



# Overview on accelerator activities of the INFN Milano LASA SRF Group

Laura Monaco on behalf of LASA SRF group







- Historical intro of the SRF LASA group
- Cavities, cryomodules and ancillaries
  - Expertise on prototypes and ancillaries
  - Series production (in-kind contribution)
  - Future activities
- Photocathodes

## Path towards INFN LASA SRF experties

- The **First Superconducting Cyclotron** in Europe in the '80s, now at LNS, was realized at LASA
- TESLA and the TESLA Collaboration (90's ...)
  - TESLA, a TeV-scale electron-positron collider, was the first accelerator based on SRF.
  - As a funder of the collaboration, INFN LASA contributed to:
    - bring SRF to be reliable and usable for acceleration application
    - develop high brightness RF gun based on photocathodes





- European XFEL (from 2000's ...)
  - A **17.6 GeV** SRF based accelerator feeding a **X-Ray Free Electron Laser**.

This project has succesfully demonstrated the possibility of **application of SRF to large projects**,

paving the way to further challenging accelerators (LCLS-II, SHINE, ESS, PIP-II, ILC, FCC-ee, CEPC, etc.)







## SRF and Photocathode Expertise

- Superconducting RF cavities (and ancillaries) development
- Photocathodes for high brightness injectors development



## SRF and Photocathode Expertise

- Superconducting RF cavities (and ancillaries) development
- Photocathodes for high brightness injectors development









## LASA SRF Group: expertise and experience in SRF



## Cavity – Electromagnetic Design

- Full parametric model in terms of **7 geometrical parameters**
- We built a 2D parametric tool BuildCavity for the analysis of the cavity shape on the electromagnetic parameters based on SUPERFISH
- A multicell cavity is then built minimizing Field Flatness error, compute  $\beta$  and TTF as well as final performances

PIP-II LB Cavity: Example of EM analyses performed: Dipole HOM at 1678 MHz

showing partial reflections in the FPC

• The **2D model** constitutes the **basis for further 3D simulations** (HFSS, CST) for HOMs, multipacting, field emission considerations





## Cavity – Mechanical Design

- The **EM design** is **transferred** to **mechanical analysis** (**iterative loop**) for estimating critical parameters as:
  - Ring radius
  - Stiffness
  - Tuning sensitivity
  - Vacuum sensitivity
  - Lorentz Force Detuning (LFD)
  - PED, ASME compliance
- Developed specific tool Mecavity





Dynamical analyses: natural modes

| Mechanical Parameters                                    | INFN design |     |
|----------------------------------------------------------|-------------|-----|
| Cavity wall thickness (mm)                               | 4.2         |     |
| Stiffening ring radius (mm)                              | 70          |     |
| Internal volume (1)                                      | 69          |     |
| Cavity internal surface (m <sup>2</sup> )                | 1.8         |     |
| Stiffness (kN/mm)                                        | 1.7         |     |
| Tuning sensitivity K <sub>T</sub> (kHz/mm)               | 205         | × · |
| Vacuum sensitivity $K_V$                                 | Q           |     |
| - $k_{ext} \sim 21 \text{ kN/mm} (\text{Hz/mbar})$ -     | -0          |     |
| LFD coefficient K <sub>L</sub>                           | 1.8         |     |
| - $k_{ext} \sim 21 \text{ kN/mm} (\text{Hz/(MV/m)}^2)$ - | -1.0        |     |
|                                                          |             |     |





## Cavity – Towards production -> Prototypes

- A key element of our expertise consists in the transfer of the electromagnetic and mechanical design to production:
  - Nb quality control (mech. prop., Ra, foreign inclusions, etc.)
  - RF procedures from sheets to cavity
  - Define production cycle to guarantee final length and frequency
  - Define appropriate heat and surface treatment (BCP, EP, etc.)
  - Mechanical and RF measurement and control plan
  - Test of defined scheme on prototypes
  - 2 K test for final acceptance





#### Bead pull system (3.9 GHz E-XFEL)





From HC to ESS CAV



## Cavity – Nb studies and characterization

- **Nb quality is critical** for the final cavity performances:
  - Mechanical properties (grain size, hardness, thickness, etc.)
  - Chemical composition (elements and gas contents)
  - RRR (Residual Resistance Ratio)
  - Surface defects (scratches, marks, grease, etc.)
  - Foreign materials (ECS Eddy Current Scanning)
  - Traceability (pressure vessel code)

