

Report su WP4

S. Gennai (INFN-MiB) & A. Pompili (UniBA)

WP4: missione, obiettivi, "milestone" (in a nutshell)

Boosting the computational performance of Theoretical & Experimental Physics algorithms:

- 4.1 Tools & guidelines for developing and porting heterogeneous codes and algorithms on modern architectures
- 4.2 Competence & Training Center for heterogeneous computing
- O4.1: document best practises & SW tools for codes' development/porting to heterogeneous platforms (GPUs, FPGAs)
- O4.2 : prepare and support the R&D testbed to offer multiple architectures; **optimize single-node performance**
- O4.3 : organize training opportunities open to external users; trained personnel will help to boost the activities.
- M9-15: report on best practises for heterogeneous computing
- M22-26: first training opportunity; testbeds ready for users; user support in place
- M25-36: results from testbed & benchmarking activities
- M36: final report on technologies, training & support system. White Paper for use cases external to the CN.

Meeting nel 2023

- Per ora non si discutono argomenti tecnici nei nostri meeting
 - Organizziamo la preparazione degli eventi formativi
 - ... quindi i meeting si addensano a ridosso di questi
- Siamo comunque in contatto con alcuni WP e seguiamo le discussioni nei loro meeting
 - e.g. Flagship di nostro interesse in WP2
 - WP1 e WP3 sono almeno per ora "piu' distanti"
- Non appena le varie applicazioni cominciano "a macinare" vorremmo avere presentazioni dedicate che affrontino in dettaglio la parte più tecnologica coinvolta (rispetto magari alle presentazioni in WP1, 2, 3).
 In alternativa potremmo pensare a meeting congiunti?

Decemb	per 2023
	14 Dec Bi-weekly meeting WP4
Novemb	er 2023
	27 Nov - 30 Nov Introductory course to HLS FPGA programming.
	16 Nov Bi-weekly meeting WP4
October	2023
	26 Oct Bi-weekly meeting WP4
	12 Oct Bi-weekly meeting WP4
Septemb	per 2023
	28 Sept Bi-weekly meeting WP4
July 202	3
	11 Jul Bi-weekly meeting WP4
June 20	23
	19 Jun - 21 Jun First course about the porting on GPUs of code and algorithms
	15 Jun Bi-weekly meeting WP4
May 202	23
	18 May Bi-weekly meeting WP4
	04 May Bi-weekly meeting WP4
April 202	23
	21 Apr Bi-weekly meeting WP4
	06 Apr Bi-weekly meeting WP4
March 2	023
Widi Ci i Z	23 Mar Bi-weekly meeting WP4
(7775)	
Septemb	DEL ZOSS

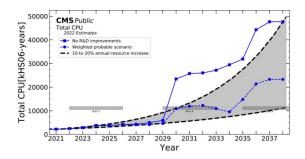
30 Sept kick-off meeting

Landscape document

Best practices for heterogeneous computing

Index:

- Introduction
- Estimates for computing needs for the current/future generation of HEP experiments
- · The need for heterogeneous computing
 - Performance/cost considerations
 - Power consumption considerations
 - The utilization of HPC systems
- Solutions available/under R&D
- - 1. GPU
 - Portability solutions under performance studies
 - ARM
 - 3. FPGA
- · Link to the proposed flagships
- Bibliography



Landscape document

Best practices for heterogeneous computing

Index:

- Introduction
- Estimates for computing needs for the current/future generation of HEP experiments
- · The need for heterogeneous computing
 - Performance/cost considerations
 - Power consumption considerations
 - The utilization of HPC systems
- Solutions available/under R&D
 - 1. GPU
 - Portability solutions under performance studies
 - 2 ARM
 - 3. FPGA
- · Link to the proposed flagships
- Bibliography

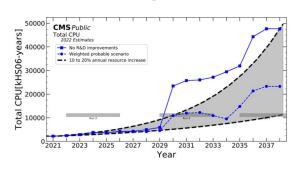
Introduction

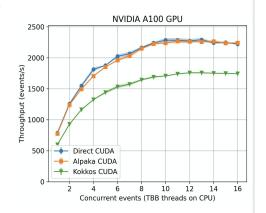
Heterogeneous computing refers to the use of different types of hardware platforms and accelerators (e.g., in practical cases today GPUs, FPGAs, but in principle on whatever technology) alongside traditional CPUs to improve computational performance and efficiency. Its use has become increasingly prevalent quite recently in many scientific fields especially when dealing with large datasets and complex computations in order to reduce the power consumption and/or the cost of the computing infrastructure.

Utilization of heterogeneous computing is for example gaining traction in domains like genomics [1], weather forecasts [2], medical diagnostic [3], just to cite a few clear examples. Also the industrial system has embraced utilization of heterogeneous computing, as for example in Ref. [4], often in association with Machine Learning techniques.

ICSC Italian Research Center on High-Performance Computing Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca





Landscape document

Energy/Event 0.000350 0.000350 0.000350 0.000150 0.000150 0.000100 0.000050 0.000050 0.000000 TTbar 1k benchmark lower = better

Algorithm	Platform	Number of Devices	Batch Size	Inf./s [Hz]	Bandwidth [Gbps]
FACILE	AWS EC2 F1	1	16,000	36 M	23
FACILE	Alveo U250	1	16,000	86 M	55
FACILE	T4 GPU	1	16,000	8 M	5.1
ResNet-50	AWS EC2 F1	8	10	1400	6.7
ResNet-50	V100 GPU	8	10	1,700	8.1
ResNet-50	ASE	1	1	460	2.2
ResNet-50	T4 GPU	1	10	250	1.2

Best practices for heterogeneous computing

Index:

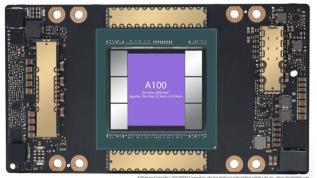
- Introduction
- Estimates for computing needs for the current/future generation of HEP experiments
- · The need for heterogeneous computing
 - Performance/cost considerations
 - Power consumption considerations
 - The utilization of HPC systems
- Solutions available/under R&D
 - 1. GPU
 - Portability solutions under performance studies
 - 2. ARM
 - 3. FPGA
- · Link to the proposed flagships
- Bibliography

Introduction

ieous computing refers to the use of different types of hardware platforms and rs (e.g., in practical cases today GPUs, FPGAs, but in principle on whatever yl alongside traditional CPUs to improve computational performance and efficiency. s become increasingly prevalent quite recently in many scientific fields especially ling with large datasets and complex computations in order to reduce the power ion and/or the cost of the computing infrastructure.

of heterogeneous computing is for example gaining traction in domains like [1], weather forecasts [2], medical diagnostic [3], just to cite a few clear examples. Industrial system has embraced utilization of heterogeneous computing, as for IREF. [4], often in association with Machine Learning techniques.

ter on High-Performance Computing omputing lissione 4 • Istruzione e Ricerca



Introductory course on GPU programming and portability tools

Descriptio

Lecturers:

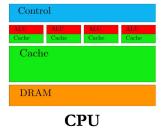
- Andrea Bocci (CERN),
- Felice Pantaleo (CERN),
- Francesco Visconti (INAF).

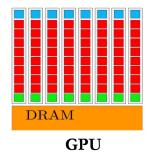
Tutors:

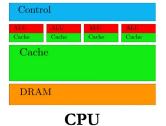
- Lorenzo Capriotti,
- Adriano Di Florio,
- Tommaso Diotalevi,
- Aurora Perego,
- Giorgio Pizzati.

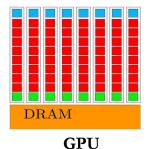
• Technical support:

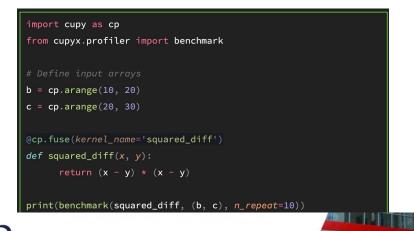
- · Gioacchino Vino and Adriano Di Florio.
- ReCas HPC for granting access to the virtual nodes and GPUs

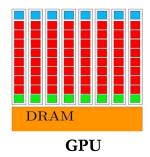


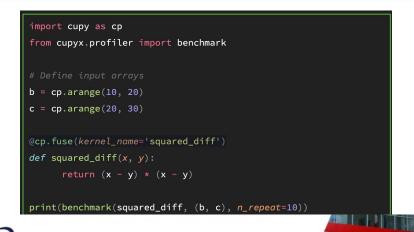














CPU

Partecipazione nei vari giori

- 75 (45) day one
- 50 (30) day two
- 35 (10) day three

Abbiamo anche lanciato una survey per capire il livello di apprezzamento del corso e suggerimenti per dove migliorare (see back up)

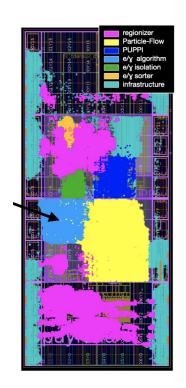
n_repeat=10))

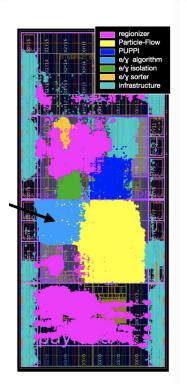
dia 4

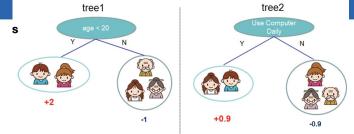


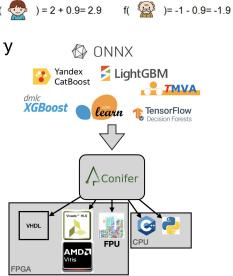
Introductory course on HLS, Conifer and the BondMachine

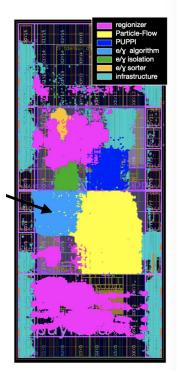
Lecturers

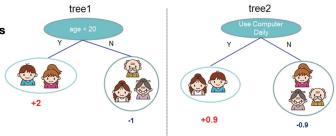

- Giovanni Petrucciani (CERN)
- Sioni Summers (CERN)
- Mirko Mariotti (Perugia)
- Tutors
 - Marco Lorusso
 - Giulio Bianchini
- Technical support:
 - Carmelo Pellegrino
 - Diego Michelotto
 - ML_INFN for providing the HW

