Impact of AI coating on LMO calorimeters

Studies @ Cryogenic facility in Milano-Bicocca

COLD meeting – Milano-Bicocca, 20 November 2023

Cryogenic facility @ Milano-Bicocca (aka "meno3")

Cryogenic system

- Oxford TL-200 (1987)
- wet cryostat
- no He liquefier
- above ground (-3 floor)
- ext. Pb shield
- optical fibers ongoing...

MC stage

- experim. V: 200-350 cm³
- lowest T: ~13 mK
- Noise Thermometer

Runs

- about 2 weeks
- limited by LHe supply

Detector readout

- 2 fischers (12 + 9 channels)
 - CUORE-like front-end boards (bias & ampl)
 - CUPID Bessel & DAQ boards

Auxiliary devices

• 1 fischer (9 channels)

• heaters

- diagnostic
 - NTDs (40-A, AVS bridge)
- LEDs

Run March 2023 @ MiB

- Logistics
 - leak prevented cooldown (solved in Dec-2022)
 - LHe supply issues in Jan/Feb-2023
 - Run started at the beginning of March 2023
- Detector setup
 - LMOs + Ge LDs + other detectors
- Goals
 - CUPID
 - compare LY for LMOs w/wout coating
 - COLD
 - effect of coating on LMO
 - intrinsic gain (sensitivity)
 - pulse shape parameters
 - effect of the coating on light collection on the LD
 - general effect of coating on PS
 - basic assumptions on thermal model
 - NTD on AI coating / NTD direct contact

Run March 2023 @ MiB

Calibration sources:

- Superficial alfa source Ra-224 (half-life 3.6d) faced to the LMOs (also used for thermal gain stabilization)
- Fe-55 facing LDs
- External Th-232 only for calibration runs

The alfa source rate was high

Pile-up limited the performances of the LMOs and lowered the available statistics

Light Detectors: the noise level was too high and no light signal coming from the crystals was seen. The comparison of the light collection efficiency between the bare and the Al-coated crystals was not made.

Load curves @ Noise Therm temp 21 mK

LMO A LMO B LMO-1-AI LMO-1-AI-C LMO-2-AI

From the slope of the LC at higher power the conductance to the bath of the uncoated xtals seem to be different from the bare one

Data taking for characterization and Working Point

Ohmic working point to avoid non-linear effects in the response

5 kHz sampling frequency 1 kHz bessel cut-off

LMO	Bias [V]	R Load [GOhm]	Gain	Base R [MOhm]
A (bare)	0.1	10	10300	5.3
B (bare)	0.1	10	10300	10
AI-1	0.1	10	10300	5
Al-1-c	0.1	10	10300	4
AI-2	0.1	10	10300	3

Study the 'ideal' pulse shape, despite a reduced sensitivity

Stabilized spectra bare vs Al coated

the resolution is worsened by pileup

overall worse resolution the statistics is low due to pileup counts/10.000 counts/10.000 18 Amp ch4 LMO B Amp ch3 LMO AI-1 16 20 Entries 1522 2255 Entries Mean 2455 5584 Mean 14 Std Dev 2087 Std Dev 1077 15 alpha alpha region region 10 2000 4000 6000 10000 8000 6000 8000 100 StabAmplitude [a.u.] 2000 1000 10000 StabAmplitude [a.u.] 5 MeV - 7 MeV 0 MeV - 3 MeV 5 MeV - 7 MeV

beta/gamma region under threshold

Sensitivity

- estimated on alpha region (same type of particle, similar energy range)
- normalized by FE gain
- estimated by using centroid of the unstabilized alpha peaks in the filtered pulse amplitude vs baseline plot
- the comparison is more meaningful for the detectors with similar base resistance

The Al-coated crystals show overall lower sensitivity than bare crystals.

Sensitivity - impact on the energy resolution

Pulse shape differences

LMO A (bare) LMO B (bare)

The **Al-coated crystals** show an overall **shorter decay-time** than the bare crystals

The **rise time is similar** between the two

Conclusions and results of the analysis

- Comparison between light collection efficiency on the LD is still an open point
- The overall performances of the Al-coated crystals is worse
 - Worse energy resolution (lower S/N)
 - Lower intrinsic gain (sensitivity)
- There are evident pulse shape differences
 - Al-coated crystals have lower decay time

Next run @ MiB

Run March 2023

Next run (Jan 2024?)

- Each LMO has 2 NTDs
- 2 LD
- 1 coated LMOs (NTDs 39-D) [4 total channels]:
 - 1 NTD on AI coating
 - 1 NTD directly on crystal
- 1 coated LMOs (NTDs 39-D) [4 total channels]:
 - 2 NTD on AI coating
- 2 uncoated LMOs:
 - 2 NTD glued with Araldite

Discussion: open points and possible interpretations

How to treat the AI coating?

Coating: a new ingredient in the thermal model

If the coating can be treated as a superconductor (expected behavior for AI):

- 1. $T_{critic}(AI) = 1.2 \text{ K} \rightarrow \text{specific heat} @ 10 \text{ mK}$ dominated by lattice term
 - small impact on total C of Al coating (negligible mass)
- 2. If coated side connected to support frame \rightarrow affect link to the thermal bath
 - (superconducting) AI @ T<T_{critic}/10 ~ thermal insulator

=> Al coating should not have evident effect on system's thermal response

- ... *however*, contributions from 1. + 2. difficult to formulate
 - new thermal nodes could impact signal shape (total C \rightarrow pulse height / C/G \rightarrow t_{decay})
 - impact on the sensitivity if the signal is not integrated purely on the NTD:
 - Al could absorb some of the phonons which goes into loger state excitations
 - Al could provide a secondary (dead) channel to integrate the signal amplitude

Moreover:

 Phonons can be absorbed breaking cooper pairs in the superconducting AI layer lowering the signal amplitude How the coating could impact the pulse shape?

From the NTD point of view:

without coating:

