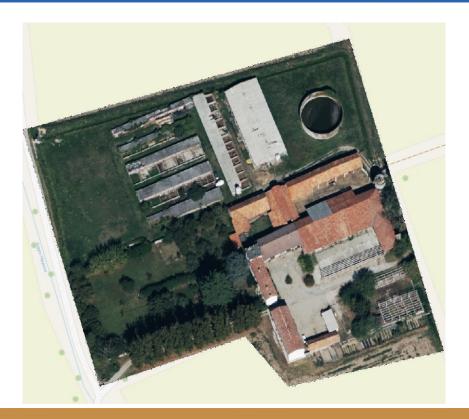

Data provider

Rilevazione 02-07-2022

Provider: Airbus

Risoluzione: 50 cm

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing



Data provider

Rilevazione 01-12-2022

Provider: Vexcel

Risoluzione: 15 cm

WP 5: Vulnerability curves

Objective:

- Provide vulnerability assessment criteria for damage induced on structures by slow-moving landslides
- Assess future evolution of risk related to slow-moving landslides due to evolving climate

Involved partners:

Description of work:

- T5.1 Assess risk related to slow-moving landslides for future climate scenarios (Leader: PoliBA; Contributors: UnipolSai-Leithà, Sogei, UniRoma1)
- T5.2 Provide vulnerability assessment criteria for buildings affected by slow-moving landslides (**PoliBa**, UnipolSai-Leithà, Sogei, UniRoma1, UnivAq)
- T5.3 Derivation of fragility and loss curves for structural and seismic risk for the existing residential building stock (**PoliBA**; UnipolSai-Leithà, Sogei, UniRoma1, UnivAq)

- D5.1 Sample numerical models of slopes affected by slow-moving landslides, endowed with guidelines for construction and initialization of the model, as well as for the application of weather-related boundary conditions. Results of analyses carried out using future climate scenarios (M9 – Oct24 - PoliBA)
- D5.2 Landslide-related damage charts for prototype cases (M9 Oct24 PoliBA)
- D 5.3 Fragility and loss curves for specific building typologies for structural and seismic risk. M10 Aug25 PoliBA)

Grazie!

Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing