Dottorato in Fisica degli Acceleratori: Incontri con gli studenti del I anno su temi di ricerca Roma – Sala Direzione INFN – 20/11/2023

Research Activity at SBAI (Basic and Applied Sciences for Engineering) - Sapienza Univ. And INFN RM1 and LNF, and collaborations with other Institutes

Beam Dynamics and Collective Effects in Linear and Circular Accelerators, Plasma Acceleration, Medical Applications and THz Source R&D

Enrica Chiadroni - November 20th, 2023

Group Research at SBAI Dept.

- E. Chiadroni (PA), L. Ficcadenti (INFN-Roma1), L. Giuliano (RTDA), M. Migliorati (PA), A. Mostacci (PA), L. Palumbo (PO), M. Petrarca (PA) + PhD and master students + INFN-LNF collaborators
- Our group has a long-standing tradition in particle accelerators and collective effects. We have close collaborations with UCLA, CERN, INFN and ENEA.
- We have expertise in:
 - design of devices for Linacs and circular accelerators
 - beam dynamics and development of simulation codes
 - collective effects and electromagnetic beam-environment interactions
 - RF characterization of accelerator devices
 - Plasma acceleration, THz Laser Laboratory
- We strongly contribute to National and International Project, e.g. EuPRAXIA_PP, EuPRAXIA@SPARC_LAB, FCC, ...

Group Research at SBAI Dept.

• Frontiers Accelerators

- Particle colliders (e.g. LHC and its upgrade), Radiation sources (Inverse Compton Scattering, UC-XFEL)
 - Beam dynamics studies, optimization and R&D
- Novel Accelerators
 - Plasma Wakefield Accelerators (SPARC_LAB, EuPRAXIA and EuPRAXIA@SPARC_LAB)
 - Numerical Studies and Advanced Diagnostics
- Accelerator Applications
 - Medical (FLASH Therapy) and THz Applications
 - Beam dynamics studies, Linac Design
 - THz production for spectroscopic imaging for basic and applied science


```
EUROPE TARGETS
A USER FACILITY FOR
PLASMA ACCELERATION
```

Ralph Assmann, Massimo Ferrario and Carsten Welsch describe the status of the ESFRI project EuPRAXIA, which aims to develop the first dedicated research infrastructure based on novel plasma-acceleration concepts.

Here the second	This scientific success stary has been made possible through a continuous cycle of innovation in the physics and technology of particle accelerators, driven for many decades by seguinotary research in nuclear and particle physics. The invention of radio-frequency (RP technology in the 1920 or operator be path to an energy gain of several tens of Mody permeters. Very-high-energy accelerators were analy the "Wrote energy scales" and "broten and the first handly the "Wrote energy scales" and "broten and the first analy the "Wrote energy scales" and "broten and the Hill. New collision rates by orders of magnitudes. The invention of stochastic cooling at CEIN reability the discovery of the W and Z bosons 4.0 years ago. However, intrinsic bechnological and conceptual limits erators are increasing at researchers seek higher beam erators are increasing as researchers seek higher beam energies. Colliders for particle physics have reached a	THEAUTHORS Ralph Assmann DESYand INRy, Carsten Websch University of Leerpool/INRY

https://cerncourier.com/a/europe-targetsa-user-facility-for-plasma-acceleration/

Upgrade of LHC (HL-LHC or Hi Lumi LHC)

High Luminosity LHC Participants

LHC / HL-LHC Plan

The Future Circular Collider Project (FCC)

The Future Circular Collider Project (FCC)

International FCC collaboration to study:

pp-collider (*FCC-hh*) → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV *pp* in 100 km

- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step
 - p-e (FCC-he) option

Activity: Collaboration with CERN on Collective Effects and Machine Impedance Model for FCC-ee

Impedance budget and wakefields: example for the bellows

Current model

Alternative model under study

Activity: Collaboration with CERN on Collective Effects and Machine Impedance Model for FCC-ee

Beam dynamics and collective effects (using analytical tools and simulation codes)

The PhD activity is performed in collaboration mainly with CERN, but also with IHEP (China) and SuperKEKB (Japan)

HIGH BRIGHTNESS C-BAND RF PHOTOINJECTORS FOR ELECTRON LINACS

High brightness beams for advanced radiation sources by a proper combination of radio frequency (RF) **photoinjectors** and linear accelerating (Linacs) sections