### • Studies and tools developed:

- Treatment studies (BCP/EP) of defect evolution on Nb samples
- Final roughness (Ra) of Nb surface
- RRR measurements set-up
- Experience on FG and LG Nb
- EBW (Electron Beam Welding) studies





ECS at DESY



LG Nb dics







No /3 Better / Add bet = 200 kW HO - 30 km















## Cavity – Thermal and Surface treatments

- Once the mechanical production is complete, **thermal** and **surface treatments** play a crucial role in the **cavity preparation** to reach the **final performances**.
- Thermal treatments for stress release, de-hydrogenation, performance improvement:
  - Vacuum quality (RGA Residual Gas Analysis), pressure and temperature control, RRR
- Surface treatments for proper finishing and cleaning of the inner surface exposed to RF:
  - BCP (Buffered Chemical Polishing) and EP (Electro Polishing)
- Studies and tools developed:
  - Depth profile and SEM/EDX for process optimization and quality
  - Acid flow simulation and test bench for process improvement
  - Temperature and thickness evolution during BCP/EP
  - Inner visual inspection set-up for surface finishing check
  - X-ray fluorescence set-up for foreign materials analysis (non-destructive diag.)

X-ray fluorescence system and Inner optical inspection











## Cavity – Thermal and Surface treatments



10

04:33:36

Warm EP

05:45:36

Cold EP

T control during EP

09:21:36

EP on-line measurements (PIP-II)

## Cavity – Final assembly before cold VT

- Final assembly operations are crucial to reach good final performances of the cavity, done in Clean Room (ISO4-7):
  - Final surface treatments: BCP/EP and heat treatments
  - Cleaning and rinsing procedure, HPR (High Pressure Rinsing), UPW (Ultra Pure Water) system
  - Accessories assembly (antennas, flanges, etc.)
  - Pumping to low pressure (10<sup>-10</sup> mbar) with SPSV (Slow pump/Slow vent), leak check and RGA
  - RF Final check before delivery









## Cavity – Cold VT at LASA

- Clean Room and UPW
  - Ultra-Pure Water plant
  - ISO4-7 clean room, HPR system
  - Qualified Slow Pumping Slow Venting system
- **Cryostat**:  $\phi$  700 mm, 4.5 m length, losses ~ 1 W @ 2 K
- Residual magnetic field: < 8 mGauss (single shield)
  - Single µmetal external shield and, second cryogenic shield (Cryoperm) installed
- Sub-cooling system:
  - Cooling power:  $\sim$  70 W @ 2 K
  - Lowest temperature 1.5 K.
  - Direct filling at 2 K
- **RF capability:** 500 to 3900 MHz
- Dedicated inserts with several diagnostics:
  - 2<sup>nd</sup> sound detectors for quench localization
- cryogenic photodiodes
- fast thermometry
- flux gate
- X-ray counter and X-ray Nal spectrometer



Second Sound





Real-time Scintillator



#### Internal Magnetic Shield







## Cavity – Insert installation





#### Connection to SPSV



#### Craning to test bunker





#### Cryostat insertion



## Cavity ancillaries - Frequency tuners

- Each SRF cavity must be equipped with a cryogenic tuning device, Cold Tuner, to keep its resonant frequency as close as possible to the project value and thus compensate detuning.
- Many possible detuning sources:
  - Lorentz forces on cavity walls shielding currents induced by electromagnetic fields
  - **Microphonics** and stochastic noise, strongly correlated to helium bath pressure fluctuations
- Tuners control static frequency value (slow action, scale of second to minutes) and suppress dynamic detuning (fast action, scale of milliseconds).
- At INFN LASA we designed, developed and experimentally qualified tuners and their control systems in many international projects







E-XFEL Main



**INFN Blade Tuner at S1-Global** 

KEK, Japan

INFN Tuner for the ADS cryomodule at IPN-Orsay, **France** 





Required power rises with the square of detuning!



INFN Tuner for the ILC cryomodule at Fermilab, **USA** 

Piezoelectric actuators for fast tuning, E-XFEL, DESY



## **Cavity ancillaries - Magnetic shielding and compensation coils**

We have design and experimentally qualified cryogenic magnetic shielding solutions for different cavities, for cryomodule as well as for cryostats.

Magnetic shield on a 3.9 GHz cavity mockup at Eu-XFEL Magnetic shield on a 704.4 MHz TRASCO cavity installed below the helium vessel

Helholtz coils setup for residual field compensation during SC transition



LASA cryostat magnetic shield being qualified



•

•

•

•

## **Cryomodules for SC cavities**

Since TESLA we are collaborating to the R&D on cryomodule design, toward:

- **High filling factor:** maximize real estate gradient/cavity gradient ٠
- Moderate cost per unit length with simple design, based on reliable technologies and with low static heat losses
- Effective cold mass alignment strategy with room • temperature alignment preserved at cold
  - Wire Position Monitors designed and demonstrated
- Effective, optimized and reproducible assembling procedures

### As well as cryomodule production:

- **EUROTRANS / MYRRHA** demonstrator module
- **TESLA Test Facility** at DESY
- XFEL 3rd harmonic modules for the E-XFEL





















## From prototypes to series production

- Large projects requirements:
  - Large number of components (cavities, cryomodule, ancillaries), massive number of high quality Nb sheets
  - Process optimization (industrialization) for high reproducibility and reliability
  - High production rate

### • Laboratory resources:

• **not able to manage** large numbers in term of quality, man-power, optimized cost, scheduling respect, infrastructures, etc.

## • Criticalities, warnings (mainly for cavities):

- Optimization of components design: feasible for the production and for repairing action
- Stable and feasible preparation process: no R&D during series production -> high risk of delays!
- Long production cycle: from mechanical production to final steps some months -> risk of several defective cavities and a long and expensive recovery process
- High Quality Control (QA/QC plan) is a must: diagnostic of large number of parameters during all production steps (failures mitigation)
- Preventive maintenance on plants: mitigation of possible faults











## **European XFEL**

















## European XFEL: 1.3 GHz series cavity



### **Purposes:**

- 800 SC cavities, 3 Nb suppliers, 2 industries, 2 recipes (Final EP/ Flash BCP)
- Average usable E-XFEL gradient
  - 23.6 MV/m @ Q<sub>0</sub>=1x10<sup>10</sup>, X-Rays <1x10<sup>-2</sup> mGy/min
- Delivery rate about 8 CVs/week

### How it worked:

- Materials and vendors qualification (Nb)
- Definition of detailed production specs (2 recipes), PED 4.3 compliant (prototypes, TESLA experience)
- Cavity producers qualification (mechanical)
- Technology transfer to industries
- Grown and qualification of insfrastrucutes
- Qualification of the transferred technology
- Set-up of the «external» QA/QC at industries
- Series cavities production: continuos monitoring of key parameters
- Prompt feedback of the running production quality (analysis of VT vs. key parameters)



10 Novembre 2023 Seminario INFN Acceleratori



## **European XFEL: 1.3 GHz series cavity results**

### European XFEL

## **Results:**

- Accepted Cavities as Delivered: ≈ 70% (over 800)
- After Additional Treatments (mainly HPR): all cavities accepted
- Rejected Cavities (replaced by companies): 8 (1%)
- In total **3 years** (2013-2015)















## **European XFEL: 3.9 GHz complete Cryomodule**

- 10+10 Cavities, 1 Nb supplier, 1 industry, 1 recipe (BCP)
- 3.9 GHz E-XFEL gradient 15 MV/m @ Q<sub>0</sub>=1x10<sup>9</sup>
- **Cavity ancillaries:** Blade Tuners, magnetic shields, He-tank, etc.
- Cryomodule: cold mass, thermal shielding, etc.

