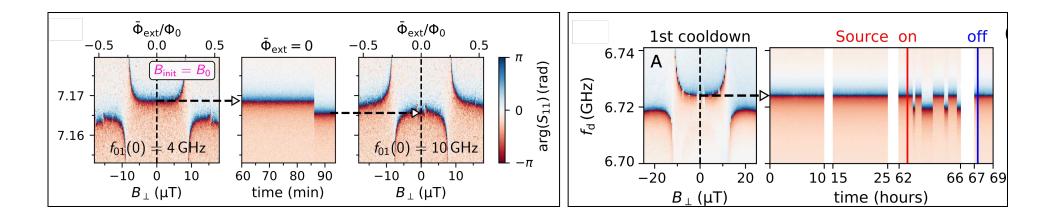


Impact of Radioactivity on Superconducting Qubits

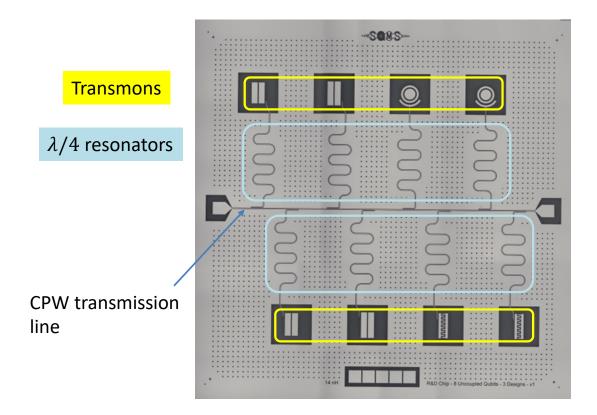


- DEMETRA project (2018): is radioactivity a problem for qubits? Today:
- Radioactivity will limit the coherence of qubits with lifetime at millisecond scale [Vepsäläinen et al, Nature 2020].
 - In standard laboratories, rate of impact: tens of mHz [Cardani et al, EPJ C 2023]
- Radioactivity produces correlated errors [Wilen et al, Nature 2021. McEwen et al., Nature Physics 2022.]

• On the other hand, suppressing radioactivity improves the performance of quantum circuits [Cardani et al, Nature Communications 2021, Gusenkova et al, APL 2022]

• Measure a multi-qubit chip in two scenarios:

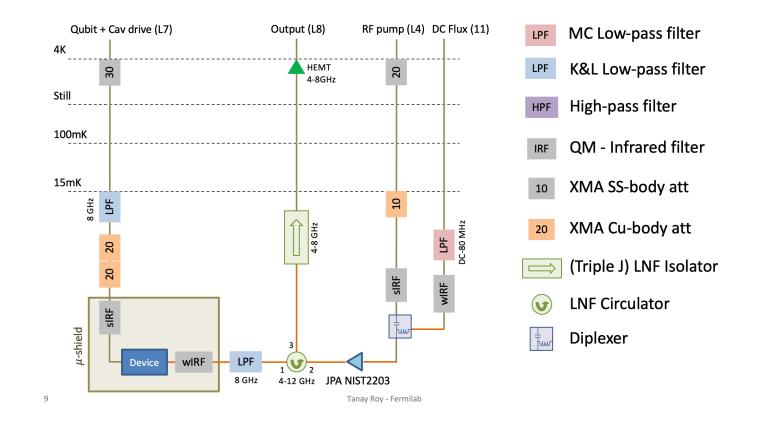
Enviroment	Expected muons [mHz]	Expected gamma's (laboratory) [mHz]	Expected Setup – PCB [mHz]
FNAL	8.0	20	<= 5
INFN – LNGS (1.4 km rock overburden) + Lead shield	0	0 Tunable up to 500 with sources	<= 5


• Measure a multi-qubit chip in two scenarios:

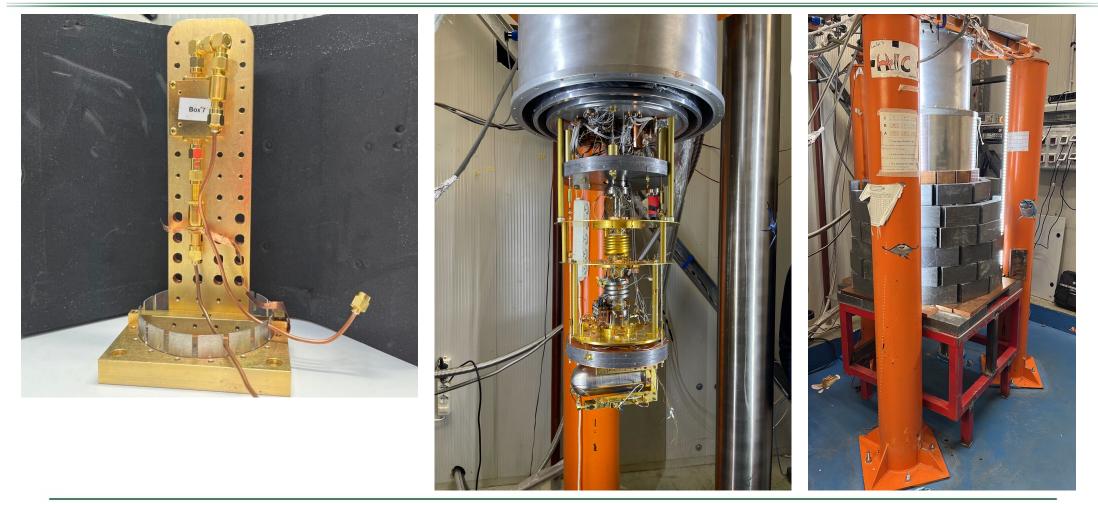
Enviroment	Expected muons [mHz]	Expected gamma's (laboratory) [mHz]	Expected Setup – PCB [mHz]	Measured [mHz]
FNAL	8.0	20	<= 5	In progress
INFN – LNGS (1.4 km rock overburden) + Lead shield	0	0 Tunable up to 500 with sources	<= 5	3 Increases with sources

The Sample

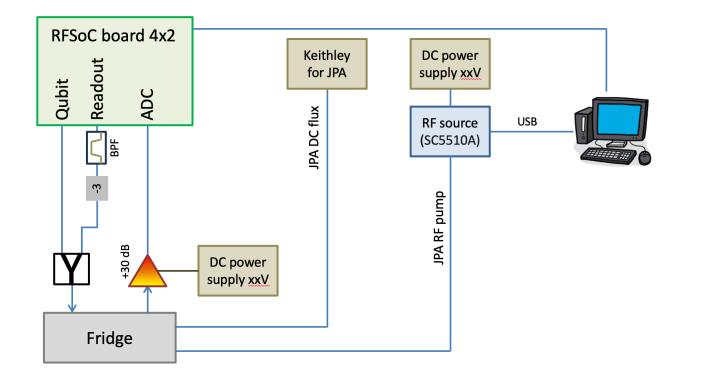
• 430 µm, 7.5x7.5 mm Sapphire chip; Nb bottom layer 160 nb, Au top layer 10 nm

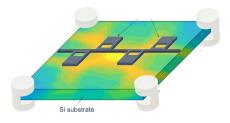

Box7-Nb/Au	f_rdt	f_q	T1
1(PP)	7207	4722	115
2(PP)	7037	4655	75
3(PP)	6870	4749	106
4(PP)	6698	4731	90
5(IDC)	6511	4424	65
6(IDC)	6289	4625	75
7(CC)	5899	5131	54
8(CC)	5743	4736	89

• A JPA (4-7 GHz) was added to improve fidelity

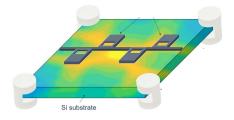


Additional Material


Mounting at INFN - LNGS


Readout

• QICK (RFSoC 4x2) – credits to G. Cancelo (FNAL)



- Effect of radioactive interaction: produce phonons in substrate that can stay there for as long as milliseconds
- All qubits in 1 would decay into 0 (again and again) until phonons are evacuated:
 - Prepare qubit in 1
 - Measure its status after 10 µs
 - If no phonons are there, it is very likely that we will find it in 1
 - If phonons are there, it is very likely that we will find it in 0
 - Repeat

- Effect of radioactive interaction: produce phonons in substrate that can stay there for as long as milliseconds
- All qubits in 1 would decay into 0 (again and again) until phonons are evacuated:
 - Prepare qubit in 1
 - Measure its status after 10 µs
 - If no phonons are there, it is very likely that we will find it in 1
 - If phonons are there, it is very likely that we will find it in 0
 - Repeat
- In presence of radioactive events: 1 − 1 − 1 − 0 − 0 − 0 − 0 − 1 − 1
 - The number of 0's will depend on how long phonons are there
 - Fast sampling needed

- The HW/SW work minor optimizations still possible
- Preliminary results show that
 - Qubits operated in muon-free environment see anyway events produced by gamma radioactivity
 - The effect on our sample is on the millisecond scale

Thanks for the Attention

- In the picture:
 - L. Cardani, F. De Dominicis, M. lannone, A. Mariani,
 T. Roy (that we also thank for many figures shown in these slides) and D. Helis
- Not in the picture:
 - M. Bal, F. Crisa, A .Grassellino, R. Pilipenko, A. Romanenko, D. van Zanten (FNAL)
 - A. Cruciani, I. Colantoni, V. Pettinacci, S. Pirro, M. Vignati (INFN)
 - E. Lachman, J. Mutus (Rigetti)