Inverse Compton Sources (DARPA-GRIT)

- Small footprint facility aimed to • produce X/γ radiation from electron-photon scattering
- Design based on a hybrid photoinjector electron source and a room temperature C-band (5.713 GHz) linac

Ultra Compact X-rays Free Electron Laser

(UC-XFEL)

- Compact (~ 40 m) facility generating high brightness X-rays
- Design based on a high field (240 MeV/ standing wave photoinjector, m) **cryogenic** (77 K) high gradient RF linacs and **short period** $(3 \div 6.5 mm)$ MEMS

based undulators

MFMS= Micro-Electro-Mechanical Systems

J. B. Rosenzweig, N. Majernik et alia, "An ultra-compact Xray free-electron laser," 2020.

XFEL for chip metrology

Single **XFEL** spot

- For semiconductor device imaging we need 1.5 Å (resolution, penetration for 3D)
- **Ptychographic laminography** demands high level of coherence

Main Research Activities

- Beam dynamics studies for emittance and peak current optimization (a)
- Studies on **instabilities** aimed to keep under control the effects of the self-fields generated by the electron beam in the downstream linac sections **(b)**

Beam Dynamics

Design

- Design of the **final focus** optics for the Compton interaction point (c)
- RF Design of novel RF structures that include:
- Electromagnetic design, to optimize the field shape inside cells (d)
- Mechanical design and Manufacturing: reproduction of the structure in the mechanical design for construction and realization. (e,f)

max amplitude

Main Research Activities

Applications

- The good performances shown by hybrid photoinjectors allow to foresee a wide panorama of applications beyond Compton sources
- Hybrid photoinjectors could be employed to drive FEL radiation or to fulfil THz radiation sources for medical applications
- X-rays in XRAFEL configuration for 8 passes (g)

FLASH Effect in Radiotherapy

3y per pulse

FLASH THERAPY is a new way to deliver the dose:

- ms pulses of radiation,
- beam-on time < 100-200ms
- high dose per pulse (>1 Gy)
- high mean dose rate (>40-100Gy/:

	Conventional	FLASH
Facility	γ–rays: ¹³⁷ Cs	e- LINAC
Nominal energy (MeV)	0,66	4,5
Pulse vs continuous	Continuous	Pulsed
Pulse repetition frequency (Hz)	-	150 Hz
Dose (Gy)	17	17
Mean Dose rate (Gy/s)	0,03	60
Temporal width of pulse	few ms	1 ms
Favaudon et al., Science Translational Medicine 6, 2014		

Activity at Sapienza

First Step

Machine for pre-clinical studies of FLASH has been funded with 1.6 ME

Prototyping Phase

- **1. Pre-prototypes** on 5-cells **without couplers** to test the brazing procedure, vacuum sealing and the **in-house** mechanical design.
- 2. Prototype of 12 cells with couplers has been brazed to perform low-power RF tests.

In house building of the accelerating cavities

Screws: **prevent external clamping** and ensure alignment and easier assembly

Main contributors: D. Alesini, R. Di Raddo, L. Faillace, L. Giuliano, M. Magi, M. Migliorati

Plasma Acceleration Activity

EuPRAXIA and EuPRAXIA@SPARC_LAB Collaboration

- The EuPRAXIA@SPARC_LAB project focuses to realize a compact plasma-based Free-Electron Laser user facility
 - Plasma acceleration module
 - Ancillary components
- Conventional undulators are still too long => not compact and expensive
 - betatron motion of electrons in an ion-channel to emulate an undulator
 - very compact device

Experiment funded by CSN5 of INFN (2024-2027)

Ion Channel Concept

- Replaces magnetic undulator with strong focusing ion channel
- Linear focusing force produces periodic betatron oscillations

Ion Column Formation

- → Neutral plasma creation through ionization laser
- → Blowout of the plasma electrons through the driver beam
 - → plasma electrons are expelled from the plasma region toward the neutral gas region
 - negligible restoring force outside column
 - negligible accelerating force inside column
 - linear restoring force inside column

A.F. Habib et al., https://doi.org/10.48550/arXiv.2111.01502

THz Generation

THz-CW source in operation

Gas cell for spectroscopic measurement on gas samples

Available average power: 10µW @1THz and nW @3THz