## How it worked:

- RF and mechanical design of cavity
- Recipe developed also in collaboration with industry using three prototypes, PED 4.3 compliant
- Industry and LASA infrastructures adapted to 3.9 GHz geometry (smaller) and qualified (BCP treatment, new HPR set-up, inner optical inspection system)
- QC at industry and at LASA -> QC improved (based on 1.3 GHz experience)
- Production shared between Industry and LASA (final steps in LASA clean room)
- Cold VT (performance qualification) all done at LASA





















## **European XFEL: 3.9 GHz cavity and cryomodule results**



### **Results:**

- Accepted Cavities as Delivered: 85% of 20 overall
- After Additional Treatments (only HPR): all accepted
- Rejected Cavities: none

September 23

• Delivery rate: 2 cavs/3 weeks











### RF Curvature Linearization by AH1











## **European Spallation Source**



EUROPEAN SPALLATIO

**ess** 



## **European Spallation Source**



**ess** 



## ESS: 704.4 MHz series cavity

### **Purposes:**

- 36 (+2) SC cavities, 1 Nb suppliers, 1 industry, 1 recipe (BCP)
- ESS medium  $\beta$  (0.67)  $E_{acc} \ge 16.7 \text{ MV/m} @ Q_0 \ge 5 \cdot 10^9$

## How it is working:

- Definition of Nb specs and QC (inspection at Nb vendor, ECS at DESY)
- Optimization of the RF and mechanical design
- Definition of detailed production specs (1 recipe), PED sound engineering practice compliant (3 prototypes)
- Infrastructures adapted to 704.4 MHz larger geometry and qualified (BCP treatment, new HPR head geometry, new inner inspection system, EP treatment, tuning machine)
- Definition of the QC plan -> QC improved for the interfaces between all partners (INFN-Industry-DESY-CEA-ESS)
- Management of all documentation (INFN Alfresco based) and database developed for analysis of key production parameters
- Cold VT at LASA for «special» cavities (more diagnostics available)





QC documents and

DB analysis





## ESS: 704.4 MHz series cavity results

## **Results:**

- Cavities at CEA for string assembly (cryomodule): 34 (+1 spare)
- Accepted Cavities as Delivered: 27
- Recovered after Additional Treatments
  - HPR: 3; EP: 3
- Further 4 cavities produced (EP cycle):
  - 2 at CEA for string assembly, 2 qualified (VT)
- Cavities in quarantine: 5

### **Recovery strategy:**

- HPR improved to better fit the cell shape (new head), EP adapted to ESS shape for surface treatment: -> performance improvement of poor cavities
- rotating BCP:
  - -> some performance improvement
- Risk mitigation with 4 new cavities produced:
   -> all cavities overcome ESS goal (EP process)















## PIP-II: SC RF CW linac, 2mA, 800 MeV



## PIP-II: INFN in-kind contribution

INFN LASA firstly provided a *novel RF design for the LB650 cavities*, compatible with the Fermilab technical interfaces and performances specifications.

INFN-LASA contribution will cover the needs of LB650 section, and this includes:

- **38 SC cavities** required to equip **9 cryomodules** with 2 spares, delivered **as ready for string assembly**.
- Qualification via vertical cold-test provided by INFN through a qualified cold-testing infrastructure acting as a subcontractor
- Compliance to the PIP-II System Engineering Plan





| PIP-II LB650 Project Specifications |                      |  |
|-------------------------------------|----------------------|--|
| Acc. Gradient                       | 16.9 MV/m            |  |
| Q <sub>0</sub>                      | 2.4 10 <sup>10</sup> |  |
| RF rep rate                         | 20 Hz to CW          |  |
| Beta                                | 0.61                 |  |

| INFN Deliverable Components                                      | Acceptance<br>Early Date |  |
|------------------------------------------------------------------|--------------------------|--|
| LB Jacketed Cavities (Batch 1 - Qty 4) and<br>Pre-Series (Qty 2) | May-2025                 |  |
| LB Jacketed Cavities (Batch 2 - Qty 4)                           | Jun-2025                 |  |
| LB Jacketed Cavities (Batch 3 - Qty 4)                           | Aug-2025                 |  |
| LB Jacketed Cavities (Batch 4 - Qty 4)                           | Oct-2025                 |  |
| LB Jacketed Cavities (Batch 5 - Qty 4)                           | Dec-2025                 |  |
| LB Jacketed Cavities (Batch 6 - Qty 4)                           | Feb-2026                 |  |
| LB Jacketed Cavities (Batch 7 - Qty 4)                           | Apr-2026                 |  |
| LB Jacketed Cavities (Batch 8 - Qty 4)                           | Jun-2026                 |  |
| LB Jacketed Cavities (Batch 9 - Qty 4)                           | Aug-2026                 |  |



## **PIP-II: LB650 cavity challenges**

PIP-II **LB650** cavities are among the key scientifical challenges of the project:

