White paper organization

5.1 Detector Concept

- 5.1.1 Charged Particle Identification at SuperB
- 5.1.2 BABAR DIRC

5.2 Barrel PID at SuperB

- 5.2.1 Performance Optimization
- 5.2.2 Design and R&D Status

5.3 Forward PID at SuperB

- 5.3.1 Motivation for a Forward PID Detector
- 5.3.2 Forward PID Requirements
- 5.3.3 Status of the Forward PID R&D Effort

References

Comment:

- We should use as much material from the White paper as possible. Basically leave the old text there and only insert paragraphs with some new items.

X.1. Summary of Physics Requirement and	
Detector Performance goals	
X.1.1. Physics requirements	Cincinnati, Maryland
X.1.2. Detector concept	SLAC
X.1.2. Detector concept X.1.3. Charged Particle Identification	Cincinnati, Maryland
X.2. Particle Identification Overview	
X.2.1. Experience of BaBar DIRC	SLAC, LAL
X.2.2. Barrel PID: Focusing DIRC (FDIRC)	Vavra
X.3. Projected Performance of FDIRC	
X.3.1. Reconstruction	LAL + others
X.3.2. MC Simulation	
- Fast simulation	Cincinnati
- Full simulation	Maryland
X.3.3. Effect of Background on performance	Maryland, SLAC
X.4. The Barrel FDIRC Detector Overview	
X.4.1. Detector layout	Vavra, Padova, Bari
- Overall figures	, ,
X.4.2. Impact on other systems	SLAC, Padova, Bari
X.4.3. Mechanical support	Vavra, Padova, Bari
X.4.4. Photodetectors	· · · · · · · · · · · · · · · · · · ·
- Photon Detector choice	Vavra, Trieste, Bari
- Modularity: packing fraction	Vavra, Padova, Bari
- Photon detector mechanical support	Vavra, Padova, Bari
- Optical coupling of detectors to FBLOCK	Vavra, Padova, Bari
- Temperature requirements	Vavra, Padova, Bari
- Rates and aging issues in H-8500 PMTs	Vavra, Trieste

Task written by:

Vavra, Padova, Bari

Vavra

X. Topics for PID in TDR

- Magnetic shield of H-8500 PMTs

- Prediction of number of photoelectrons per ring

X.4.5. FDIRC Mechanical Design

- Description of BaBar bars, bar boxes	SLAC
- Fused silica optics: New Wedge and FBLOCK	SLAC
- Gluing Wedge to Bar Box Window	SLAC
- Gluing FBLOCK to Bar Box Window	SLAC
- Radiation damage of optical components	SLAC

Fbox: Mechanical support of the Fused silica optics
 Support of Fbox in the SuperB magnet
 Padova, Bari, SLAC
 Padova, Bari, SLAC

- Bar box storage at SLAC SLAC

BaBar support structure and new FDIRC
 Background shielding to protect electronics & detectors
 Bar box shipment to Italy
 SLAC, Padova
 SLAC, Padova
 SLAC, Padova
 SLAC, Padova, Bari

X.4.6. Electronics readout, HV and LV

- FDIRC electronics (Amp/TDC/ADC)	LAL
-----------------------------------	-----

Motherboard
 Support services
 HV power supplies
 LV power supplies
 LV power supplies
 LAL, Padova, Bari, SLAC
 LAL, Padova, Bari, SLAC
 LAL, Padova, Bari, SLAC

X.4.7. Laser calibration system

Optics of calibration
 Laser and fiber optics choice
 Vavra, Maryland
 Vavra, Maryland

X.4.8. Integration issues

Background shield and access to detector maintenance
 Earthquake analysis of FBLOCK & bar box structure
 PMT protection (large backgrounds, helium)
 Vavra, Bari

X.4.9. DAQ and computing

- Cabling and Access LAL, Padova, Bari

X.4.10. FDIRC R&D Results until now

Test beam results from the 1-st FDIRC prototype
 CRT test results from the 1-st FDIRC prototype
 Vavra

- Scanning setups to test H-8500 PMTs and Electronics Vavra, Maryland, Trieste, Bari, LAL

X.4.11. Ongoing FDIRC R&D

- Experience with the final FDIRC prototype in CRT Vavra, Padova, Bari

X.4.12. System Responsibilities and Management

Management structure
 Institutional breakdown by task
 SLAC, LAL, Padova, Bari
 SLAC, LAL, Padova, Bari

X.4.13. Cost, Schedule and Funding Profile

- Budget Vavra, Padova, Bari, LAL,

Trieste, Maryland

- Schedule and Milestones

Vavra, Padova, Bari, LAL,

Trieste, Maryland

- Critical path items Vavra, Padova, Bari, LAL,

Trieste, Maryland

X.5. Forward option

X.5.1. Introduction

Physics motivation
 Outline of FTOF detector technology
 Maryland, LAL
 LAL, SLAC

X.5.2. Committee recommendation Maryland

Comment on Forward option:

- The committee evaluating the forward PID option concluded:

a) The physics gain is small (2-5%).

b) We should leave a gap big enough for a thin forward detector, for example FTOF.

c) The proponents must show results from a real prototype before it can be considered.

- Therefore, it seems to me, that the TDR Forward chapter should be brief, as we have not done enough at this point.

- Word for possible cost of FTOF:

a) Fused Silica tiles (12+2): ~122k

b) SL-10 tubes: $12 \times 14 \times 10k \sim 1.7M$

c) Electronics: ~\$100k

d) Mechanics: ~\$100k

Additional general comments:

- We are asked to provide explicit names of editors for individual chapters. Therefore we are asked for volunteers to be able to convert institution assignments in red into names.
- Total page count should probably be less than ~ 30 pages, judging from what was done for BaBar. Out of that we probably should have 3-4 pages for Forward section. (White paper had ~ 10 pages for PID)
- We should have the plan available by the London meeting.