

Istituto Nazionale di Fisica Nucleare

National Centre for HPC, Big Data and Quantum Computing – Spoke2 – WP2

Anomaly detection for Muon DQM/DC

Federica M. Simone Dipartimento Interateneo di Fisica & INFN Bari

federica.simone@poliba.it, federica.simone@ba.infn.it

PNRR milestones

YOU ARE HERE	
M9-M15	Landscape recognition of the state-of-the-art and technological investigation on the opportunity of the CN infrastructure - report submitted with detailed plan of work and selection of specific case studies.
M22-M26	Report on first implementations and tests.
M25-M36	Results from testbed and benchmarking activities; final report and evaluation.

Architecture: artificial neural network

- Encoder: transforms input data in some enconded representation
- Decoder: recreates input data

Comparing the original input with the decoded data allows detecting anomalies.

Unsupervised learning: no need for labelled data.

Assumption: most of the data is good and anomalies are rare

Step1: load data (DQM histograms) and filter

```
In [2]: ### read the data
# note: this cell assumes you have a csv file stored at the specified location,
# containing only histograms of the specified type;
# see the tutorial read_and_write_data for examples on how to create such files!
histname = 'FEDTotalEventSize'
filename = 'nanodqmio_2023C_Muon0_'+histname+'_mod.csv'
datadir = '/eos/user/f/fsimone/auto_DQM/output_nanodqm/'
dloader = DataLoader.DataLoader()
df = dloader.get_dataframe_from_file( os.path.join(datadir, filename) )
print('raw input data shape: {}'.format( dfu.get_hist_values(df)[0].shape ))
```

```
INF0 in DataLoader.get_dataframe_from_file: loading dataframe from file /eos/user/f/fsimone/auto_DQM/output_nanodq
m/nanodqmio_2023C_Muon0_FEDTotalEventSize_mod.csv...
INF0 in DataLoader.get_dataframe_from_file: sorting the dataframe...
INF0 in DataLoader.get_dataframe_from_file: loaded a dataframe with 2263 rows and 13 columns.
raw input data shape: (2263, 102)
```

In [3]: ### filtering: select only DCS-bit on data and filter out low statistics

```
df = dfu.select_dcson(df)
print('number of passing lumisections after DCS selection: {}'.format( len(df) ))
```

```
df = dfu.select_highstat(df, entries_to_bins_ratio=10)
print('number of passing lumisections after high statistics selection: {}'.format( len(df) ))
```

number of passing lumisections after DCS selection: 1943 number of passing lumisections after high statistics selection: 1943

+ rebinning, re-shaping if needed

Step2: build the model and train it

build the model and train it
from keras.layers import LeakyReLU

- input size: size of vector that autoencoder will operate on # - arch: list of number of nodes per hidden layer (excluding input and output layer) # - act: list of activations per layer (default: tanh) # - opt: optimizer to use (default: adam) # - loss: loss function to use (defualt: mseTop10) # - mseTop10: mean squared error between y true and y pred, where only the 10 bins with largest squared error are taken into account. # input_size = X_train.shape[1] arch = [int(X_train.shape[1]/2.)] act = ['tanh']*len(arch) opt = 'adam' loss = aeu.mseTop10 autoencoder = aeu.getautoencoder(input size,arch,act,opt,loss) history = autoencoder.fit(X train, X train, epochs=20, batch size=500, shuffle=False, verbose=1, validation split=0. pu.plot loss(history, title = 'model loss')

Model: "sequential"10-Layer (type)Output ShapeParam #dense (Dense)(None, 51)5253dense_1 (Dense)(None, 102)5304Total params: 10,557Trainable params: 10,55710-Non-trainable params: 010-

5

Step2: build the model

build the model and train it
from keras.layers import LeakyReLU
- input size: size of vector that autoen

- # arch: list of number of nodes per hide
 # act: list of activations per layer (de
- # opt: optimizer to use (default: adam)
- # loss: loss function to use (defualt: n

- mseTop10: mean squared error between y
where only the 10 bins with largest sq
input_size = X_train.shape[1]
arch = [int(X_train.shape[1]/2.)]
act = ['tanh']*len(arch)
opt = 'adam'
loss = aeu.mseTop10
autoencoder = aeu.getautoencoder(input_size,ar
history = autoencoder.fit(X_train, X_train, ep
pu.plot_loss(history, title = 'model loss')

Documentation:

https://www.tensorflow.org/tutorials/gene rative/autoencoder

Total params: 10,557 Trainable params: 10,557 Non-trainable params: 0

getting a keras model ready for training with minimal user inputs

def getautoencoder(input_size,arch,act=[],opt='adam',loss=mseTop10):

import math import tensorflow as tf from tensorflow import keras from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping from tensorflow.keras.layers import Input, Dense from keras.layers import PReLU #from keras.layers.advanced_activations import PReLU from tensorflow.keras.models import Model, Sequential, load_model from keras import backend as K if len(act)==0: act = ['tanh']*len(arch) layers = [] # first layer manually to set input_dim layers.append(Dense(arch[0],activation=act[0],input_dim=input_size)) # rest of layers in a loop for nnodes,activation in zip(arch[1:],act[1:]): layers.append(Dense(nnodes,activation=activation)) # last layer is decoder layers.append(Dense(input_size,activation='tanh')) autoencoder = Sequential() for i,l in enumerate(layers): #l.name = 'layer_'+str(i) autoencoder.add(1) autoencoder.compile(optimizer=opt, loss=loss) autoencoder.summary() return autoencoder

Step3: look at the reconstructed (decoded) distributions

F. Simone - Status report

Step4: define threshold on MSE(x,x')

You would typically set a cut value of mean+3std.

In this case, the MSE distribution is way too flat (std too small) \rightarrow all histograms are good and no anomaly has been found.

... Let's add anomalous histograms "by hand" \rightarrow

mean mse: 9.011344042610287e-06
std mse: 1.6940658945086007e-21

Evaluation of labelled dataset

INFO in DataLoader.get_dataframe_from_file: loading dataframe from file /eos/user/f/fsimone/auto_DQM/output_nanodq m/nanodgmio 2023C Muon0 FEDTotalEventSize mod.csv... INFO in DataLoader.get_dataframe_from_file: sorting the dataframe... INFO in DataLoader.get_dataframe_from_file: loaded a dataframe with 2263 rows and 13 columns. shape of good test set: (15, 102) shape of bad test set: (1, 102) average mse on good set: 3.7916728748661256e-06 average mse on bad set: 2.250084308584567e-05 In this case, MSE is 0.030Histograms in test set labeled "good" potentially sensitive to Histograms in test set labeled "bad" 0.025anomaly! 0.020good anomalous 0.100.0150.080.060.0100.040.0050.020.000 0.00

F. Simone - Status report

20

40

60

80

1.0

0.5

1.5

2.0

2.5

3.0

 $\times 10^{-5}$

Workflow and to-dos

- Input: set of 1-D or 2-D plots (monitoring elements, ME) specific for the muon system
 - occupancies, DAQ flags
 - mix good and problematic runs/lumis (each run contains O(1k) lumisections)
 - might need to resample the histograms (removing outliers)
- **Single training:** train one network for each ME
- **Composite training:** fed the autoencoder outputs into one neural network
- Evaluation: compare model output with labelled data

To-dos:

- define large training dataset for my usecase, possibly with labelled anomalies for performance evaluation
- implement notebook on HPC test-bed