- an **unprecedented quality factor** is required for these resonators.
- Accelerating and **High-Order Modes** must be assessed so that neither instabilities nor additional cryogenic losses are posing critical issues.
- PIP-II operational scenario is an uncharted territory in terms of detuning control
  - Requires deep understanding of Lorentz Force detuning, pressure sensitivity and mechanical leading parameters as rigidities, yield limits, stresses.
- Detailed finite element analysis to ensure compliancy to ASME codes.





|           |          | • |  |
|-----------|----------|---|--|
|           |          |   |  |
|           | $\wedge$ |   |  |
|           |          |   |  |
|           |          |   |  |
|           |          |   |  |
|           |          |   |  |
| $\square$ |          | Y |  |
|           |          |   |  |

Example of FEM meshing and structural analyses on LB650

| $\beta_{aeometric}$                                   | 0.61                        |  |  |
|-------------------------------------------------------|-----------------------------|--|--|
| Frequency                                             | 650 MHz                     |  |  |
| Number of cells                                       | 5                           |  |  |
| Iris diameter                                         | 88 mm                       |  |  |
| Cell-to-cell coupling, k <sub>cc</sub>                | 0.95 %                      |  |  |
| Frequency separation $\pi$ -4 $\pi$ /5                | 0.57 MHz                    |  |  |
| Eq. diameter - IC                                     | 389.8 mm                    |  |  |
| Eq. diameter - EC                                     | 392.1 mm                    |  |  |
| Wall angle – Inner-End cells                          | <b>2</b> °                  |  |  |
| Effective length $(10^*L_{hc})$                       | 704 mm                      |  |  |
| Optimum beta $\beta_{opt}$                            | 0.65                        |  |  |
| $E_{peak}/E_{acc} \otimes \beta_{opt}$                | 2.40                        |  |  |
| $B_{peak}/E_{acc} @ \beta_{opt}$                      | 4.48 mT/(MV/m)              |  |  |
| $R/Q @ \beta_{opt}$                                   | 340 Ω                       |  |  |
| $G @ \beta_{ont}$                                     | 193 Ω                       |  |  |
| Inner cells stiffening radius                         | s 90 mm                     |  |  |
| External cells stiffening radius                      | 90 mm                       |  |  |
| Wall thickness                                        | 4.2 mm                      |  |  |
| Longitudinal stiffness                                | 1.8 kN/mm                   |  |  |
| Longitudinal<br>frequency sensitivity                 | 250 kHz/mm                  |  |  |
| LFD coefficient<br><i>k<sub>ext</sub> at 40 kN/mm</i> | -1.4 Hz/(MV/m) <sup>2</sup> |  |  |
| Pressure sensitivity<br>k <sub>ext</sub> at 40 kN/mm  | -11 Hz/mbar                 |  |  |
| Maximum Pressure<br>VM stress at 50 MPa               | 2.9 bar                     |  |  |
| Maximum Displacement <i>VM stress at 50 MPa</i>       | 1.5 mm                      |  |  |

## PIP-II: LB650 cavity on-going activities

### R&D towards high Q<sub>0</sub> and preparation for transfer to industry

- Prototypes to develop proper surface treatments
  - B61-EZ-001 jacketed and tested at FNAL
  - B61-EZ-002 jacketed and tested at LASA
  - B61S-EZ-001 single cell treated and tested at FNAL
  - B61S-EZ-002 treated, jacketed and tested at LASA
  - B61S-EZ-003 single cell to be processed
- **Develop diagnostic** for process control
- Analytical Field-Emission model
- Cavity transport boxes developed, prototypes built
- Prepare LASA test station for high Q<sub>0</sub> measurements
  - Lower residual magnetic field, Helmholtz coils
  - Faster cool-down rate across SC transition

### Main procurements in view of the series production

- **RRR300 Nb** tender: 1<sup>st</sup> batch inspected in Oct. 23, delivery in one month than ECS
- Agreement with DESY in progress for Eddy current scanning and series cavity vertical tests
- Cavity manufacturing, treatment and preparation: CFT open, then selection and awarding