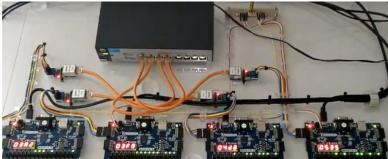


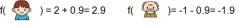


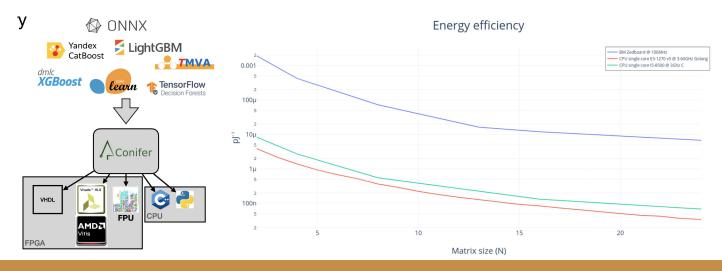


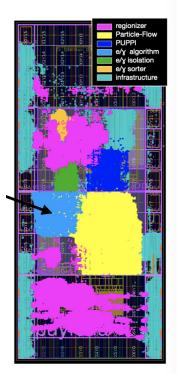


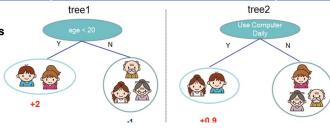


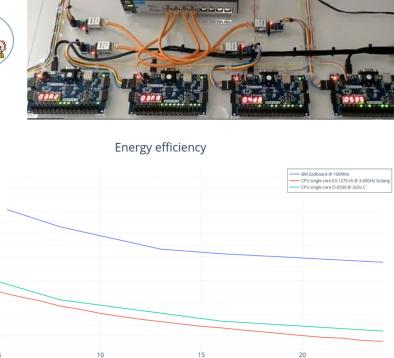


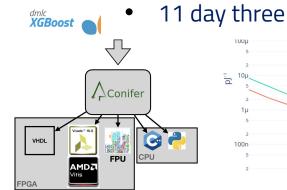












25 day one

15 day two

Matrix size (N)

Yandex CatBoost

Raccolta di contributi

Evento	Data	Titolo	Partecipanti
Corso / Tutorial	06/2023	First course about the porting on GPUs of code and algorithms (19-21 June 2023	79
Workshop	11/2023	From Physics to Medicine: XAI workshop	101
Corso / Tutorial	11/2023	Introductory course on HLS and FPGA	25

Titolo	Autori	Link a paper/conference
Fast Neural Network Inference on FPGAs for Triggering on Long-Lived Particles at Colliders	Andrea Coccaro Francesco Armando Di Bello Stefano Giagu Lucrezia Rambelli and Nicola Stocchetti	https://arxiv.org/pdf/2307.05152.pdf
Sviluppo di acceleratori per il Machine Learning e sistemi di Inference as a Service su FPGA	Daniele Spiga Diego Ciangottini Giacomo Surace Giulio Bianchini Loriano Storchi Mirko Mariotti	Workshop Loano
KServe inference extension for a FPGA vendor-free ecosystem	Daniele Spiga Diego Clangottini Giacomo Surace Giulio Bianchini Loriano Storchi Mirko Mariotti	CHEP 2023
Deep Learning techniques for reconstruction on ASTRI Mini-Array Monte Carlo data	Saverio Lombardi, Francesco Visconti, Michele Mastropietro	https://pos.sissa.it/444/713/pdf
A novel explainable approach in radiomics pipeline for local recurrence prediction of lung cancer: a feasibility study exploiting high energy physics potential to evaluate the model		ACM ISBN 979-8-4007-0815-2/23/09. https://doi.org/10.1145/3632047.36 32074
Triggerless data acquisition pipeline for Machine Learning based statistical anomaly detection	Gaia Grosso, Nicolò Lai, Matteo Migliorini, Jacopo Pazzini, A	CHEP 2023
40MHz Triggerless Readout of the CMS Drift Tube Muon Detector	Matteo Migliorini, Jacopo Pazzini, Andrea Triossi, Marco Zan	TWEPP 2023
Front-End RDMA Over Converged Ethernet, real-time firmware simulation	Gabriele Bortolato, Antonio Bergnoli, Damiano Bortolato, Dar	TWEPP 2023
Front-End Rdma Over Converged Ethernet, real-time firmware simulation	Gabriele Bortolato, Antonio Bergnoli, Damiano Bortolato, Dar	TIPP 2023

Formazione: what's next?