B61-EZ-002 - Naked vs. Jacketed VT





## **SRF Future activities**

- Future activities on SRF cavities:
  - PIP-II series production:
    - **QC** on **material** for cavity production
    - continue R&D with prototypes (single and multicell) to improve process parameters for the series production
    - Work on the **QC measurements and checks** and definition of the **"external" QC**

### • R&D towards European Strategy:

- HighQ/HighG cavity performances R&D in view of the EU Strategy (ILC Technical Network, muon collider)
- Tuner studies (muon collider)
- Staff exchange between Eu, Japan and US for SRF experience sharing (EAJADE)
- BriXSinO:
  - An ERL technology demonstrator that see our group involved for the SRF sections (Buncher and linac)
  - Call HB<sup>2</sup>TF already funded and under construction at LASA for the BriXSinO injector



## **INFN High-Q / High-G R&D activities**

EAJADE

#### Cost reduction & sustainability for future machine





Helmholtz coils for the new cryostat (based on PIP-II experience)

EU (INFN)/U

1.00E+10





PIP-II

CEBAF-12 GeV + XFEL +ILC, MC

Draft sketch of R&D cryostat and insert



#### Development of production processes for the SRF cavities Cavity Surface treatments on single-cells: etching, annealing and rinsing From the E-XFEL like baseline to current state-of-the art (e.g. Two-step and Mid-T baking)



#### Cavity <u>vertical cold-tests</u>

Qualification of surface treatments

9-cells 1.3 GHz: industrialization (9-cells)

**Cold frequency tuners** 

FG and MG Nb

**Synergies:** 

Consistency between results from different labs and testing infrastructures





#### **Cold Frequency Tuners** Design and development of prototypes Large scale production

### New cryostat dedicated to R&D:

- Design specifically for R&D on TESLA type single- and multi-cell cavities
- Much faster overall work cycle compared to main cryostat
  - Optimized insert installation and removal process
  - Liquid Helium inventory needed for a test down by almost 4 times
  - Active B-field compensation by design
  - Procurement in progress, detailed technical design soon released.

## **Activities for BriXSinO**

BriXSinO

... BriXSinO aims at developing at INFN LASA laboratory a test-facility that would enable addressing the physics and technology challenges posed by the ERL generation ...



HB<sup>2</sup>TF – A 5mA 300 kV DC gun injector with photocathode and bunchers 2023-2025

## SRF and Photocathode Expertise

- Superconducting RF cavities (and ancillaries) development
- Photocathodes for high brightness injectors development













## Photocathodes for High Brightness Photoinjectors

- INFN LASA photocathode lab is providing high QE Cs<sub>2</sub>Te photocathodes since '90s (more than 150 photocathode produced) to different labs for high brightness RF electron gun operation, representing the state of the art in this field.
  - DESY (FLASH, PITZ, REGAE)
  - E-XFEL
  - APEX (LBNL)
  - FAST (FNAL)
  - LBNL for the LCLS II commissioning (SLAC)
- We have also produced preparation systems for DESY Hamburg and FNAL and Gun transfer systems











INFN LASA photocathode system:

• p ≈ 10<sup>-10</sup> mbar (deposition chamber, suitcase, gun transfer system)
• R&D is always running to satisfy coming user/facility requests

## **Photocathodes Production: How it works**

### • System:

- **Preparation** chamber (base pressure 10<sup>-10</sup> mbar)
- Transport box «**suitcase**» (base pressure 10<sup>-10</sup> mbar)
- Transfer chamber to RF Gun (base pressure 10<sup>-10</sup> mbar)
- Carrier to hold and exchange plugs
- **Diagnostic** for growing and characterization:
  - Hg-Xe lamp: filters (239 nm  $\div$  436 nm), main  $\lambda$  = 254 nm
  - Reflectivity (power meter) and QE (picoammeter)
  - Microbalance for thickness measurement
  - RGA for vacuum quality control
  - Masking system: 5 mm (changeable)
- **Mo plugs shapes:** compatible with all systems









## **Photocathode: Requirements and Performances**

50

[%] 40 ЭО

20

10

- **High QE** (at the reference at the laser wavelength)
  - Average QE (%) @ 254 nm (all films): 11.7 ± 3.9
- **Spatial uniform QE** of the photoemissive film
  - > 95 % over the whole photoemissive area
- Low dark current during operation
  - **Negligible** (plug optical surface polishing mandatory)
- Long operative lifetime
  - Improved from 4 months to 4 years
- **Reproducible growing process** 
  - Stable responses at laser wavelength (multiwavelenghts diagnostic)





Phase 0-I: Cs, Te Satisfies with Margin LCLS-II Needs

CW operation – 1 MHz

## Photocathode Production: the Multiwavelenghts diagnostic

- Since 2009, we introduced a new diagnostic system mainly used for the production phase called "multiwavelenghts diagnostic" obtaining:
  - Optimization of the deposition recipe
    - Better control on final spectral responses (no Cs excess -> lower "low energy" threshold)
    - Improved control of the Te deposition thickness
    - Spectral responses of produced cathodes very similar and reproducible
    - Higher final QE (at 254 nm)
  - Less consumption of the sources

### • Diagnostic (i and R) at all λs during production







## Photocatodes: thermal emittance

### Cs<sub>2</sub>Te Thermal emittance measurement:

#### •Time-of-flight (TOF) spectrometer (low energy electrons, <5 eV):

- UHV  $\mu\text{-metal}$  chamber (p ~ 1  $\cdot10^{-10}$  mbar)
- UV viewport [5° ÷ 80°]
- MCPs detector (1850 V)
- Nd:glass laser ( $\lambda$  = 1055nm), UV: 4<sup>th</sup> 264nm, 5<sup>th</sup> 211nm, 0.5 ps
- Resolution:  $\Delta$ E/E = 15meV @ 1.9eV (25meV @ 0.4eV),  $\Delta$ t = 2ns

### •LASA TOF design, characterization, calibration

#### •Simulations and perturbations reduction:

- $\bullet$  Contact potential (gold-plated,  $V_{\rm bias})$
- Space charge (J < 50mA/cm<sup>2</sup>)
- Magnetic shield: 8mG max -> poisson simulation e new external shield installation

### $\succ$ First measurments with this technique of the

### Cs<sub>2</sub>Te thermal emittance (4<sup>th</sup> and 5<sup>th</sup> harmonics)

4<sup>th</sup> harmonic ( $\lambda$  = 264 nm)  $\varepsilon_{th} = 0.5 \pm 0.1 \text{ mm mrad}$ for 1 mm rms spot radius  $5^{th}$  harmonic ( $\lambda$  = 211 nm)  $\varepsilon_{th}$  = 0.7 ± 0.1 mm mrad for 1 mm rms spot radius

### **TRAMM (TRAnsverse Momentum Measurement):**

# •Thermal emittance measurement system in the deposition chamber during the film growth:

- From transverse momentum to position displacement
- Fast response during growth process
- Further improvement of recipe deposition



mc





## The "Green" Photocathodes (INFN – DESY)

- **CW machine** operation requires photocathode:
  - sensitive to visible light to relax requests on lasers.
  - smaller thermal emittances  $\epsilon_{th} \approx 0.3$  mm mrad to improve machine performances
- **Requires XUHV** ( $\approx 10^{-11}$  mbar) since more sensitive than Cs<sub>2</sub>Te
- New LASA deposition system for "green" films (DESY-PITZ collaboration)
- collaboration with DESY-PITZ











Photocathode tested in PITZ RF gun





**#123.1 QE@2.4 eV** ~8% (At INFN) ~4% (In PITZ loadlock) ~5.6% (In PITZ gun) 30 ∄





2D distribution of photoemission transverse momentum

## **Photocathodes future activities**

- Continue with R&D and test in RF guns of "green" photocathodes
  - New compounds
  - Different growing processes (T, thickness, etc.)
  - Sequential vs. co-deposition
- Continue R&D and RF guns operation of Cs<sub>2</sub>Te photocathodes
  - R&D
    - Sequential vs. co-deposition
    - Deposition on graphene layers
    - TRAMM in the production system
  - Stress test photocathodes (DC gun at LASA)
    - Operation at 100 MHz
  - HB<sup>2</sup>TF activity on new DC Gun:
    - Transfer system and suitcase realization
    - Design of Photocathode insertion into the DC Gun
    - DC gun vacuum chamber
    - DC gun vacuum system



# Thanks for your attention!

If you need more info or if you want to collaborate with us, here our contacts (<u>daniele.sertore@mi.infn.it</u>; <u>laura.monaco@mi.infn.it</u>)