- Hackaton per gpu:
 Con quale forma e con quali tematiche (p.es. GPU per python?)?
 Come possiamo coinvolgere gli altri WP? (p.es. WP3?)
- Ottimizzazione codice gpu: profiling e best practices (in un corso avanzato)?
 - scheduler
 - profiling
 - tensorflow/pytorch
- Low level programming for FPGA
 - corso previsto per primo trimestre 2024
- Siamo in contatto con WP5 per pensare a eventi congiunti tra i 2 WP
 - Daniele ne parlera' nel suo talk
 - partendo anche dalla survey che avevamo lanciato all'inizio del progetto per vedere le competenze presenti tra le persone interessate:
 - https://docs.google.com/forms/d/1b0iyq77 vnXa3HbEYthjDh4I4WNlhAuT6NuJrjLPS40/edit#responses

Food for thoughts/possible issues

- l'idea originale che i WP tecnologici funzionassero in modalita' push non ha funzionato molto bene
 I contatti che si sono formati in realta' sono tra gruppi che si conoscevano gia'
 gli usecase in cui abbiamo sinergie sono principalmente con WP2
- poi c'e' la mancanza di expertise per porting su gpu di codice non C++
 Oui c'e' da intensificare i contatti con WP3 per capire l'expertise che sia giá presente nel WP (a parte Francesco Visconti ...)
- Di conseguenza l'attendance ai nostri meeting e' abbastanza limitata
 Forse dovremmo organizzare meeting condivisi con WP1 e WP3 in cui si discute la parte tecnologica dei flagship
- ultimo punto: come si accedono le FPGA al CNAF?
 a chi si chiede?

Additional considerations GPU

- o Ci sono già in corso diverse attività sia teoriche che sperimentali, al momento l'interesse maggiore e' lo sviluppo di framework platform agnostic
 - qui la maggiore esperienza viene dalla parte sperimentale, dove l'effort in questa direzione e' iniziato da tempo
 - serve rafforzare l'expertise italiana e fare formazione diffusa sul porting di algoritmi
 - al di la' del porting degli algoritmi c'e' poi da capire il fine tuning di diversi parametri per ottimizzare la memoria e l'esecuzione ovviamente questo puo' essere molto project dependent

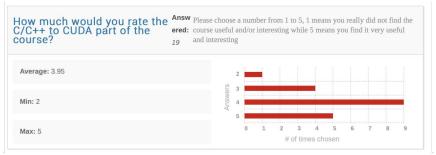
FPGA

- o Area con interesse crescente negli ultimi tempi, e **molto varia per quanto riguarda progetti e anche tipologia di HW**, attività principalmente lato sperimentale con forte liason a tematiche legate a trigger selection e reconstruction
- o Probabilmente l'area dove c'e' meno expertise e quindi anche dove serve maggiormente la formazione di nuovo person-powe
 - c'e' una conoscenza diffusa dei vari codici per la scrittura di firmware, manca forse la conoscenza per il setup di **cluster di FPGA** su media-grande scala (forse più indicato per WP5)
 - esistono vari testbed già funzionanti per alcuni progetti ma su scala ridotta, in altri casi si usano risorse messe a disposizione dai vari esperimenti (principalmente al CERN).

Conclusions

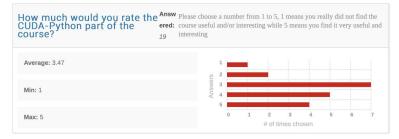
- organizzati primi eventi formativi con un buon riscontro (con impostazione piu' vicino all'ambito WP2 e un po' WP1 e WP3)
- bisogna insistere in questa direzione cercando di coinvolgere maggiormente WP1 e WP3
- adesso che il lavoro nell'ambito delle varie flagship e' iniziato vorremmo focalizzare nelle discussioni la parte piu' squisitamente tecnologica
 - (capire esigenze, individuare bottleneck, condividere strategie,...)
 - sia in meeting WP4 dedicati sia/o in meeting co-organizzati con gli spoke WP1-3

Back-up



Overall satisfaction (19 answers)

All the scores are between 3.5 and 4.0 out of 5



Overall satisfaction (19 answers)

All the scores are between 3.5 and 4.0 out of 5

Overall satisfaction (19 answers)

All the scores are between 3.5 and 4.0 out of 5

